Advanced Polymer Synthesis

Tutorial on Macromolecular Engineering

ENB Elite Study Program "Macromolecular Science" Lecture on August 28, 2007

Axel Müller

Makromolekulare Chemie II

www.MCII.de

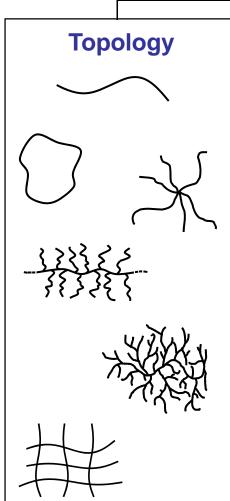
Tutorial on Macromolecular Engineering

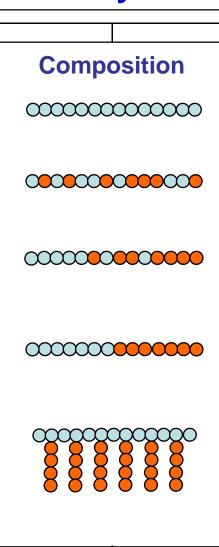
- A. Mechanisms of Living Polymerization
- **B. Synthesis and Properties of Block Copolymers**

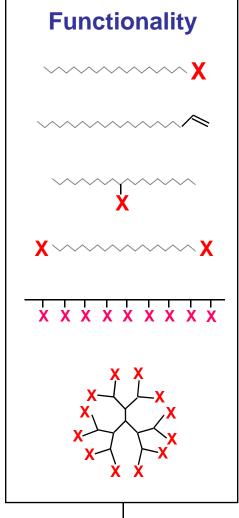
Literature

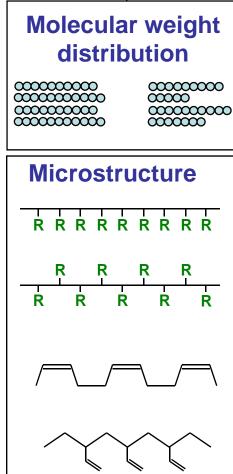
Mechanisms:

- G. Odian: "Principles of Polymerization", 4th Ed., Wiley, New York 2004
- Mark-Bikales-Overberger-Menges, Eds.: "Encyclopedia of Polymer Science and Engineering", 2nd Ed., Vol 1-17+ Suppl., Wiley, New York, 1985-89. Contains numerous review articles from "Anionic Polymerization" (Vol. 2, p. 1) via "Living Polymer Systems" (Suppl. Vol., p. 380) to "Zwitterionic Polymerization" (Vol. 17, p. 1028).
- G. Allen, J.C. Bevington, Eds.: "Comprehensive Polymer Science", Vol. 3+4: Chain Polymerization, Pergamon Press, Oxford 1989 (very detailed review articles on mechanisms and properties)


Macromolecular Engineering in general:


- G. Allen, J.C. Bevington, Eds.: "Comprehensive Polymer Science", Pergamon Press, Oxford 1989; Vol. 6, chapters 8-13 (p. 227-436), Vol. 7, chapter 1, Suppl. Vol. 1 (1992); p. 83-106
- H.L. Hsieh, R.P. Quirk: "Anionic Polymerization: Principles and Practical Applications", Marcel Dekker, New York 1996
- Y. Gnanou: "Design and Synthesis of New Model Polymers", J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C36, 77 (1996)
- J. C. Salamone (Ed.): Polymeric Materials Encyclopedia, CRC Press, Boca Raton (1996)
- K. Hatada, T. Kitayama, Eds.: "Macromolecular Design of Polymeric Materials", M. Dekker, New. York, 1997
- K. M. Stridsberg, M. Ryner, A.C. Albertsson: "Controlled Ring-Opening Polymerization: Polymers with Designed Macromolecular Architecture" Adv. Polym. Sci. **157**, 42 (2002)


Block copolymers:


- I.W. Hamley, "The Physics of Block Copolymers", Oxford University Press 1998
- M. Pitsikalis, S. Pispas, J.W. Mays, N. Hadjichristidis, "Nonlinear Block Copolymer Architectures, Adv. Polym. Sci. **134**, 1 (1998)
- N. Hadjichristidis, S. Pispas, G. A. Floudas, "Block Copolymers: Synthetic Strategies, Physical Properties, and Applications"; Wiley-Interscience, 2003

Polymer Architecture

Part A:

Mechanisms of Living Polymerization

- Anionic Polymerization
- Cationic Polymerization
- Ring-Opening Polymerization (anionic, cationic)
- "Living"/Controlled Radical Polymerization

Basic Principles of Living Polymerization

Initiation:
$$I^* + M \xrightarrow{\kappa_i} P_1^*$$

Propagation:
$$P_i^* + M \longrightarrow P_{i+1}^*$$

Termination:
$$P_i^* (+ X) \xrightarrow{k_t} P_i' (+ Y^*)$$

Transfer:
$$P_i^* + X \xrightarrow{k_{tr}} P_i' + P_1^*$$

When termination and transfer are absent

$$(R_{\rm t}, R_{\rm tr} << R_{\rm p})$$

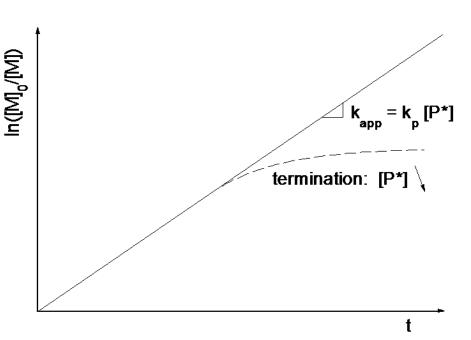
→ LIVING POLYMERIZATION

Conditions for a Living Polymerization (1)

1. No Termination: $k_t = 0$

The number of *active* chain-ends [P*] is constant:

Evidence:


First-order kinetics with respect to monomer concentration:

The rate of polymerization is given by

$$R_p = -\frac{d[\mathbf{M}]}{dt} = k_p[\mathbf{M}][\mathbf{P}^*]$$

Integration renders

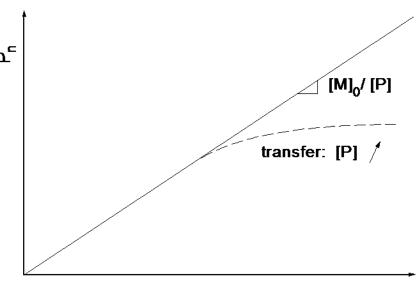
$$\ln \frac{[\mathbf{M}]_0}{[\mathbf{M}]} = k_p [\mathbf{P}^*] t = k_{app} t$$

Conditions for a Living Polymerization (2)

2. No Transfer: $k_{tr} = 0$

- → There are no new chains formed,
- → the total number of polymer chains, [P], (including the terminated ones!)

is constant: $[P] = [P^*] + [P_{dead}] = [I]_0$


Evidence:

the number-average degree of polymerization,

 P_n ,is a linear function of monomer conversion, x_p :

$$\overline{P}_n = \frac{\text{number of polymerized monomers}}{\text{number of polymer chains}}$$

$$= \frac{[\mathbf{M}]_0 x_p}{[\mathbf{P}]} = \frac{[\mathbf{M}]_0 x_p}{[\mathbf{I}]_0}$$

Molecular Weight Distribution (MWD)

Ideally, a very narrow MWD is expected, the *Poisson distribution* (*Flory, 1940*).

The polydispersity index is given by

$$\frac{M_w}{M_n} = 1 + \frac{P_n - 1}{P_n^2} \approx 1 + \frac{1}{P_n} \approx 1$$

Factors leading to broader MWD's

Non-living Processes:

- termination $\rightarrow M_w/M_n \leq 2$ (important for anionic polymerization of (meth)acrylates)
- transfer $ightarrow M_{
 m w}/M_{
 m n} \le 2$ (important in cationic polymerization of isobutylene)

Living Processes:

inadequate mixing:

$$t_{\rm mix} > t_{\rm 1/2}$$
 \rightarrow $M_{\rm w}/M_{\rm n}$ can be very high

slow initiation:

$$k_{\rm i} < k_{\rm p}$$
 $\rightarrow M_{\rm w}/M_{\rm n} \leq 1.33$

reversible polymerization ("scrambling"):

$$\rightarrow M_{\rm w}/M_{\rm p} \leq 2$$

slow equilibria between species of different activity:

$$R_{\rm ex} < R_{\rm p} \longrightarrow M_{\rm w}/M_{\rm n}$$
 can be very high (important for many "new" living/controlled processes)

Controlled Polymerization

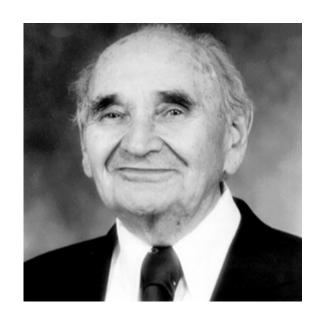
is a synthetic method to obtain polymers where:

• the number-average degree of polymerization is given by ratio of monomer over initiator:

$$\overline{P}_n = \frac{[\mathbf{M}]_0 x_p}{[\mathbf{I}]_0} = \frac{\Delta[\mathbf{M}]}{[\mathbf{I}]_0}$$

- MWD is narrow: $\overline{M}_w/\overline{M}_n < 1.1 \text{ or } 1.2$
- all chains can be functionalized: P_i* + X → P_i-X

This is obtained if:

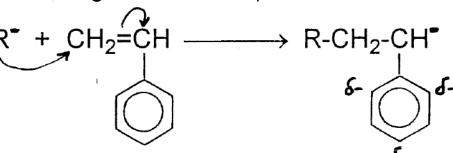

- the rate of initiation and rate of exchange reactions between various active species are fast compared to propagation (Rex, Ri > Rp).
- chain-breaking reactions (termination or transfer) are not too strong (R_t , $R_{tr} << R_p$).

Thus a *controlled* polymerization is not necessarily *living* (e.g. controlled/"living" radical polymerization)

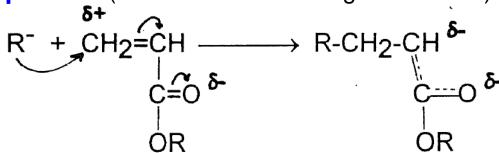
and a *living* polymerization is not necessarily *controlled* (e.g. slow initiation, slow equlibrium)

Optimum: Living <u>and</u> controlled polymerization

Anionic Polymerization


M. Szwarc, 1956:

"Living Polymers"


Nature **178**, 1168 (1956)

Important Monomers

- Non-polar vinyl compounds (with strong delocalization):
- styrene, α -methyl styrene
- o-, m-,p-alkyl styrenes
- vinyl naphthalene
- <u>dienes</u> (butadiene, isoprene, ...) ·

- 2. Polar electrophilic vinyl compounds (with electron attracting substiuents):
- vinyl pyridine
- <u>(meth)acrylates</u>
- N,N-dialkyl acrylamides
- (meth)acrylonitrile

- 3. Cyclic Ethers, Esters, Siloxanes, ...:
 - → Ring-Opening Polymerization

Protected Monomers

Monomers with <u>acidic hydrogens</u> need to be protected:

$$CH_2 = C - COO - CH_2 - CH_2 - O \left(Si(CH_3)_3\right)$$

$$CH_3$$

or .

2-hydroxyethyl methacrylate (HEMA)

$$CH_{2} = C - COO - CH_{2} - CH - CH_{2}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

solketal methacrylate

or

AS tert-BUTYL ESTER:

$$CH_2 = C - Coo \begin{cases} CH_3 \\ CH_3 \end{cases}$$

$$CH_3 \qquad CH_3$$

methacrylic acid

Initiators

1. Organometallic bases (monofunctional):

- organolithium: n-BuLi, s-BuLi, t-BuLi
- alcoholates (t-BuO-Li, t-BuO-K, ...)
- alkali salts of aromatic hydrocarbons: benzyl-Na, cumyl-K, ...

2. Electron transfer agents (bifunctional):

- alkali metals (heterogeneous):

- radical anions: <u>naphthalene sodium</u> (homogeneous):

$$Na^{\bullet} + \bigcirc\bigcirc\bigcirc\bigcirc$$
 \longrightarrow Na^{\bullet}

Special Considerations for Experimental Work

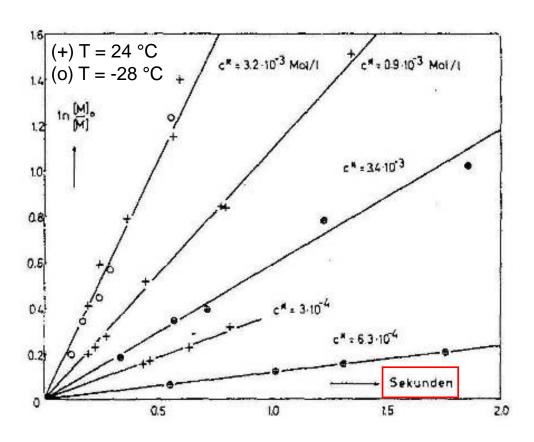
Due to the high nucleophilicity of the initiators (and propagating chain ends) it is absolutely necessary to avoid oxygen, water and protic impurities:

This implies

- aprotic solvents:
 polar: THF, ...
 non-polar: toluene, cyclohexane, hexane, ...
- rigorous purification of reagents
- handling of reagents in vacuum or under inert gas.

Due to the absence of termination, the concentration of active species can be much higher than in radical polymerization.

Thus, the rates sometimes can be very high (e.g., $t_{1/2}$ < 1 s for MMA in THF at room temperature).


In order to control the polymerization it may be necessary to

- use specially designed reactors (fast mixing: flow tube)
- add monomer slowly (vapour phase)
- work at low temperatures (-78 °C)

Anionic Polymerizaton of Non-Polar Monomers

Polymerization of styrene with Na⁺ counterion in THF

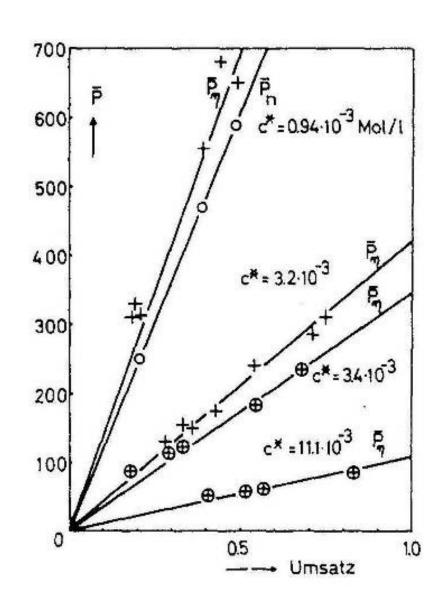
First-Order Plot of Kinetics

G.V. Schulz et al., *Makromol. Chem.* **71**, 198 (1964)

$$k_{\rm app} = k_{\rm p}[{\rm P}^*]$$
 is the slope of the first-order plot

Linear plot (constant slope)

- \rightarrow [P*] = const.
- → no termination
- → fast initiation


Molecular Weight vs. Conversion

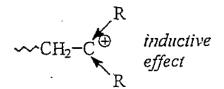
Linear plot (constant slope)

→ the number of all chains, [P], is constant

- → no transfer
- → fast initiation

 \rightarrow M_w/M_n < 1.02

Cationic Polymerization


M. Sawamoto, T. Higashimura, 1979

Monomers

Requirement for carbo-cationic polymerization: stabilization of carbenium ion

Monomer

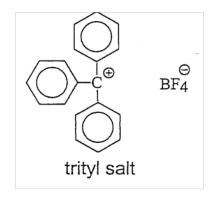
Active species

1,1-substituted alkenes: isobutylene (\rightarrow low T_g rubber, low permeability)

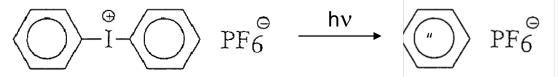
$$\begin{array}{c} R \\ CH_2 = C \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c} \sim CH_2 - C \\ \hline \\ \end{array} \qquad \begin{array}{c} resonance \\ stabilization \end{array}$$

styrenics: PS-b-PIB-b-PS: excellent thermoplastic elastomer

$$\sim$$
CH₂-CH $^{\oplus}$ \sim CH₂-CH $^{\odot}$ \sim CH₂-CH


vinyl ethers : poly(methyl vinyl ether) is water-soluble

Initiators


Protic Acids: HClO₄, CF₃SO₃H, ...

Lewis Acids: AICl₃, BF₃, ...: $H_2O + BF_3 \rightleftharpoons H^{\delta+}...(OH)BF_3^{\delta-}$

Stable cations

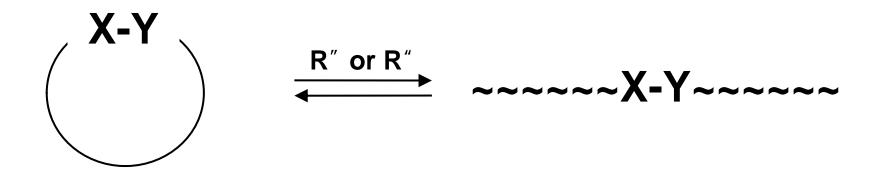
Photoinitiators

Living Polymerization Initiators

1,3-Di(2-chloro-2-propyl)-5-tert.butylbenzene (tBu-DiCum-Cl) bifunctional

In situ generation of halides from HI and vinyl ethers:

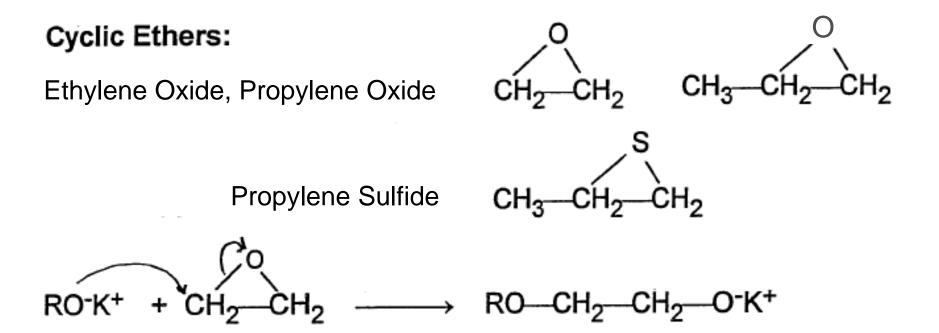
Catalyst necessary to generate cations!


Living Polymerization of Isobutylene

Termination by Protons:

Conclusions: Cationic Polymerization

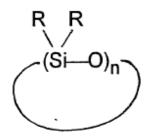
- "Living" cationic polymerization depends on a catalyzed dynamic equilibrium between "dormant" (inactive, covalent) and active species (ion pairs, free cations)
- The rate of polymerization is determined by the position of the dissociation and aggregation equilibria.
- "Transfer" (spontaneous and to monomer) is the main side reaction; it can be minimized by using larger counterions and highly polar solvents.


Ring-Opening Polymerization (ROP)

- Anionic ROP (AROP)
- Cationic ROP (CROP)
- Ring-Opening Metathesis Polymerization (ROMP)

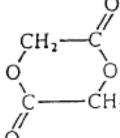
Anionic Ring-Opening Polymerization (AROP)

Monomers (1):

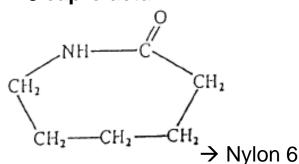

Nucleophilic Substitution → linear anionic chain end

Monomers (2)

Lactones:


Cyclic Carbonates:

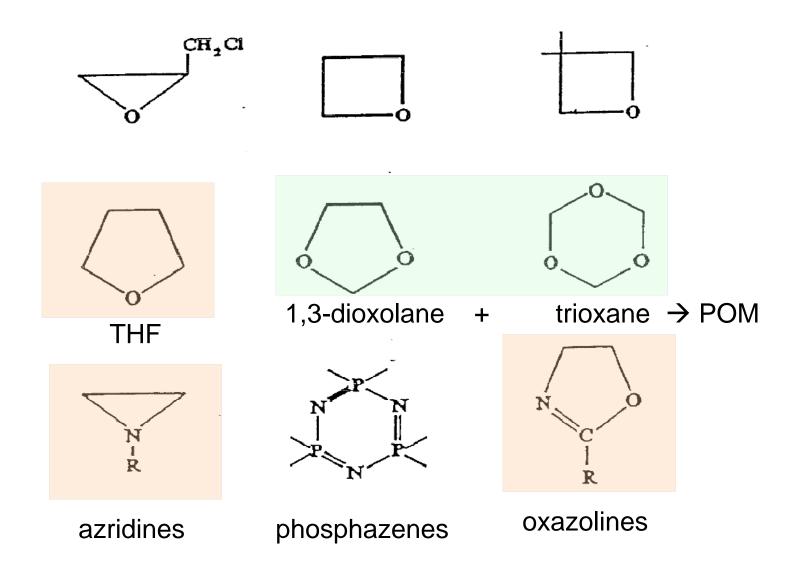
Cyclic Siloxanes:



→ silicones

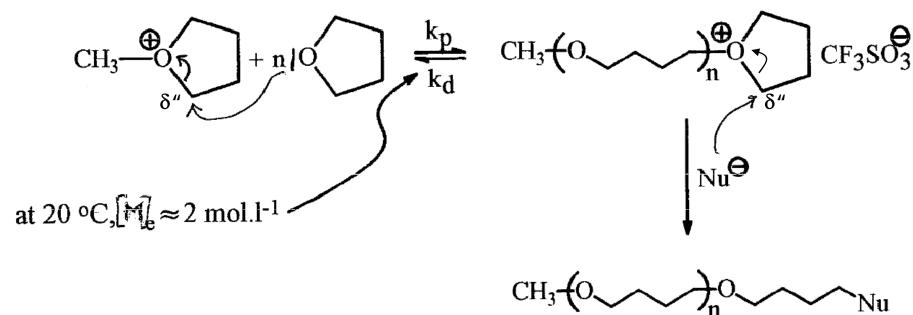
lactide

ε-caprolactam



N-carboxyanhydrides

→ polypeptides


Cationic Ring-Opening Polymerization (CROP)

Some monomers

Mechanism of Living CROP of THF

$$CF_3SO_3CH_3 + IO$$
 CH_3
 CH_3
 CH_3
 CF_3SO_3

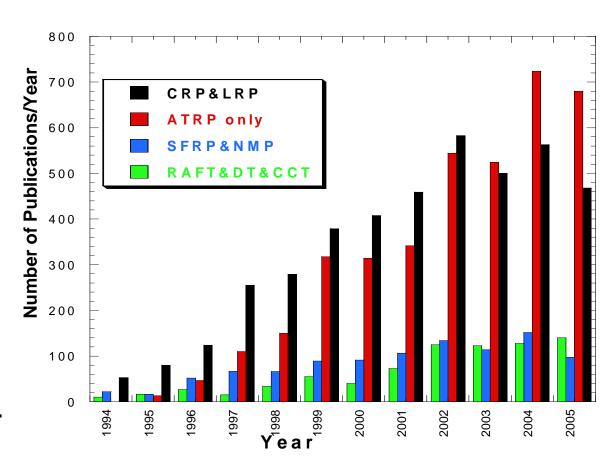
Equilibrium polymerization!

Living CROP of Oxazolines

Controlled/"Living" Radical Polymerization

- Nitroxide-Mediated Polymerization (NMP)
 E. Rizzardo, M. Georges 1992
- Atom Transfer Radical Polymerization (ATRP)
 K. Matyjaszewski, M. Sawamoto 1994
- Reversible Addition-Fragmentation Chain Transfer (RAFT)
 E. Rizzardo, G. Moad, S. Thang 1996

Controlled/"Living" Radical Polymerization


>5,000 papers on CRP (>3,000 ATRP since '95)

>600 patents on CRP (>400 ATRP since '95)

Anticipated market: >20\$billion/year
Bob Matheson (DuPont)

Applications:

coatings, adhesives, surfactants, dispersants, lubricants, gels, additives, thermoplastic elastomers, electronics, biomaterials, ... Specialties

SciFinder Scholar: September 14, 2005

Polymerizability of Monomers

Types of Initiation Radical Monomers Cationic Anionic Ethylene 1-Alkyl olefins (α -olefins) (+)1,1-Dialkyl olefins 1,3-Dienes Styrene, α -methyl styrene Halogenated olefins Vinyl esters (CH₂=CHOCOR) Acrylates, methacrylates Acrylonitrile, methacrylonitrile Acrylamide, methacrylamide Vinyl ethers N-Vinyl carbazole N-Vinyl pyrrolidone

- → Radical Polymerization works for the largest number of monomers!
- → Very many monomer pairs can be copolymerized

Aldehydes, ketones

→ Undemanding reaction conditions (just remove oxygen)

Problems of Conventional Radical Polymerization

1. Termination via fast bimolecular radical-radical reactions:

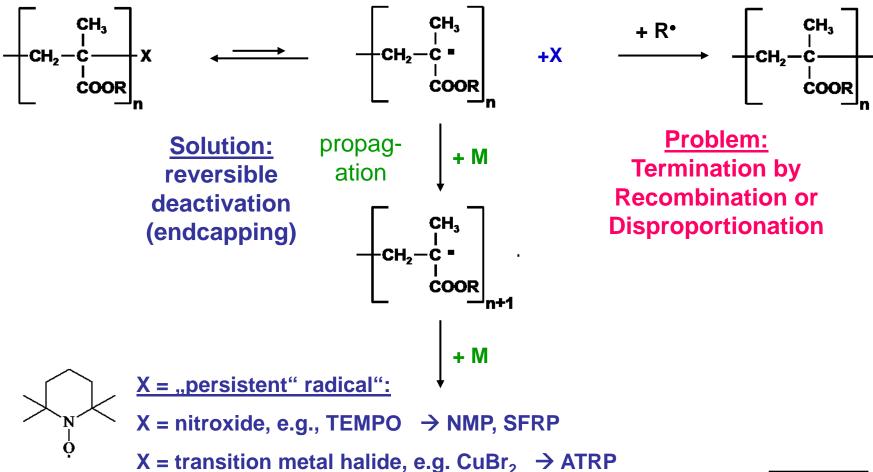
- Recombination: $\sim \sim P_n^{\bullet} + {}^{\bullet}P_m \sim \sim \rightarrow \sim \sim P_{n+m} \sim \sim$
- Disproportionation:

Radical lifetime is in the range of milliseconds!

2. Transfer to monomer, polymer, solvent, ...:

- Generates new chains:

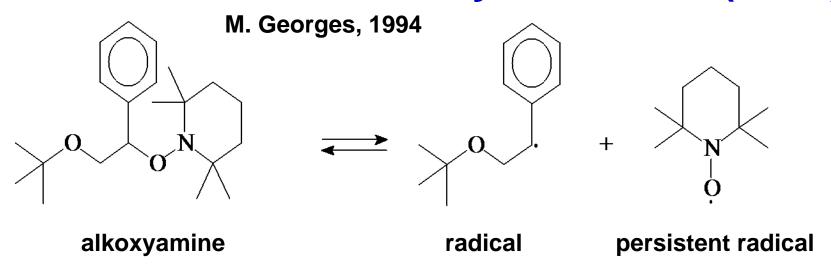
$$\sim\sim\sim$$
CH₂-CH $^{\bullet}$ + Y \rightarrow $\sim\sim\sim$ CH=CH + H-Y $^{\bullet}$


Decreasing Termination by Dilution of Chain Ends:

$$R_{t} = k_{t} \left[\mathbf{P}^{*} \right]^{2}$$

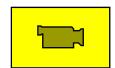
$$R_{p} = k_{p} \left[\mathbf{M} \right] \left[\mathbf{P}^{*} \right]$$

$$\frac{R_{t}}{R_{p}} = \frac{k_{t}}{k_{p}} \left[\mathbf{M} \right]$$


1. Reversible Deactivation of Chain Ends

→ Dynamic equilibrium between active and dormant species

Nitroxide-Mediated Polymerization (NMP)



Advantages:

- Simple, many (functional) nitroxides available
- Radicals can be formed by classical initiators or from alkoxyamines
- works well in emulsion and miniemulsion
- $M_w/M_n < 1.2$ possible

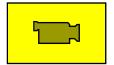
Disadvantages:

- slow, high temperatures needed (> 100 °C)
- works for few monomers only (styrene, acrylates)

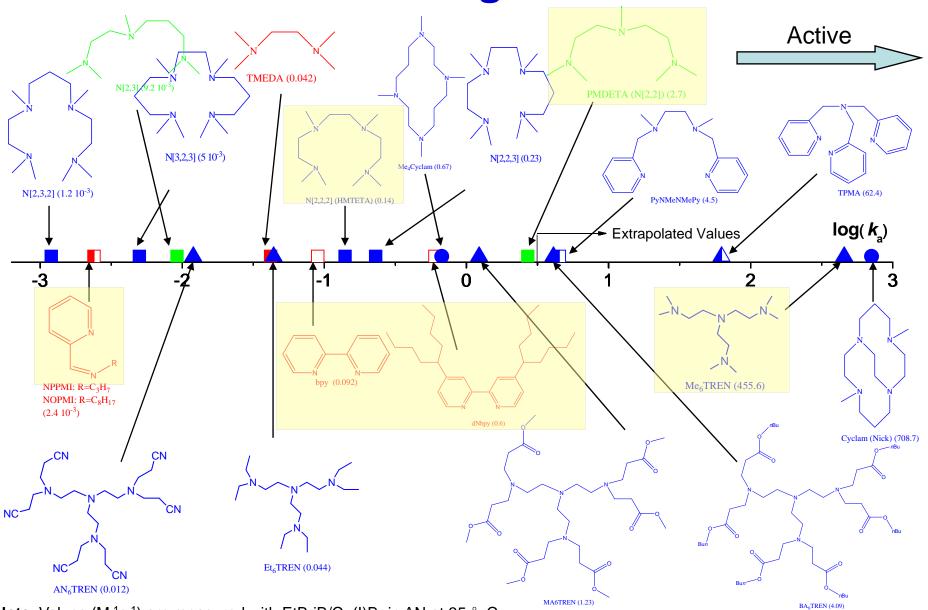
Partial library of alkoxyamine structures evaluated as initiators for the living radical polymerization of styrene and n-butyl acrylate.

Atom Transfer Radical Polymerization (ATRP) (Transition Metal Mediated Polymerization)

K. Matyjaszewski, M. Sawamoto, 1995

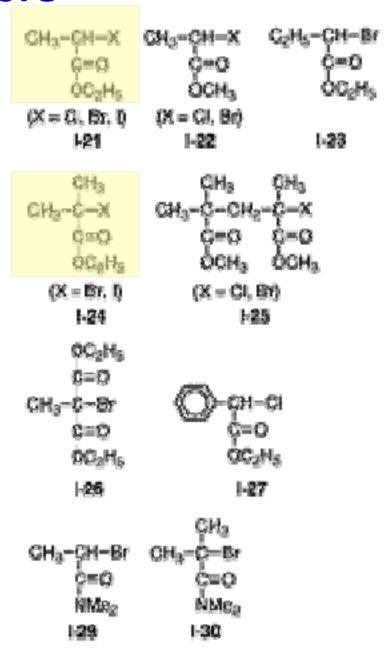

$$P_{n} = R_{n} + C_{u} + C_{u} + C_{u} + R_{d} = 10^{7} M^{-1} \cdot s^{-1} + R_{u} + R_{u} = 10^{-1} \cdot s^{-1} + R_{u} = 10^{-1} \cdot s$$

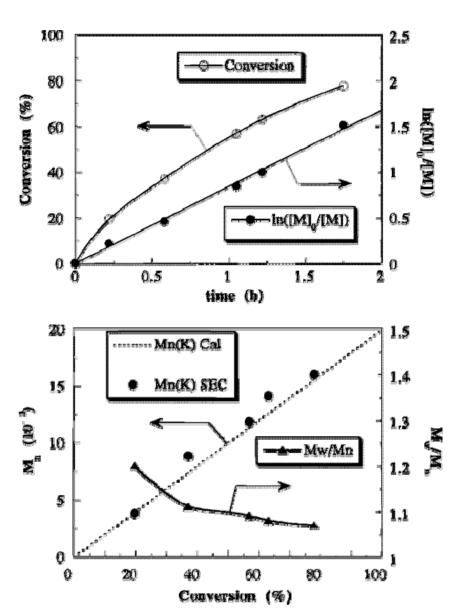
Advantages:

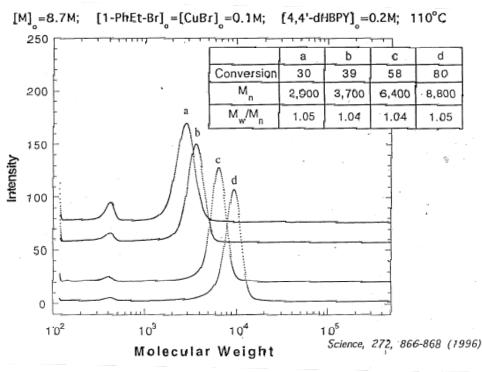

- Simple; many metal ions (Fe, Ni, ...) and ligands available
- works for most monomers (not acrylic acid, ...)
- No conventional initiator needed
- $M_w/M_n < 1.2$ possible

Disadvantages:

- removal of catalyst on large scale difficult
- does not work for monomers that complex the Mt ion (acrylic acid, ...)


Some Ligands

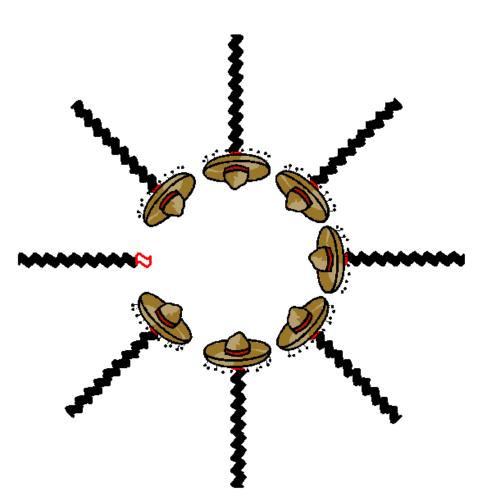

Note: Values (M⁻¹s⁻¹) are measured with EtBriB/Cu(I)Br in AN at 35 ° C.


N2: red, N3: green, N4: blue; Amine/imine: solid, Pyridine: open, Mixed: left-half solid; Linear: □, Branched: ▲, Cyclic: ○.

Some Initiators

Bulk ATRP of Styrene

$$R_{P} = k_{p} \cdot K \cdot [\mathbf{M}] \cdot [\mathbf{RX}] \underbrace{\begin{bmatrix} \mathbf{C}\mathbf{u}^{\mathrm{I}}\mathbf{L}_{2} \end{bmatrix}}_{\mathbf{X} - \mathbf{C}\mathbf{u}^{\mathrm{II}}\mathbf{L}_{2}}$$


$$K = \frac{k_{act}}{k_{deact}}$$

2. Reversible Transfer

Degenerative Transfer between active and dormant chains:

$$\sim \sim P_m - I + P_n \sim \sim \sim P_m + I - P_n \sim \sim$$

where [P-I] >> [P •]

Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization

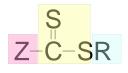
Rizzardo, Moad 1998

Initiation: initiator + monomer → P_m•

Addition / fragmentation:

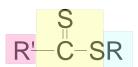
$$\begin{array}{c}
\text{Monomer} \\
\xrightarrow{\mathbf{k}_{:}}
\end{array}$$

Propagation:


$$P_{n^{\bullet}} \xrightarrow{Monomer} P_{n+1}^{\bullet}$$

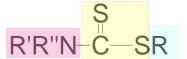
Equilibration:

active dormant dormant dormant active

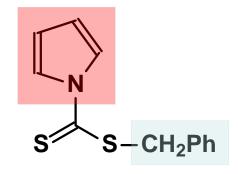

Chain Transfer Agents (CTAs)

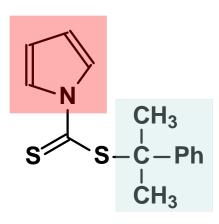
are thiocarbonylthio compounds:

Z = alkyl, aryl, N, R'O-, R'S- (stabilizes radical)


R = alkyl, aryl (leaving group): reinitiates polymerization, can carry functional groups

 \rightarrow MADIX (Rhodia 1999)




RAFT of *N*-isopropylacrylamide (NIPAAm)

Synthesis of polyNIPAAm via RAFT with dithiocarbamates as chain transfer agents

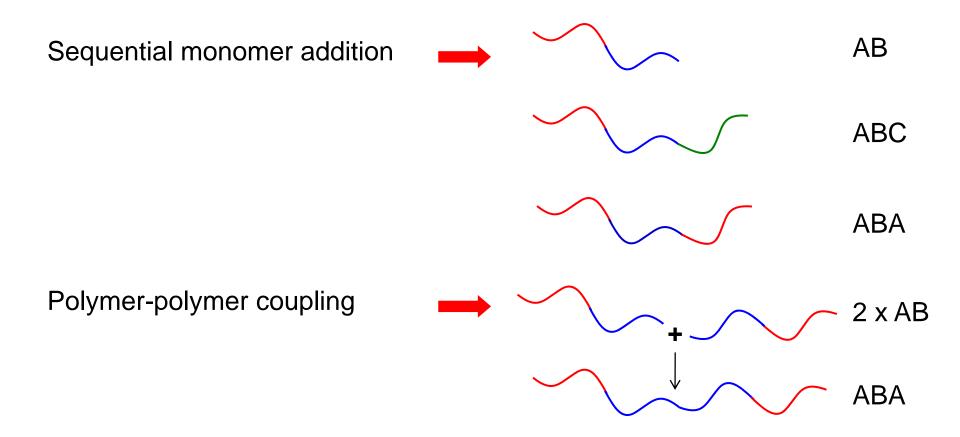
Chain transfer agents used:

benzyl 1-pyrrolecarbodithioate

cumyl 1-pyrrolecarbodithioate

Conclusions: Controlled Radical Polymerization

- Controlled Radical Polymerization proceeds either by Reversible Deactivation (NMR, ATRP) or by Reversible Transfer (Degenrative Transfer, RAFT).
- The rate of polymerization depends on the position of the activation equilibrium.
- The MWD depends on the dynamics of the activation equilibrium.
- Termination cannot be completely avoided.
- Transfer is not affected by CRP.


Comparison of "Living" Mechanisms

	Pro ©	Con 🕾
Radical	Low purity requirements (cheap)	Expensive nitroxides, CTA's
	Convenient temperatures (cheap)	Removal of metals difficult
	Large variety of monomers	Very few cyclic monomers for ROP
	Block copolymers	Some termination
	Random copolymers	No control of transfer → low MW
	Gradient copolymers	Little control of microstructure
Ionic	No (little) termination or transfer	Termination or transfer (some cases)
	Block copolymers	High purity, low T (expensive)
	High MW	Choice of monomers restricted
	ROP possible	Random copolymers difficult
,	Some control of microstructure	

Part B

Synthesis and Properties of Block Copolymers

Synthesis of linear block copolymers

Problem: low coupling efficiencies

Sequential monomer addition

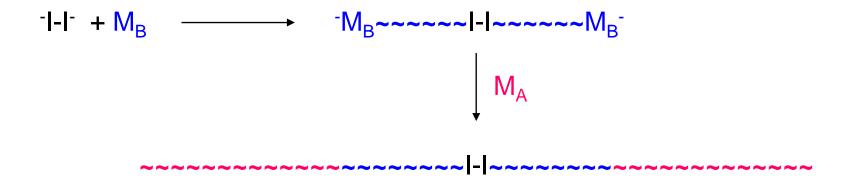
$$I^{-} \xrightarrow{M_{A}} I_{\sim \sim \sim} M_{A}^{-} \xrightarrow{M_{B}} I_{\sim \sim \sim} M_{B}^{-} \xrightarrow{M_{C}} I_{\sim \sim} M_{C}^{-}$$
macroinitiator

Good blocking efficiency when the reactivity of the first block is higher or comparable to that of the second block.

Monomer Type	pK_a (DMSO)	$pK_a\ (H_2O)$	Initiators ^b
Ethylene	56		RLi
Dienes and	44		NR ₂ -, RLi,
Styrenes	43		RMt ^b , naphthalene radical anions ^c , cumyl ⁻ K ⁺ , Mt,
Acrylonitrile	32		RMgX
Alkyl	30-31 (195)	27-28 (195)	Fluorenyl ⁻ ,
Methacrylates			Ar ₂ C ⁻ , ketyl radical anions ^d
Vinyl ketones	26	19 (197)	•
Oxiranes	29-32	16-18 (198)	RO-
Thiiranes	17	12-13 (199)	
Nitroalkenes	17	10-14 (200)	
Siloxanes		10-14 (201, 202)	RO-, OH-
Lactones	12	4-5 (203)	RCO ₂ -
Cyanoacrylates	11 (196)		HCO ₃ -, H ₂ O
Vinylidene cyanide	11	11 (196)	# TO THE PARTY OF

 $^{^{}a}$ pKa values refer to the conjugate acid of the anionic propagating intermediate. pK $_{a}$ values in DMSO are from Ref. 194 unless noted in parentheses after the number. The references for pK $_{a}$ values in H $_{2}$ O are listed in parentheses after the number.

Attenuation of the reactivity of the first block may be necessary in order to avoid side reactions in the cross-over step.


bMt refers generally to alkali metals (Li, Na, K, Rb, Cs).

^cFor example, naphthalene radical anion - (Li+, Na+, K+).

dAr,CO÷.

Special Case: RAFT

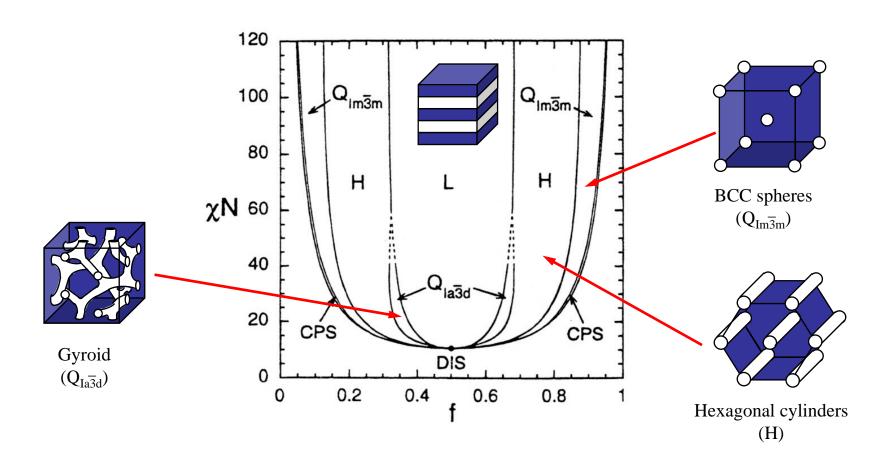
Bifunctional initiation

Problem: Bifunctional initiators are not well soluble in hydrocarbon solvents (due to aggregation)

Most important properties: Microphase separation in bulk Micelle formation in solution

Most important applications: SBS, thermoplastic elastomers (Kraton®)
PPO-PEO-PPO, amphiphilic copolymers (Pluronics®)

Anionic bifunctional initiators for non-polar solvents


1) α,ω-bis(phenylvinylidenyl)alkanes α,ω-diisopropenyldiphenylalkanes

H₂C = C - (CH₂) - C = CH₂
$$\xrightarrow{28nLi}$$
 $\xrightarrow{2}$ $\xrightarrow{2}$

$$H_2C = C \longrightarrow (CH_2)_n \longrightarrow C \longrightarrow CH_2 \quad (n \ge 2)$$
 $CH_3 \longrightarrow CH_3$

2) Diisopropenylbenzenes

Phase diagram and topology of diblock copolymers in bulk

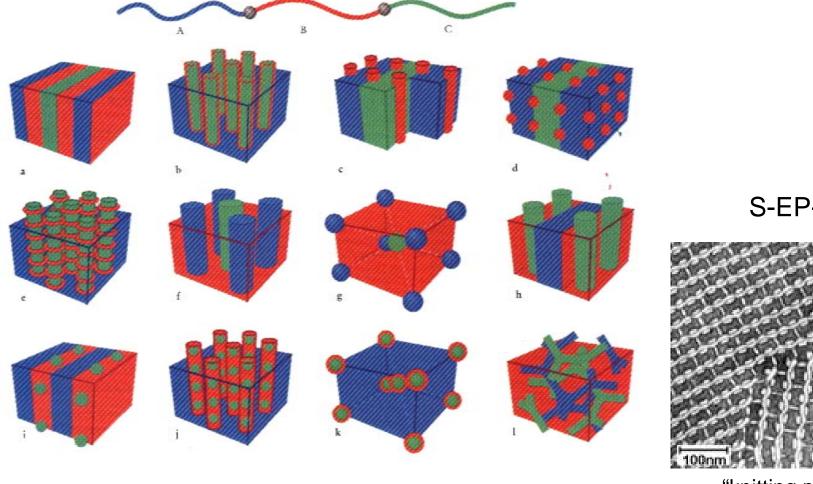
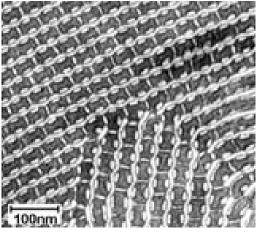
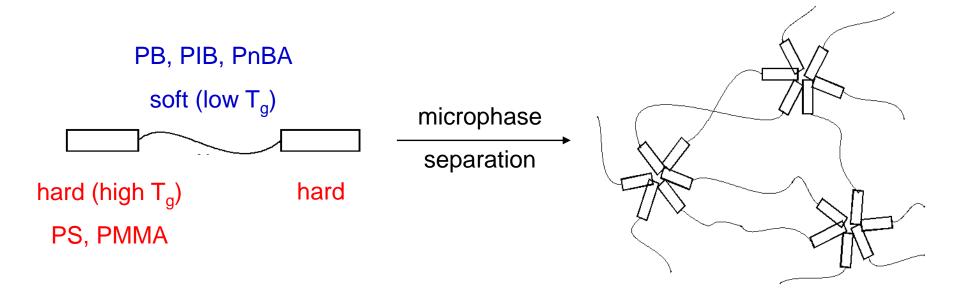

PS-b-PI lamellar morphology PS-PB-PS cubic (spherical) morphology **TEM** OsO₄ 103 (b) I(q) / arb. units 0.35 0.3 0.25 10 I(q) / arb. units **SAXS** 0.2 10° $0.1 Iq^2$ 1000 10 0.05 10.3 0.05 0.1 0.06 0.08 0.15 0.04 0.02 q / A-1 $q / Å^{-1}$

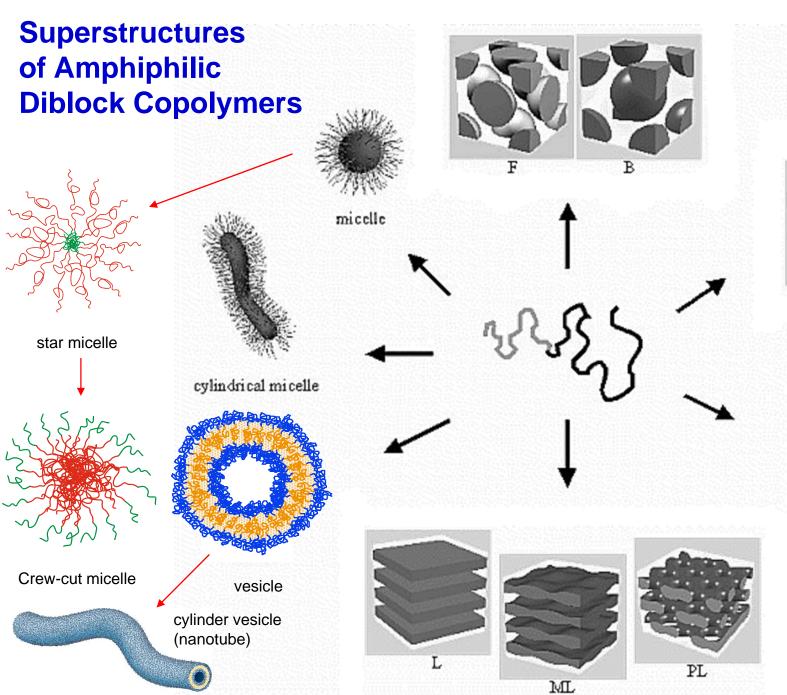
Fig. 2.6 (a) The lamellar microstructure of a PS-PI diblock with $f_{PS} = 0.64$ and $M_n = 39$ kg mol⁻¹ shown by TEM where the PI is stained dark (Khandpur *et al.* 1995); (b) SAXS powder pattern from the same material.

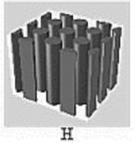

Fig. 2.9 (a) TEM micrographs from the hexagonal morphology in Kraton TR1102, a PS-PB-PS block copolymer with $f_{PS} \approx 0.24$ (Dlugosz *et al.* 1970; Keller and Odell 1985). (b) SAXS powder pattern from Kraton TR1102 (Ryan and Hamley 1997).

Morphologies of triblock terpolymers

(found with S-B-M)

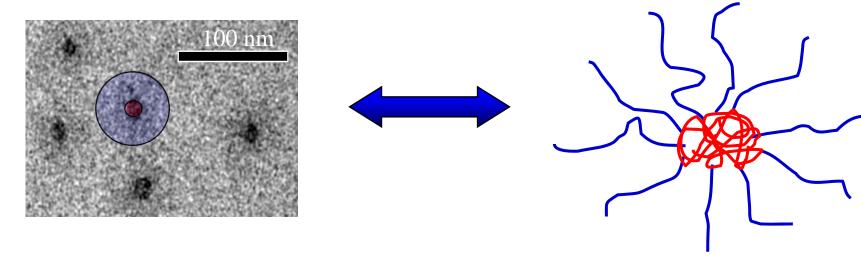

S-EP-M


"knitting pattern"


R. Stadler et al.

Thermoplastic elastomers based on ABA bock copolymers

physical cross-linking reversible!



Cryo-TEM of micelles at high pH

PnBA₉₀-b-PAA₃₀₀

 $R_{core} \sim 5 \text{ nm}$ $R_{micelle} \sim 30 - 50 \text{ nm}$ (?) $R_{h} \sim 50 \text{ nm}$ (DLS) $L_{contour}$ (PAA) = 75 nm

Collapsed core surrounded by an extended corona