Logo JG-Universität MainzProf. Dr. Axel Müller

    

289. Goldmann, A.S.; Quémener, D.; Millard, P.-E.; Davis, T. P.; Stenzel, M.H.; Barner-Kowollik, C.; Müller, A.H.E.: Access to Cyclic Polystyrenes via a Combination of Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization and Click Chemistry, Polymer 49, 2274 (2008) -- DOI: 10.1016/j.polymer.2008.03.017 -- PDF
Abstract:

The coupling of the reversible addition fragmentation chain transfer (RAFT) polymerization technique with the copper-catalyzed Huisgen 1,3-dipolar cycloaddition (“click chemistry”) as a simple and effective way to generate polystyrene (PS) macrocycles is presented. The novel strategy entails the synthesis of linear PS backbones followed by endgroup modification to facilitate click chemistry for the formation of ring shaped polymers. An azido group modified 4-cyanopentanoic acid dithiobenzoate is employed as the chain transfer agent in the RAFT mediated polymerization of styrene to form PS with Mn from 2000 g mol−1 to 6000 g mol−1 and PDI < 1.2. To facilitate the cyclization of the polystyrene chains by click coupling, the thiocarbonylthio endgroup is removed and concomitantly replaced by an alkyne bearing function. This is carried out via the radical decomposition of excess azobis(4-cyano valeric acid) (ACVA) modified with an alkyne endgroup in the presence of the thiocarbonylthio-capped PS. The successful click endgroup modifications of several polystyrenes along with the results from the cyclization of a PS with Mn = 4300 g mol−1 are discussed in detail. This improved method avoids the presence of thiocarbonylthio functions in the macrocycle, thus considerably increasing the chemical stability of these polymers.

Zu dieser Publikation gibt es weitere Dateien zum Download

Passwort


Siehe auch:
  • Projekt: DFG-ARC (447 AUS-113/24/0-1): Kontrollierte radikalische Polymerisation für Anwendungen in der Nanotechnologie

powered by php + PostgreSQL - Letzte Änderung 10.05.2008- Impressum