Logo JG-Universität MainzProf. Dr. Axel Müller

    

Doktorarbeit

Neuartige Hybripartikel auf der Basis von Schichtsilikaten

Stephan Weiß (01/2013-06/2013)

Betreuer: Axel H. E. Müller

Kurzfassung

Die vorliegende Arbeit befasst sich mit der Synthese einer Reihe neuartiger Hybridnanopartikel durch die Kombinationen verschiedener Schichtsilikattypen als anorganischem Kern und wohldefinierter Polymerketten als organische Schale. In allen Fällen wurde positiv geladenes 2-(Dimethylamino)ethylmethacrylat (DMAEMA) in die Polymerketten integriert und diente der festen Verankerung der Ketten auf der negativ geladenen Schichtsilikatoberfläche durch elektrostatische Adsorption. Als erstes wurden Nanofüllstoffe entwickelt um die mechanischen Eigenschaften einer Matrix aus Homopolymer zu verbessern. Dies gelang durch eine Kombination von außergewöhnlicher Scherfestigkeit eines synthetischen K-Hectorits als Füllstoffs mit einer maßgeschneiderten Oberflächenaktivität. Hierzu wurde ein synthetisch hergestellter Fluorohectorit mit hohem Aspektverhältnis durch einen speziell entwickelten Macroinitiator (MI), hergestellt durch statistische Copolymerisation von DMAEMA und Bromoisobutyryloxyethylmethacrylat (BIEM) mittels Reversibler Additions-Fragmentierungs Kettenübertragungs (RAFT) Polymerisation, selektiv auf den externen Basalflächen organophilisiert. Über die positiven Ladungen mehrerer DMAEMA Einheiten konnte das Copolymer fest auf der Oberfläche des Schichtsilikats verankert werden. Die durch BIEM bereitgestellten Initiatorfunktionen dienten zum Starten der Polymerisation eines ausgewählten Monomers durch Radikalische Atom Transfer Polymerisation (ATRP). Der fertige Hybrid war mit einer hydrophoben Polymethylmethacylat (PMMA) Schale ausgestattet, welche die Dispersion in organischen Lösemitteln erlaubte. Die Hybridpartikel wurden als Füllstoffe mit einer Matrix aus kommerziellem PMMA kompoundiert und auf ihre verstärkenden Eigenschaften geprüft. Durch die Kombination aus einer Schale, die chemisch der Matrix angepasst ist, und der dem anorganischen Kern eigenen Scherfestigkeit konnte eine Verbesserung des Elastizitätsmoduls von 84% erreicht werden bei 5% Füllstoffgehalt. Des Weiteren wurden neuartige, scheibchenförmige Kern-Schale Nanopartikel auf der Basis von natürlichem Montmorillonit (MMT) als Kern und einer oberflächenkompartimentalisierten Schale als billige und vielseitige Verträglichkeitsvermittler in nicht-mischbaren Polymerblends untersucht. In einer einfachen einstufigen Modifikation wurde unter Ausnutzung von CoulombWechselwirkungen auf den anorganischen Kern eine Schale aufgebracht, die aus Flicken zweier Polymerarten (PMMA und Polystyrol, PS) bestand. Beide Polymerarten waren so ausgewählt, dass sie jeweils der Polarität eines der Matrixpolymeren gleichen. Das Verhalten dieser Partikel in Polymerblends mit der Zusammensetzung 2:1 PS/PMMA wurde an Dünnfilmen mit Hilfe von Transmissionselektronenmikroskopie (TEM) und Dynamisch-mechanischer Analyse (DMA) untersucht. Die Partikel wurden verteilt auf jeweils beide Domänen und in der Grenzfläche vorgefunden und führten zu einer Verbesserung des Elastizitätsmoduls um 17%. Letztlich wurde Kaolinit als anorganischer Kern verwendet um echte scheibchenförmige Hybrid Janus Partikel zu generieren. Dies gelang mit Hilfe von einfacher, selektiver Oberflächenmodifikation. Die Partikel wurden anschließend zur Kompatibilisierung eines nicht-mischbaren Polymerblends mit der Zusammensetzung 2:1 PS/PMMA genutzt. Um die Janus-Struktur auf der Schichtsilikat Oberfläche zu erzeugen wurden zwei Blockcopolymere verwendet, bei denen jeweils ein Block dazu diente, spezifisch auf die jeweiligen externen Basalfläche anzudocken und ein weiterer Block (PS oder PMMA) auf die Polarität der Matrix maßgeschneidert war. Dadurch war es möglich die Janus Partikel direkt in die Grenzfläche zwischen den Domänen zu platzieren. Dies konnte in TEM Aufnahmen von aus Lösung gezogenen Dünnfilmen der Nanokomposite visualisiert werden.

powered by php + PostgreSQL - Letzte Änderung 24.03.2014- Impressum