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Summary 

This thesis describes the preparation of polyelectrolyte nanostructures, the 

characterization of interpolyelectrolyte complexes (IPECs) made from these structures 

and their use in a therapeutic context. The therapeutic use of such IPECs connects the two 

major topics of this work: First, the delivery of genes into eukaryotic cells in vitro (cell 

culture) by means of new star-shaped polycations was explored. Second, the structure of 

ionic multicompartment micelles (MCMs) when complexed with polyions was studied 

and the performance of these nanostructures as delivery agents of anti-cancer drugs both 

in vitro and in vivo (in mice) was tested.  

 

To better understand structure-property relationships of polycations relevant for gene 

delivery, a library of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) 

homopolymers was synthesized via atom radical transfer polymerization (ATRP). Star-

shaped polymers with a different number of arms (linear, 3-, 5- and 20-arm stars) and 

molecular weights (arm lengths) were created by using sugar-based or inorganic 

nanoparticles as core molecules with varying number of initiation sites. The cytotoxicity 

as well as transfection performance of polyplexes from these polymers and plasmid DNA 

was determined for different PDMAEMA-nitrogen/DNA phosphate (N/P) ratios in 

Chinese Hamster Ovary (CHO-K1) cells. Generally, for each polymer maximal 

transfection efficiency was found at an N/P ratio between 5 and 10, where good 

transfection performance was coupled with good viability. A decrease of the cytotoxicity 

of polymers with a given molecular weight was observed with increasing degree of 

branching, i.e., with increased arm-number. To reach significant transfection efficiency, a 

minimum molecular weight of approximately 20 kDa was found to be necessary. Star-

shaped PDMAEMA with roughly 20 arms from a silsesquioxane nanoparticle initiator 

(Si-PDMAEMA) showed exceptionally high transfection efficiency, surpassing that of 

poly(ethylene imine) in the CHO-K1 cell line. The superior transfection behavior of this 

specific polymer was demonstrated in a variety of different cell lines, including non-

dividing or differentiated (C2C12 and human T lymphocytes) ones, which are notoriously 

difficult to transfect. Additionally, polymeric micelles were produced from a 

polybutadiene-block-PDMAEMA (PB-b-PDMAEMA) diblock copolymer in aqueous 



Summary 

2 

 

solution and subsequently used for gene transfection. Their transfection efficiency was in 

the same range as that of Si-PDMAEMA, hinting towards a general design principle for 

highly effective gene vectors. This consists of a star-shaped architecture of PDMAEMA 

chains emanating from a common center, where the material of the core seems to be of 

minor importance. Apart from plasmid DNA delivery, both PB-b-PDMAEMA micelles 

and Si-PDMAEMA successfully transported siRNA into eukaryotic cells, showing a 

significantly enhanced knockdown of the targeted genes in the respective cell line.  

 

The second major part of this thesis deals with the structure of ionic MCMs complexed 

with diverse polycations as well as the drug delivery capabilities of some of these 

complex micellar structures. MCMs from polybutadiene-block-poly(1-methyl-2-vinyl 

pyridinium)-block-poly(methacrylic acid) (PB-b-P2VPq-b-PMAA; BVqMAA) triblock 

terpolymers were used as the basis for further structural modifications. These micelles 

exhibit a core-shell-corona morphology, where PB forms the core of the micelles, a 

discontinuous (patchy) shell consisting of an IPEC between P2VPq and PMAA is present 

and finally a corona of excess PMAA stabilizes the micelles in aqueous solution. At 

sufficiently high pH a portion of the corona carries negative charges, which were then 

used to form further IPECs with either cationic homopolymers or double-hydrophilic 

block copolymers featuring one positively charged block. If polycations other than 

poly(2-vinyl pyridine) such as quaternized PDMAEMA (PDMAEMAq) were used for the 

complexation, a new and distinguishable IPEC compartment was formed on top of the 

already existing P2VPq/PMAA IPEC. In the case of MCMs with a short to moderate 

block length of the corona, i.e., the degree of polymerization (DP) of PMAA was between 

345 to 550 units, a layered arrangement of the newly formed IPEC compartment was 

found. Stable colloidal particles were observed at all mixing ratios if the double 

hydrophilic diblock copolymers with one water-soluble but uncharged block were used 

for complexation with the micelles. However, in the case of homopolycation addition 

macroscopic aggregation and sedimentation occurred above critical mixing ratios.  

For BVqMAA micelles with a long PMAA corona (DP of PMAA = 1350) complexed 

with different quaternized homopolymers, a patchy arrangement of the newly formed 

IPEC compartment instead of a layered one was found. The formation of this new 

structure is due to an interfacial energy minimization between the new IPEC and the 
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compartmentalized core of the micelles that became possible due to the exceptionally 

long PMAA corona of the precursor micelles.  

Finally, MCMs from BVqMAA were tested for their capacity to deliver a hydrophobic 

anti-cancer drug for photodynamic therapy (PDT) to lung cancer cells (A549) in vitro and 

in vivo. The influence of the corona composition on the biological properties of the 

micellar carriers was studied by forming complexes with a double-hydrophilic diblock 

copolymer, poly(L-lysine)-block-poly(ethylene glycol) (PLL-b-PEG). A new cylinder-on-

sphere morphology was observed in electron microscopy for BVqMAA/PLL-b-PEG 

complex micelles at high complexation ratios between lysine and MAA units. The corona 

composition strongly influenced the in vitro cytotoxicity after photo-activation of the 

drug carrying micelles and this correlated well with the uptake behavior. Highest 

cytotoxicity and uptake were found for pure BVqMAA micelles, both decreasing with 

increasing amount of PLL-b-PEG attached to the micelles. In mice, a prolonged blood 

circulation time in the range of several hours was exclusively observed when fully 

PEGylated micelles were injected, but not for partially or non-PEGylated carriers. 

Further, the former micelles were the only ones showing an enhanced accumulation in a 

subcutaneous tumor model 24 h after intravenous injection. The amount of drug delivered 

to the tumor tissue by the micelles was sufficient to suppress tumor growth for up to 21 

days after a single dose injection and photoirradiation step. The potential of complex 

micelles on the basis of BVqMAA MCMs could thus be proven. 
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Zusammenfassung 

Diese Dissertation behandelt die Herstellung von polymeren Nanostrukturen unter 

Verwendung von Polyelektrolyten, sowie die Erzeugung und Charakterisierung von 

Interpolyelektrolytkomplexen (IPEK) und deren Verwendung in medizinischen bzw. 

therapeutischen Fragestellungen. Der therapeutische Nutzen solcher Strukturen verbindet 

die zwei Teilgebiete dieser Arbeit. Im ersten Teil wird die nichtvirale Transfektion von 

Kulturzellen (in vitro) mit Hilfe von neuen verzweigten Polykationen, insbesondere von 

sternförmigen Polymerarchitekturen, auf Basis von Poly(2-(dimethylamino)ethyl 

methacrylat) (PDMAEMA) untersucht. Der zweite Themenkomplex behandelt die 

Struktur von kompartimentierten Polymermizellen, die sich durch Selbstanordnung von 

geladenen Triblock-Terpolymeren ausbilden. Dabei wurde vorrangig die Komplexbildung 

mit entgegengesetzt geladenen Polyionen untersucht. Schließlich wurde die Fähigkeit 

solcher komplexen mizellaren Strukturen zum Wirkstofftransport in der Krebstherapie 

sowohl an Kulturzellen als auch an Tiermodellen getestet.  

 

Zum Verständnis von Struktur-Wirkungsbeziehungen wurde eine Materialbibliothek aus 

sternförmigen DMAEMA-Polymeren unter Verwendung der kontrollierten 

Polymerisationsmethode „atom transfer radical polymerization“, ausgehend von 

verschiedenen Initiatormolekülen, hergestellt. Es konnten lineare sowie sternförmige 

Polymere mit verschiedener Armzahl (3- , 5- und 20-Arm-Sterne) erzeugt werden. Für 

jede Klasse von Polymeren wurden mehrere Proben mit verschiedenen 

Molekulargewichten (= Armlängen) synthetisiert. Alle DMAEMA-Polymere wurden 

dann für die Komplexbildung mit Plasmid-DNA in verschiedenen 

Mischungsverhältnissen von PDMAEMA-Stickstoff zu DNA-Phosphat (N/P Verhältnis) 

verwendet und die resultierenden Polyplexe auf ihre Transfektionseigenschaften hin 

untersucht. Für die Bestimmung der jeweiligen Zytotoxizität und des Anteils an 

erfolgreich transfizierten Zellen (definiert als Transfektionseffizienz) wurden Ovarien-

Zellen aus chinesischen Hamstern (CHO-K1) verwendet. Es zeigte sich, dass in der Regel 

ein N/P Verhältnis zwischen 5 und 10 für eine erfolgreiche Transfektion bei gleichzeitig 

geringer Zytotoxizität erforderlich war. Des Weiteren wurde der Trend einer 

Verringerung der durch die Polymere verursachten Zytotoxizität mit steigendem 



Zusammenfassung 

6 

 

Verzweigungsgrad bei vergleichbaren Molekulargewichten gefunden. Polykationen 

unterhalb eines kritischen Molekulargewichts von ca. 20 kDa zeigten keine relevante 

Transfektionseffizienz unabhängig vom N/P Verhältnis. Die PDMAEMA-Sterne mit etwa 

20 Armen (Si-PDMAEMA), ausgehend von einem Silsesquioxan-Nanopartikel als 

Initiatormolekül, zeigten eine überragende Transfektionseffizienz in CHO-K1 Zellen, 

gekoppelt mit einer geringen Zytotoxizität. Diese verbesserten 

Transfektionseigenschaften konnten auch in anderen Zelllinien bestätigt werden, obwohl 

diese als sehr viel schwieriger zu transfizieren gelten. Darunter befanden sich unter 

anderem konfluente, nicht-teilende C2C12 Zellen sowie ausdifferenzierte humane T-

Lymphozyten. Außerdem konnten die guten Transfektionsergebnisse von Si-PDMAEMA 

ebenfalls mit Mizellen aus einem amphiphilen Diblockcopolymer erreicht werden. Die 

Mizellen bestanden aus Polybutadien-block-PDMAEMA (PB-b-PDMAEMA), wobei die 

Kern-Schale-Struktur der Mizellen in Lösung der von sternförmigen Polymeren ähnelt. 

Dies wird als Hinweis auf ein generelles Design-Prinzip gedeutet: PDMAEMA 

Strukturen, die viele Arme ausgehend von einem gemeinsamen zentralen Punkt haben, 

sind bei der nicht-viralen Gentransfektion besonders effektiv. Beide Polymere (Si-

PDMAEMA und PB-b-PDMAEMA Mizellen) zeigten außerdem eine hohe Effizienz bei 

der RNA Interferenz-Therapie, da siRNA ebenfalls effektiv in verschiedene Zelllinien 

transportiert werden konnte. 

 

Der zweite Themenkomplex dieser Dissertation behandelt die Struktur ionischer 

kompartimentierter Mizellen, nachdem diese mit entgegengesetzt geladenen 

Polyelektrolyten komplexiert wurden. Abschließend wurde die Fähigkeit solcher 

Strukturen zum Wirkstofftransport in therapeutischen Anwendungen untersucht. Als 

Basis für diese Untersuchungen dienten kompartimentierte Mizellen, die aus dem 

amphiphilen und amphoteren Triblockterpolymer Polybutadien-block-poly(1-methyl-2-

vinyl pyridinium)-block-polymethacrylsäure (PB-b-P2VPq-b-PMAA; BVqMAA) durch 

Selbstassemblierung in wässrigen Lösungen eine Kern-Schale-Korona Struktur ausbilden. 

Der Kern dieser Mizellen besteht aus PB, während sich die diskontinuierliche Schale aus 

einem IPEK aus P2VPq und PMAA zusammensetzt. Nach außen hin werden die Mizellen 

durch eine dichte Korona aus überschüssigem, nicht an der Komplexbildung mit P2VPq 

beteiligtem, PMAA stabilisiert. Da die Korona Ketten bei ausreichend hohem pH Wert 

negativ geladen sind, konnten sie für die Komplexbildung mit diversen Polykationen 
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sowie doppelt hydrophilen Diblockcopolymeren mit einem kationischen Block verwendet 

werden. Sofern sich das für die Komplexierung verwendete Polykation von dem bereits 

vorhandenen P2VPq unterschied, wie zum Beispiel im Falle von quaternisiertem 

PDMAEMA (PDMAEMAq), bildete sich ein neues Kompartiment auf dem 

ursprünglichen Kern (PB und P2VPq/PMAA IPEK) der Mizellen aus. Dieses 

Kompartiment bestand aus dem IPEK zwischen PMAA und zugegebenem Polykation und 

ließ sich von der ersten Schale in elektronenmikroskopischen Aufnahmen deutlich 

unterscheiden. Es hatte die Form einer durchgängigen Schale, wenn die BVqMAA 

Mizellen eine kurze bis mittlere Korona-Länge hatten (345 – 550 MAA Einheiten pro 

BVqMAA Kette). Wurde für die Komplexbildung anstelle eines Homopolymers ein 

amphiphiles Diblockcopolymer mit einem positiven und einem wasserlöslichen aber 

ungeladenen Block verwendet, so konnte eine kolloidale Stabilität der erzeugten 

komplexen Mizellen über den gesamten Mischbereich zwischen Mizellen und 

Polykationen erreicht werden. Oberhalb einer kritischen Menge an zugegebenem Homo-

Polykation war dagegen eine Aggregation und makroskopische Phasenseparation der 

Mizellen zu beobachten.  

Bei BVqMAA Mizellen mit einer besonders langen PMAA Korona (1350 Einheiten) 

wurde eine unregelmäßige Verteilung des neu gebildeten IPEK anstelle einer 

durchgängigen Schale bei der Zugabe von Polykation-Homopolymeren um den Kern 

gefunden. Als Ursache für diese neuen Strukturen wird eine Grenzflächenminimierung 

zwischen ursprünglichem Kern und neu gebildetem Kompartiment vermutet. Die 

Minimierung wird ermöglicht, da die besonders lange Korona das neue Kompartiment 

effektiv gegen eine Wechselwirkung mit dem wässrigen Medium abschirmen kann und so 

die Lösungs-Stabilität der gesamten Mizelle nicht negativ beeinflusst wird.  

Abschließend wurden die Mizellen aus BVqMAA auf ihre Effizienz im Transport von 

hydrophoben Wirkstoffmolekülen für eine photodynamische Krebstherapie (PDT) sowohl 

in Zellkultur als auch in Mäusen mit Tumormodellen getestet. Durch die Komplexbildung 

der Mizellen mit dem doppelt hydrophilen Diblockcopolymer Poly(L-lysin)-block-

poly(ethylenglykol) (PLL-b-PEG) konnte die Zusammensetzung der Mizell-Korona von 

reinem PMAA kontinuierlich zu einer PEG-Korona verändert werden. Der Einfluss der 

Korona auf die biologischen Eigenschaften der Mizellen in Abhängigkeit ihrer 

Zusammensetzung konnte so untersucht werden. Bei einem hohen Anteil an 

zugegebenem PLL-b-PEG wurde eine stabile, neue Mizellstruktur gefunden, wobei sich 
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das neu gebildete IPEK-Kompartiment in Zylinderform senkrecht auf dem Mizellkern 

stehend ausbildet. Bei Untersuchungen der durch die Wirkstoff-tragenden Mizellen 

verursachten Zytotoxizität konnte ein deutlicher Einfluss der Korona-Zusammensetzung 

gefunden werden. BVqMAA Mizellen ohne PLL-b-PEG zeigten die höchste Zytotoxizität 

gegenüber humanen Lungenkrebszellen (A549). Diese Zytotoxizität wurde mit 

steigendem Anteil an PLL-b-PEG in der Mizellkorona stetig geringer, wobei der Trend 

gut mit der in die Zellen aufgenommenen Menge an Wirkstoff korrelierte. Vollständig 

PEGylierte Mizellen zeigten die geringste Menge an zellulär aufgenommenem Wirkstoff 

und die geringste Zytotoxizität. In Mäusen wurde eine verlängerte Blutzirkulation im 

Bereich mehrerer Stunden nach intravenöser Injektion lediglich für vollständig 

PEGylierte Mizellen beobachtet, während teilweise oder nicht PEGylierte Mizellen 

innerhalb kurzer Zeit nicht mehr im Blutkreislauf nachweisbar waren. Auch eine 

signifikante Akkumulation in subkutanen A549-Tumoren 24 h nach der Mizell-

Verabreichung wurde nur für vollständig PEGylierte Mizellen gefunden. Die Menge an 

Wirkstoff, welche durch die Mizellen in den Tumor transportiert wurde, war ausreichend, 

um nach einmaliger Injektion der Mizellen und einer einzigen Laser-Bestrahlung eine 

effiziente Wachstumsunterdrückung des Tumors über einen Zeitraum von 21 Tagen zu 

erreichen. Somit konnte das Potential der BVqMAA Mizellen für einen 

Wirkstofftransport in vitro und in vivo erfolgreich nachgewiesen werden. 
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Glossary 

AIBN   - azobisisobutyro nitrile 

ANOVA  - analysis of variance 

ATRP   - atom transfer radical polymerization 

BHT   - butylated hydroxytoluene 

b-PEI   - branched polyethyleneimine 

BVqMAA  - polybutadiene-block-poly(1-methyl-2-vinyl pyridinium)- 

    block-poly(methacrylic acid) 

BVT   - polybutadiene-block-poly(vinyl pyridine)-block-poly(tert- 

    butyl methacrylate) 

CD-spectroscopy - circular dichroism spectroscopy 

cmc   - critical micelle concentration 

CPDB   - 2-(2-cyanopropyl)dithio benzoate 

cryo-TEM  - cryogenic transmission electron microscopy 

CTA   - chain transfer agent 

DAMA  - 2-((2-(dimethylamino)ethyl)methylamino)ethyl   

    methacrylate 

DCM   - dichloromethane 

DCTB   - trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene] 

    malononitrile 

DDS   - drug delivery system 

Dh   - hydrodynamic diameter 

D.I.   - dispersity index (light scattering) 

DLS   - dynamic light scattering 

DMAc   - dimethyl acetamide 

DMAEMA  - dimethyl aminoethyl methacrylate 

DMF   - dimethyl formamide 

DMSO   - dimethyl sulfoxide 



Glossary 

10 

 

DNA   - desoxyribonucleic acid 

DP   - degree of polymerization 

Dq   - quaternized PDMAEMA 

EBIB   - ethyl 2-bromoisobutyrate 

EDC   - N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide   

    hydrochloride 

eGFP   - enhanced green fluorescent protein 

ENB   - Elite Network of Bavaria 

EPR   - enhanced permeation and retention 

FCS   - fetal calf serum 

GPC   - gel permeation chromatography 

HMTETA  - 1,1,4,7,10,10-hexamethyltriethylenetetramine 

IC50   - inhibitory concentration for 50 % of cells 

im-IPEC  - intramicellar interpolyelectrolyte complex 

IPEC   - interpolyelectrolyte complex 

LCC50   - concentration of polyplex for 50 % of viable cells 

LD50   - lethal dose for 50 % of cells 

l-PEI   - linear polyethylene imine 

MAA   - methacrylic acid 

MALDI-ToF-MS - matrix assisted laser desorption ionization time of flight  

    mass spectrometry 

MCM   - multicompartment micelle 

MFI   - mean fluorescence intensity 

Mic-PDMAEMA - micellar PDMAEMA 

Mn   - number average molecular weight 

MTT   - 3-(4,5-dimethylthyazolyl-2)-2,5-diphenyl tetrazolium  

    bromide 

Mw   - weight average molecular weight 

MWCO  - molecular weight cut off 
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Nagg.   - aggregation number 

NMR   - nuclear magnetic resonance 

N/P (ratio)  - nitrogen to phosphate ratio 

P2VP   - poly(2-vinyl pyridine) 

P2VPq   - poly(1-methyl-2-vinyl-pyridinium) 

PB   - polybutadiene 

PB-b-PDMAEMA - polybutadiene-block-poly(2-(dimethylamino)ethyl   

    methacrylate) 

PBS   - phosphate buffered saline 

PDAMA  - poly(2-((2-(dimethylamino)ethyl)methylamino)ethyl  

    methacrylate) 

PDAMAq  - quaternized PDAMA 

PDI   - polydispersity index 

PDLL-b-PEG  - poly(D,L-lysine)-block-poly(ethylene glycol) 

PDMAEMA  - poly(2-(dimethylamino)ethyl methacrylate) 

PDMAEMAq  - quaternized PDMAEMA 

pDNA   - plasmid DNA 

PDT   - photodynamic therapy 

PEG   - poly(ethylene glycol)  

PEI   - poly(ethylene imine) 

PEO   - poly(ethylene oxide) 

PI   - propidium iodide 

PLL-b-PEG  - poly(L-lysine)-block-poly(ethylene glycol) 

PMAA   - poly(methacrylic acid) 

PMANa  - poly(sodium methacrylate) 

PS   - photosensitizer 

PtBMA  - poly(tert butyl methacrylate) 

RAFT   - reversible addition fragmentation chain transfer   

    (polymerization) 
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RES   - reticuloendothelial system 

Rh   - hydrodynamic diameter 

RNA   - ribonucleic acid 

ROS   - reactive oxygen species 

SD   - standard deviation 

SEC   - size exclusion chromatography 

Si-PDMAEMA - PDMAEMA from silsesquioxane initiator 

siRNA   - small interfering ribonucleic acid 

tBMA   - tert-butyl methacrylate 

TE   - transfection efficiency 

TEM   - transmission electron microscopy 

THF   - tetrahydrofurane 
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Chapter 1 – Introduction 

“Nanomedicine” is a catchy name for recent efforts in the medical field to use materials 

of nanoscopic dimensions for the treatment or diagnosis of various diseases.
1, 2

 Although 

the definition is rather vague, the size of such systems is in between that of small 

molecule drugs (up to several nanometers) and micron-sized objects, resulting in specific 

beneficial properties. Nanomaterials are comparable in size to proteins, enzymes or 

viruses and are therefore well suited to specifically interact with biological systems on a 

cellular or sub-cellular level. Compared to small molecule drugs a higher degree of 

complexity is inherent to those materials, leading to a multi-functionality of the overall 

system. For example, in cancer therapy many drug delivery systems (DDS) have been 

developed from nanostructured materials, which show increased availability of the drug 

in the organism through a prolonged circulation time in the bloodstream, an enhanced 

accumulation in the targeted tissue through targeting mechanisms as well as selective 

release or activation of the drug at the desired site. All these properties of nanoscopic 

DDS can result in a more effective treatment or diagnosis as compared to conventional 

methods. Depending on what type of a material is used for the medical application they 

can be classified into three different categories, namely inorganic, organic or hybrid 

materials. Quantum dots are well-known examples for inorganic imaging agents in 

fluorescence microscopy
3
 and iron oxide nanoparticles are currently in clinical trials for 

magnetic resonance imaging
4
. Purely organic platforms can be found in the 

superstructures of self-assembled small molecules such as liposomes
5
 or in polymeric 

systems such as polymer micelles
6
 and polymer vesicles (polymersomes).

7
 Consequently, 

hybrids are a combination of both types of materials into a single DDS. In the following, 

polymeric systems capable of delivering therapeutically active substances will be 

described in more detail. 

1. Polymer-Aided Drug Delivery 

1.1. Polymer-Drug Conjugates 

A pioneering idea for the use of polymers in therapeutic applications was introduced by 

Helmut Ringsdorf in 1975, when he proposed the concept of “polymer therapeutics”.
8
 In 

his approach a polymer chain is used to covalently connect several functional molecules, 
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such as a therapeutic drug and a targeting moiety, into one multi-functional 

macromolecule (Scheme 1-1).  

The main advantage of such a combination as proposed by Ringsdorf was in the larger 

availability of the drug in the organism through an increase in blood circulation time due 

to the higher molecular weight and a better solubilization of poorly water-soluble drugs 

by linking them to hydrophilic macromolecules. The idea of attaching specific targeting 

molecules to increase the localization of the drug at the desired site was already included 

in this approach. Due to the ease of chemical modification of synthetic polymers, the 

original concept has been explored in much more detail and was considerably expanded 

to include a wide variety of macromolecular delivery systems for therapeutic 

applications.
9-12

 The design of biocompatible
13

 and degradable polymers
14, 15

 together 

with the use of chemical linkers, which release the coupled drugs at appropriate 

conditions have pushed the field forward and several polymer-drug conjugate 

formulations are tested in clinical trials or have already been approved for therapeutic use 

in humans.
2, 16

  

 

Scheme 1-1. Ringsdorf´s model for a pharmaceutically active polymer-drug conjugate. Reprinted with 

permission.
8
 

 

1.2 Important Concepts in Drug Delivery: Stealth Effect and EPR 

A highly successful synthetic material aiding in the transportation of drugs inside living 

organisms is poly(ethylene glycol) (PEG). Many DDS are ultimately formulations 

containing PEG in some form. It is an uncharged, water-soluble polymer that is 
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extensively used in many kinds of consumer products, such as shampoos, crèmes, gels, 

etc. and is synthesized by anionic polymerization of ethylene oxide. Therefore, PEG is 

also referred to as poly(ethylene oxide) (PEO) and both names are used regularly. For 

therapeutic applications PEG is an ideal polymer, because it is non-toxic, biocompatible 

and has protein repellent properties. Compared to other polymers with similar properties, 

i.e. polyoxazolines,
17

 it has the advantage of FDA (U.S. Food and Drug Administration) 

approval for many applications, consequently triggering an extensive use of PEG 

polymers in therapeutic problems and resulting in its status as “gold standard”.
18

 

Originally, the term of PEGylation referred to the conjugation of therapeutically active 

molecules (small molecule drugs, proteins, peptides, DNA, etc.) to PEG chains in order to 

increase the solubility in water and to protect the respective molecule from degradation, 

e.g. by enzymes, or immunogenic recognition.
19

 In the meantime, however, the term is 

being broadly applied to many kinds of PEG containing structures used in a medical 

context, for example organic and inorganic nanoparticles, surface coatings and polymeric 

micelles.
20, 21

 Many of the desired properties found for PEG-drug conjugates are also 

occurring for PEGylated particles, where the PEG coating leads to increased circulation 

time in the bloodstream and a reduction of non-specific interactions especially with 

proteins, which is summarized in a so-called “shielding” or “stealth effect” of PEG. 

Depending on the designated application, the molecular weight and grafting density 

(mushroom or brush conformation
22

) of PEG chains have to be adjusted. 

Connected to the beneficial properties conferred by PEG on DDS, a passive targeting 

mechanism occurring for solid tumors in cancer therapy, known as the enhanced 

permeation and retention (EPR) effect, has been largely responsible for the success of 

nanoscopic DDS in that field.
23

 It was first described by Maeda et al.
24

 in 1984 and is 

based on the specific vascular structure in solid tumors, characterized by a high vascular 

permeability together with an impaired lymphatic drainage as compared to normal tissue, 

which allows DDS of a specific size range to preferentially accumulate inside the tumor 

tissue. In order to make use of the EPR effect, the nanoscopic carrier system needs to 

have a prolonged blood circulation time in the order of several hours, usually associated 

with a size in between approximately 10 – 500 nm and a dense shielding layer preventing 

protein adsorption.
25

 Molecules with a size below 10 nm are rapidly cleared through the 

kidney, while larger particles up to 15 µm primarily accumulate in liver and spleen and 

are cleared through the reticuloendothelial system (RES).
26

 However, if both the surface 
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coating, e.g. PEGylation, and the size of the drug carrying system are appropriately 

chosen, already a significant improvement of therapeutic efficacy can be observed due to 

increased tumor accumulation originating from the passive targeting by EPR.
27

 

 

1.3 Polymer Micelles and Vesicles 

Apart from employing covalent polymer drug conjugates, the use of polymeric carrier 

systems which physically encapsulate active molecules can have certain benefits. 

Amphiphilic block copolymers self-assemble into micellar aggregates with a hydrophobic 

core and a hydrophilic shell in aqueous solution, similar to micelles from small molecule 

amphiphiles. At appropriate hydrophobic to hydrophilic balance in the block copolymer, 

the formation of polymer vesicles, also called polymersomes, is favored. These structures 

have a hydrophobic membrane encapsulating a large water-filled compartment and 

resemble liposomes or cellular structures. In contrast to micelles from surfactant 

molecules, the molar critical micelle concentration (cmc) of polymeric micelles is lower 

by several orders of magnitude and their stability against dissociation is consequently 

significantly higher.
28

 The core of the micelles is well suited to incorporate drug 

molecules, protecting them from degradation or unwanted interaction with the organism, 

i.e., systemic toxicity. Typically, the size of such polymeric micelles is in the range of 20 

– 200 nm and therefore ideal to make use of the EPR effect, mentioned above. A dense 

brush formed by the water-soluble polymer chains in the corona of the micelles prevents 

agglomeration of the micelles with each other through steric repulsion and hinders 

recognition by the RES, e.g. in case of PEG. Consequently, by incorporating drugs into 

micellar carrier systems the pharmacokinetic properties can be significantly altered as 

compared to the free drug.
28

  

In systems suitable for the transportation of hydrophobic drugs, drug-incorporation is 

based only on hydrophobic interactions. Therefere, a given diblock copolymer can in 

principle be used for the transportation of many different kinds of hydrophobic drugs, 

which makes the system more versatile than a polymer-drug-conjugate. In cancer therapy, 

doxorubicin and paclitaxel are two examples for drugs commonly used in polymeric 

micelle carrier systems, where some formulations are currently undergoing clinical trials.
2
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Polymersomes are well-suited to carry large amounts of hydrophilic drugs in their 

aqueous compartment. Additionally, hydrophobic drugs can be incorporated into the 

polymersomal membrane offering additional options for the delivery of active agents or 

reporter molecules.
29

 Additional complexity can be achieved, when smaller vesicular 

structures are incorporated inside a larger polymersome, mimicking cellular 

compartments.
5
 Polymersomes have been prepared from a number of different diblock 

copolymers, usually amphiphilic diblock copolymers. However, several examples exist 

using polyion complex formation of double hydrophilic copolymers with oppositely 

charged homopolymers or diblock copolymers for vesicle formation.
30, 31

 These systems 

are often also called PICsomes and are promising candidates for delivering both anti-

cancer drugs and nucleic acids.  

Besides hydrophobic cargo, polymer micelles can also be used to interact with ionic guest 

molecules, such as ionic drugs, proteins or polynucleotides. Generally, double hydrophilic 

diblock copolymers with one ionic block are utilized in this approach and a complex 

between guest molecule and ionic block of the block copolymer forms the core of the 

micelle. The group of Kazunori Kataoka has contributed significantly to the field with 

micelles from PEG-block-poly(amino acid) diblock copolymers. By using a PEG-block-

poly(glutamic acid) block copolymer the group could incorporate amine-containing 

platinum drugs (Figure 1-1), which are selectively released in the slightly acidic 

environment of lysosomes in cancerous cells.
27, 32

  

 

Figure 1-1. Schematic diagram for the formation of platinum drug carrying micelles. PEG-b-P(Glu) mixed 

with platinum drugs (A) forms a metal polymer complex (B), which self-assembles to drug loaded micelles 

(C) in aqueous solution. Reprinted with permission.
32
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A substantial benefit of using synthetic polymer DDS in therapeutic applications is the 

high versatility, which stems from the rather easy chemical modification of synthetic 

polymers. Material properties can be tailored to the desired application through the 

correct choice of monomers constituting the polymer. However, chemical versatility is 

much greater than just a good selection of the materials creating the main chain of the 

polymer. Through post-polymerization modification reactions further functionalities or 

additional properties can be introduced to an already existing polymer system, thereby 

greatly enhancing the usefulness of the DDS. One such example is the conjugation of 

targeting functions to polymer micelles. While passive targeting is based on the inherent 

properties of the carrier system and the target tissue, i.e., the special vascular structure in 

solid tumors utilized by particles of a certain size range in case of the EPR effect, the 

conjugation of specific targeting molecules allows very selective recognition of tissues or 

cell types. This is due to preferential binding of the target function to complementary 

recognition sites (e.g. cell receptors) on the targeted cell type. As a consequence, not only 

is the accumulation in the target tissue enhanced, but it can also occur in a much more 

selective fashion in a complex biological environment. Through the binding event of a 

DDS bearing targeting functions, an enhanced uptake into the cells can be induced. An 

inefficient cellular uptake is one of the drawbacks occurring in long-term circulating 

DDS, exactly because they are not recognized by the RES but neither by the cells to be 

treated. Several types of targeting functions have been tested both in vitro and in vivo so 

far, and these include peptides, proteins, sugars, antibodies and small molecules.
6
 In all of 

these cases the targeted cell line overexpresses certain receptors allowing for a 

preferential binding of the polymer micelles with the correct targeting moiety. Typically, 

the targeting molecule is conjugated to a terminal functional group at the periphery of the 

water-soluble corona to minimize sterical hindering.  

Other chemical modifications can help to further increase the efficacy of DDS. For 

example, chemical crosslinking can enhance the stability of polymer micelles against 

dissociation, when injected into the bloodstream. By using disulfide bonds as part of the 

crosslinking connection the DDS becomes more stable in a regular medium, but can 

selectively disassemble in a reductive environment found inside targeted cancer cells.
33, 34

 

Creating DDS that are sensitive to their environment in such a way that they selectively 

release their cargo through an external triggering event would be very useful in 

controlling the location and dose of a delivered drug molecule. Various approaches have 
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been reported for the creation of environmentally sensitive polymer micelles, which can 

disassemble upon external triggers, facilitating a fast drug release.
15, 35

 Using triggering 

events that are either a part of the natural biological environment of the targeted tissue 

(specific pH
36

 or reductive environment) or that can be applied minimal-invasively (light 

irradiation, magnetic fields, ultrasound or temperature) by an external source have been 

successfully implemented into polymeric micelle carriers.
6
  

 

1.4 Photodynamic Therapy 

Photodynamic therapy (PDT) is one example for a minimal-invasive treatment approach 

using an external triggering event (light). Specific molecules, so-called photosensitizers 

(PS), can create a cellular toxicity upon illumination with light of appropriate 

wavelength.
37, 38

 The method is still under development, but shows great promise for the 

treatment of certain types of cancer (skin-, lung- and colon cancer) as well as some 

dermatological disorders.
39

 Amongst others, the expected benefits from PDT as an anti-

cancer therapy are the localized and externally controlled cytotoxicity due to light 

activation as well as having new drug molecules to overcome drug-resistance of certain 

tumors. A brief explanation of the PDT mechanism is given in the following.  

Through light absorption, the PS molecule reaches an excited state and can return to the 

ground state by creating reactive oxygen species (ROS). These ROS can be produced 

either through direct interaction between the PS and oxygen molecules (Type II reaction) 

or by first abstracting hydrogen from cellular components (Type I reaction), creating 

radicals, which in turn lead to the formation of ROS. ROS are strongly cytotoxic because 

of their high reactivity, which disrupts essential cellular functions through the attack on 

proteins, enzymes and other cellular molecules. Once created, the ROS quickly reacts 

with any molecule in its vicinity, leading to a spatially limited radius of action. By 

precisely controlling the dimension of the illuminated area, e.g. through the use of lasers, 

the method produces a strictly localized toxic effect. Non-illuminated areas, even in the 

presence of PS show only negligible toxicity. A successful PDT therefore needs three 

components, namely PS accumulation inside the target tissue, light of the appropriate 

wavelength reaching the desired site and a supply of oxygen, typically dissolved in the 

aqueous environment. From these criteria some of the drawbacks of PDT also become 

apparent. The PS needs to accumulate at the target tissue in a homogeneous fashion and a 
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large effort has been made at rendering the typically hydrophobic PS molecules more 

hydrophilic in order to improve their bioavailability.
40

 Humans treated with PDT drugs 

showed skin irritation, because of unspecific accumulation in the whole skin and had to 

avoid sunlight for weeks after the treatment. Since light must be able to reach the targeted 

area, only those types of tissue and organs can be treated, that are easily accessible with a 

light source either directly (skin) or with endoscopic methods (colon, bladder and lung). 

The penetration depth of the light has to be sufficiently high and PS of the new generation 

usually absorb light between 600 – 800 nm, where the absorption of the tissue is low and 

penetration depth can be increased. Finally, the oxygen supply can become problematic, 

especially for very efficient ROS producing drugs, because diffusion from the 

surrounding tissue is typically slower than the oxygen consumption due to ROS 

production. Only a few PDT drug formulations have been approved for use on humans so 

far,
41

 but the method opens up many attractive possibilities for a new cancer therapy, 

when the above mentioned drawbacks are finally overcome. Incorporating PDT drugs 

into polymer micelles might be one step towards that goal.
42

 

 

1.5 Complex Drug Delivery Systems: Multicompartment Micelles 

Thus, with the many possibilities to introduce different functions or physical properties in 

polymer micelles, this type of delivery system rapidly developed from a simple 

encapsulation agent helping to solubilize a single drug to a multi-functional and highly 

sophisticated nanomedical device tailored to effectively treat the respective disease. In 

this context, the option to deliver two or more different active molecules simultaneously 

is an important feature of a truly multifunctional DDS.
43-45

 By delivering two drug types 

for the same disease a synergistic effect can occur, e.g. from delivering both a gene and 

an anti-cancer drug to a tumor, and this can lead to improved treatment efficiency and 

strongly reduced tumor growth.
46

 If a reporter molecule and a drug are transported 

simultaneously, such a DDS can be used for concurrent diagnostics and treatment. 

Recently, such systems combining both therapeutic and diagnostic properties were termed 

as “theranostic” devices to emphasize their dual role in a therapeutic approach.
25, 47-50

 In 

principle, any kind of diagnostic technique can be combined in a carrier system with an 

appropriate drug. In some cases already the drug molecule combines both these features, 

i.e. a fluorescent anti-cancer drug (for example all PDT drugs).  
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Often, different active molecules can be problematic to incorporate in the same part of a 

simple core-shell micelle. Specific environments need to exist inside of such a device to 

accommodate each active agent. Multicompartment micelles (MCMs) have great 

potential of fulfilling these criteria and were first proposed by Ringsdorf.
51, 52

 Segregated 

compartments are formed, when immiscible polymer blocks are forced together in 

micellar structures.
53, 54

 One way to ensure the phase separation to occur on a microscopic 

level is by using triblock terpolymers. Consequently, the first published examples used 

fluorocarbon and hydrocarbon blocks in triblock terpolymers, due to the strong phase 

separation between the two water-insoluble blocks.
55, 56

 In the meantime, however, also 

triblock terpolymers without fluorinated blocks have been shown to form similar 

structures.
57, 58

 The different chemical environments inside the phase separated core of 

such complex structures allow for the incorporation of chemically different guest 

molecules.
59, 60

 Besides a pure therapeutic use of such structures, MCMs have great 

potential as a templating material for example in nanoparticle synthesis,
61

 as nano-

reactors for chemical reactions
62

 and as building blocks in a hierarchical self-assembly
63

 

to mesoscopic materials. So far, only very few examples of an actual therapeutic use of 

MCMs from triblock terpolymers with more than one guest molecule exist. This is 

probably due to the synthetic effort necessary to produce triblock terpolymers with 

adequate homogeneity and in sufficient quantity. The group of Christine Jérôme used 

MCMs from miktoarm star terpolymers made of poly(ethylene oxide)-star-poly(2-

vinylpyridine)-star-poly(-caprolactone) (PEO-P2VP-PCL) to incorporate a hydrophobic 

dye as a model drug, while simultaneously using the pH-sensitive P2VP block for 

exposing in acidic environment a targeting function conjugated to that block.
64

 They 

studied the uptake behavior of the micelles in dependence of the protonation state of the 

pH sensitive block in vitro as well as the drug release kinetics in diluted conditions. Also, 

Yamauchi et al.
65

 recently reported on the use of a polystyrene-block-poly(acrylic acid)-

block-poly(ethylene glycol) triblock terpolymer for the preparation of MCMs which carry 

a hydrophobic fluorescent dye in the core and a platinum drug in the poly(acrylic acid) 

compartment, while the PEG corona stabilizes the overall micelle. They demonstrated a 

dose-dependent decrease of the cell viability in vitro and tracked the micelles through the 

fluorescent dye. In summary, multicompartment micelles have great potential for tackling 

some of the open challenges in efficient drug delivery, especially in the field of 

combinatorial therapy where multifunctional drug carriers, capable of delivering several 
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drugs at once are needed. For the synthetic effort necessary in creating such systems to be 

worthwhile, the full potential of a selective drug release of several drugs independent of 

each other and in specific cellular locations must be realized in the future. 
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2. Delivery of Genes 

“Gene therapy” summarizes a therapeutic approach for the treatment of inheritable or 

acquired diseases, where defective or missing genes are replaced by an appropriate 

exogenous gene introduced into the cell.
66, 67

 Also the down-regulation (silencing) of 

overactive genes by means of RNA interference can offer promising and previously 

unavailable therapeutic tools.
68

 A human gene therapy approach is especially promising 

for certain types of diseases that are otherwise difficult or even impossible to treat so far. 

These include genetic diseases like severe combined immunodeficiency, hemophilia or 

cystic fibrosis, but also acquired illnesses like cancer or AIDS could potentially be 

addressed with gene therapy.
66

 One of the biggest challenges for gene therapy is the 

effective introduction of foreign genetic material into the target cell, because several 

hurdles exist that protect against just such an event. Consequently, significant efforts have 

been made in creating delivery vehicles (“vectors”) for nucleic acids that can effectively 

overcome the different cellular barriers and successfully deliver their cargo to the target 

(nucleus or cytosol). Inevitably, the delivery of genes for fighting disease in patients will 

need delivery vehicles capable of delivering their cargo in a complex living organism and 

not just in cell culture. This environment offers special conditions, which additionally 

complicate the process of gene delivery before the vector has even reached the target cell 

and encounters its inherent defense mechanisms. It follows that the same challenges 

discussed above for in vivo drug delivery apply here as well.  

However, the intentional modification of cells, summarized under the title of genetic 

engineering, by introducing recombinant DNA in vitro is an important field in its own 

right. Many drug molecules are difficult to produce by fully synthetic means because of 

multi-step procedures requiring protective groups, stereo-selective catalysis and multiple 

purification steps. Cells can produce these drugs by enzymatic means with absolute 

stereo-selectivity and in high quantity when genetically engineered to do so. Since the 

cells are cultivated in cell culture in a bioreactor, many of the restrictions that apply to an 

in vivo delivery system are absent for this application. Therefore, even vectors which 

might not be suitable for a gene therapy approach can still be very effective for the 

delivery of genes in vitro where matters of delivery efficiency and production cost might 

be more important than blood circulation times or organ distribution. 
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All delivery vehicles, regardless of their final use, are usually divided in two categories, 

namely viral and non-viral vectors. Some significant differences between the two types 

exist, leading to specific challenges that need to be overcome before a widespread use can 

take place. 

 

2.1 Viral Vectors 

Viruses are heavily used as delivery vehicles for genetic material, because they evolved 

specifically to introduce their own genome into the host cell. As a result, the delivery 

efficiency of viral vectors is very high and in many cases specific towards a certain cell 

line. In addition, viruses can stably incorporate the transported DNA sequence into the 

host cell genome ensuring continued gene expression, which can be beneficial in the 

treatment of certain diseases. However, some drawbacks exist for viral vectors. The most 

significant drawback is the possibility of an immune response of the organism, posing a 

significant risk to the patient. Also, a repeated application of viral carriers in the same 

patient could result in a loss of transfection efficiency, due to recognition of the virus by 

the immune system. Furthermore, large-scale production and chemical modification of 

the virus capsid is challenging, the latter potentially leading to a change in the self-

assembly of the three dimensional virus structure. Some restrictions on the size of the 

transported DNA can also apply, due to the highly defined structure of the virus. 

Nevertheless, most clinical trials performed on gene therapy so far have used viral 

vectors.
69, 70

  

 

2.2 Non-Viral Vectors 

Alternative transfection methods, often based on synthetic molecules or artificial 

particles, have been developed in recent years to overcome the above-mentioned 

drawbacks of viral vectors. Amongst those are electroporation, the “gene gun” - metal 

nanoparticles coated with DNA that are shot into the cells - as well as cationic molecules 

such as lipids and polymers.
71

 All of these methods are generally considered to be less 

effective and selective in delivering their genetic cargo as compared to their viral 

competitors and in most cases only a transient expression of genes can be achieved, since 

they are lacking mechanisms to permanently introduce the transported DNA sequence 
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into the host genome. For some non-viral systems, but especially in polymeric vectors, a 

significant cellular toxicity is observed in many cases. Still, significant effort has been put 

into improving the performance of non-viral vectors, aided by the ease with which 

chemical modifications can be made on the systems.  

2.3 Barriers to a Successful Delivery of Genes 

The process of a successful delivery of nucleic acids to the target site in the cell with 

special consideration of the barriers encountered en route is exemplarily described in the 

following by example of a polycationic non-viral gene delivery vector.  

On its own, the uptake of free DNA in cells is inefficient, because of the size and negative 

charge of the DNA. Consequently, methods that make use of delivery mechanisms 

inherent to the cell (liposomes and polymers) rather than brute force (gene gun and 

electroporation) first need to compact the DNA to particles of smaller size and neutralize 

the negative charge of the DNA phosphate groups. Both processes occur when 

polycations form polyion complexes with nucleic acids (Figure 1-2, I). Such complexes 

are also termed as “polyplexes” or “inter-polyelectrolyte complexes” (IPECs) and 

additionally protect the DNA against enzymatic degradation. The properties of polyplexes 

like size and charge are mostly influenced by the choice of the polycation and do not 

strongly depend on the DNA used, but even if these physicochemical parameters of 

polyplexes are known, it is not possible to predict their transfection behavior.
70

 When 

mixing DNA and polycations to form polyplexes, generally, an excess of polycation 

(calculated as the ratio of positive to negative charges or nitrogen over phosphorus, N/P) 

is used and this leads to the formation of polyplexes with an overall positive charge. 

These can now efficiently bind to the negatively charged cell membrane, significantly 

enhancing their cellular uptake in vitro (Figure 1-2, II). Cellular uptake of the polyplexes 

depends on a multitude of factors such as size, charge, surface chemistry, the presence of 

targeting functions and possibly also mechanical properties of the polyplexes. It 

constitutes one of the most critical steps in gene delivery, although a high polyplex uptake 

is by no means a guarantee for a strong transgene expression. The uptake behavior is also 

known to vary with cell type, where different pathways may be used, which complicates 

matters further.
72

 An uptake through an endosomal pathway is the most common 

mechanism of polyplex entry into cells. 
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Figure 1-2. Barriers to gene delivery – Design requirements for gene delivery systems include the ability to 

(I) package therapeutic genes; (II) gain entry into cells; (III) escape the endo-lysosomal pathway; (IV) 

effect DNA/vector release; (V) traffic through the cytoplasm and into the nucleus; (VI) enable gene 

expression; and (VII) remain biocompatible. Reprinted with permission.
72

  

 

Once the polyplex is inside of an endosomal compartment in the cell, it needs to be 

released into the cytosol and further travel to the nucleus in case of DNA delivery 

(Figure 1-2, III), while for siRNA delivery reaching the cytosol is often sufficient. 

During the transport of endosomes to lysosomes ATP-mediated proton pumps acidify the 

interior of the endosome, finally leading to the activation of nucleases capable of 

degrading the DNA. Several polymeric vectors make use of this acidification for an 

endosomal escape. This can be either through a controversially discussed
73

 process called 

“proton sponge effect” (PSE)
74, 75

 where the high buffering capacity of polycations like 

poly(ethylene imine) (PEI) leads to a water influx and finally bursting of the endosome. 

Other polymeric systems have used cell penetrating peptide sequences
76

 or synthetic 

functions
77

 mimicking these peptides for interrupting the endosomal membrane and 

facilitating a release of the polyplex from the endosome. Also the co-delivery of small 

molecules assisting in endosomal escape has been shown.  

Even after a polyplex has successfully entered the cytosol of the target cell, there are still 

several barriers to overcome, before the DNA has reached its designated destination. The 

mobility of macromolecules and particles, such as polyplexes, is strongly hindered in the 

cytosol, i.e., due to the cytoskeleton and the high viscosity of the cytosol originating from 
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the high protein content. Viral vectors can rely on active transport mechanisms such as 

microtubules, which are generally not available for polymeric vectors unless still enclosed 

in the endosome. Instead polymeric vectors have to form complexes of small size to 

increase mobility. Nucleic acid degradation is a reoccurring problem in the cytosol and a 

premature release of the DNA from the complex is detrimental for transfection efficiency 

mainly for reasons of rapid DNA degradation. However, for the genetic information of 

the DNA to be accessible it must eventually be released from the polyplex, otherwise 

transgene expression is hindered. Finding a system with a balanced binding strength 

towards the DNA, where on the one hand stable complexes that protect the DNA from 

degradation are formed while still allowing for a release at the correct timepoint, is 

critical. 

The final barrier for DNA delivery to eukaryotic cells is the nucleic membrane and the 

DNA has to cross it in order to induce a successful expression of the desired gene (Figure 

1-2, V). Pore complexes can actively transport even large molecules through the 

membrane and into the nucleus, but appropriate targeting ligands have to be presented in 

order to activate these pore complexes. Another possibility is during cellular division, 

where the nucleic membrane breaks down for a short period of time. The lack of pore 

complex activating peptides is the reason why many polymeric vectors are only efficient 

in dividing cell lines, while transfection performance drops severely in non-dividing cell 

lines.  

Many of the processes involved in the successful delivery of exogenous genetic material 

to a target cell are not fully understood yet. It is therefore difficult to make any prediction 

on the transfection performance of a new polymer vector and in many cases careful 

mapping of the parameter space is necessary to find optimal transfection conditions. 

Since performance can vary strongly with each different cell line and also depends on 

factors like the presence or absence of serum proteins in vitro, this process has to be 

repeated for each vector when applied to a new target.  

 

As mentioned above, the delivery of genes under in vivo conditions constitutes a 

formidable challenge for most transfection systems, especially for non-viral ones. 

Polyplex stability can be a problem under physiological conditions (increased salt 

concentration, competing polyions, serum proteins, etc.) and dissociation of the complex 
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can lead to DNA degradation, while an aggregation of polyplexes or the association with 

proteins in the bloodstream can lead to fast clearance. For intravenous injection of 

polyplexes the problem of sufficient accumulation at the target site and avoidance of 

recognition, already discussed for anti-cancer-drug carrying polymer micelles, arises as 

well. Some solutions are found in the charge neutralization and shielding of the 

polyplexes, for example through PEGylation, although this generally results in lower 

uptake efficiency in the target cells. A direct injection of the polyplexes to the target 

tissue can overcome the problems associated with insufficient accumulation; however, it 

does not automatically guarantee a successful gene transfection. 

2.4 Polymeric Vectors 

Many different polymers with positive charges have been tested for their potential in 

transfection. Most of these polymers have amino groups as the charge bearing species and 

some typical representatives of polymeric non-viral carriers are depicted in Figure 1-3. 

Polylysine was one of the first polymers to be used for the transfection of cells and has 

reached pre-clinical trials as a block copolymer with PEG.
78, 79

 PEI in both its branched 

and linear architectures has shown remarkably high transfection efficiency and is 

considered as the “gold standard” for polymeric gene delivery.
75

 Many chemical 

modifications have been proposed to further increase the transfection efficiency and 

especially at addressing the problem of its rather high cytotoxicity.
80

 Several 

commercially available transfection reagents such as ExGen500 and jetPEI use linear PEI 

in their formulations. Szoka et al. first used poly(amido amine) dendrimers for nucleic 

acid transport and several different dendritic molecules have been studied in detail 

because of their branched architecture and highly defined structure.
81, 82

 Recently, some 

reports used phosphonium containing polymers as an alternative material, proving their 

principal capability for the delivery of genes in vitro, while exhibiting rather low 

cytotoxicity as compared to ammonium containing polymers.
83-85
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Figure 1-3. Polymer structures of polycations regularly used as non-viral transfection agents. 

 

To better understand the individual mechanisms that govern a successful delivery of 

genes to the target cell, it is a necessity to have well-defined starting materials. Almost all 

synthetic polymers have a distribution of their molecular weight and therefore represent a 

mixture of individual polymer chains of varying length. Furthermore, reproducibility is 

only given up to a certain point, since both molecular weight and molecular weight 

distribution can vary significantly between individual batches. If the distribution of a 

polymer sample is broad, it becomes difficult to discern between the individual 

contributions of the different chains making up the overall mixture. Therefore, polymers 

with a narrow molecular weight distribution, a good control over the molecular weight 

and high reproducibility between batches is to be preferred. Additionally, access to 

different polymer architectures can be interesting, since material properties can be 

significantly influenced through the three-dimensional connection of the monomers in a 

polymer. By using monomers that can be polymerized with controlled or living 

polymerization methods, such different polymer architectures in combination with narrow 

molecular weight distributions have become available.
86, 87

 With the resulting polymers of 

defined molecular weight and controllable architecture, the aim is to establish structure-

property relationships for polymeric vectors and possibly even define some guidelines for 

the design of successful polymeric gene carriers.
88

 

Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) is a polycation that can be 

easily prepared by living polymerization methods like reversible addition fragmentation 

chain transfer (RAFT) polymerization,
89

 atom transfer radical polymerization (ATRP),
90
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as well as anionic polymerization
91

 and has shown promising performance as a non-viral 

gene carrier.
92

 Similar to many other polymeric gene transfection agents an increase in 

cytotoxicity that is coupled with an increase in transfection efficiency could be observed. 

Several studies on the influence of the molecular weight on transfection efficiency and 

toxicity have also been performed.
93, 94

 Much effort has been put into decoupling an 

effective transfection from a significant cytotoxicity. At the very least a decrease of the 

toxicity to bearable levels, while maintaining a high transfection efficiency has been the 

aim of several studies. It is believed that part of the toxicity stems from the non-

degradable nature of the PDMAEMA. Several groups have therefore prepared DMAEMA 

containing polymers that can be cleaved into smaller building blocks under physiological 

conditions, albeit with ambiguous results on both transfection efficiency and toxicity.
95-98

 

A copolymerization of PDMAEMA with other monomers or conjugating PEG to 

PDMAEMA could successfully reduce the toxic effects of the polymers in many cases. 

However, not in all cases did a reduction of the toxicity also lead to an increase in 

transfection efficiency.
99

 The influence of architectural changes to the PDAMEMA 

structure was also tested for improving gene delivery efficacy. Non-linear polymer 

architectures can be synthesized for PDMAEMA for example by using multi-functional 

initiator molecules. Both star-shaped
100-102

, branched
103, 104

 and cylindrical brush-like
105

 

polymers were subsequently tested for their transfection performance and showed 

superior results as compared to their linear counterparts. Georgiou et al. were the first to 

use star-shaped PDMAEMAs for gene transfection. They prepared the polymer through 

an “arm-first” method with a crosslinking monomer introduced into the group transfer 

polymerization of DMAEMA.
106-108

 Several other groups have made use of such 

branched structures in the meantime. In summary, PDMAEMA offers many possibilities 

to elucidate the mechanisms of gene transfection, due to its chemical versatility. 

Despite these tremendous improvements in controlling the polymer architecture and 

molecular weight distribution, many open questions remain unanswered for the moment. 

Controversial and even conflicting results are repeatedly reported in the literature. In 

many cases a comparison between different studies is difficult, because transfection 

protocols, cell lines, reporter genes and material characterization methods are chosen 

based on preference or availability by the respective groups rather than by standardized 

rules. This is a major drawback that needs to be addressed in the future in order to better 

coordinate the individual efforts of each group.  
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As an outlook for nanomedicine, polymeric materials have a good chance of significantly 

contributing to the field in the future. Polymers are chemically versatile and can easily be 

tailored to their respective use by skilled synthetic chemists. However, to be able to 

correctly design the materials, polymer chemists and material scientists in general need to 

closely collaborate with scientists from other disciplines like biology, biochemistry, 

pharmaceutical and medical sciences, who have a deep understanding of the processes 

and related challenges specific to living organisms. Only through a clever design of 

materials that takes into account all the available knowledge of the different disciplines 

will a significant improvement become possible, rather than hoping for a “lucky shot” 

from a single discipline. 
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3. Aim of this Thesis 

The motivation of this thesis was to explore the potential of polyelctrolyte nano-structures 

especially for therapeutic applications.  

In polymeric gene delivery, we investigated structure-property relationships of branched 

polycations in gene delivery, in particular of star-shaped architectures. A better 

mechanistic understanding of the relevant processes involved in the transport of nucleic 

acids by means of polymeric vectors would help to improve the material performance. 

With controlled radical polymerization methods and multi-functional initiator molecules, 

a vast library of polymeric structures was accessible that was previously nearly 

unexplored for transfection. Information about the influence of macromolecular 

parameters like molecular weight or degree of branching on transfection results might 

yield some general “design rules” for improving non-viral gene delivery.  

Multicompartment micelles are a relatively new class of nanostructured materials, which 

have potential use in several fields. Here, we wanted to investigate MCMs from 

BVqMAA triblock terpolymers, and were particularly interested in expanding the 

functionality of this system as well as creating new MCM structures. The incorporation of 

new, additional compartments in the micelles would increase the complexity and could 

lead to previously unknown micelle structures. Using individual compartments for the 

incorporation of active molecules opens many possibilities for therapeutic applications, 

especially if more than one functional aspect of the MCM is put to use. Applying the 

MCM system from BVqMAA triblock terpolymer to a therapeutic application was the 

ultimate goal. 
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Chapter 2 - Overview over the Thesis 

This thesis consists of seven chapters including five publications, which are presented in 

Chapters 3 to 7. 

Structural characterization of polyelectrolyte nanostructures in aqueous solution and the 

therapeutic use arising from these materials is the common topic unifying the different 

chapters. Two different types of polymeric materials were used in the work, which can be 

divided into star-shaped polycations on one side and multicompartment micelles (MCMs) 

from ionic triblock terpolymers on the other.  

In close collaboration with the group of Process Biotechnology at the University of 

Bayreuth, we explored the biological properties of star-shaped polycations for the 

delivery of genetic material (transfection) into eukaryotic cells. To better understand the 

relationship between chemical modifications on the molecular level and biological 

properties relevant to the transfection process, i.e., cytotoxicity and transfection efficiency 

(TE) were the main criteria of interest, I synthesized a variety of different polymer 

structures that were subsequently tested against several types of cell lines. We found 

general design criteria for star-shaped vectors (Chapter 3 and 4) and could use them to 

create materials with significantly enhanced transfection properties (Chapter 4) as 

compared to previously used polymers. 

In the second part of the thesis, from a starting material consisting of MCMs from 

triblock terpolymers which have a negatively charged corona in aqueous solution, I 

investigated the possibilities to alter the micellar structure towards higher complexity 

through the interaction with oppositely charged (block co-)polymers. Creating new 

compartments or changing the surface chemistry of the micelles by means of 

interpolyelectrolyte complex (IPEC) formation was of particular interest (Chapter 5 and 

6). Some of these new MCMs were then used to investigate the influence of the corona 

chemistry on biological properties, while simultaneously demonstrating good drug 

carrying capacity sufficient for anti-cancer therapy in vitro and in vivo (Chapter 7).  

The most important results from each of the different parts are discussed in the following.  
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1. Influence of Polymer Architecture and Molecular Weight of Poly(2-

(Dimethylamino)ethyl Methacrylate) Polycations on Transfection 

Efficiency and Cell Viability in Gene Delivery 

Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) is an ideal candidate for 

investigating structure-property relationships in non-viral gene delivery, because well-

defined polymers with varying morphologies can be synthesized by means of controlled 

polymerization methods such as atom transfer radical polymerization (ATRP).
1
 Star-

shaped polycations have only recently been used in gene transfection and there was some 

evidence for a superior transfection performance of this specific polymer architecture 

reported in the literature.
2, 3

 We were especially interested how structural parameters, 

such as the arm number and arm length of star-shaped polycatione, influence their 

transfection properties. By using ATRP, I prepared a material library consisting of linear, 

3-arm-, and 5-arm-star polymers with different molecular weights for each type of 

polymer. The two star-shaped DMAEMA polymers were polymerized in a “core-first” 

approach using multifunctional initiator molecules on the basis of sugars (glucose and 

saccharose). The final polymer library contained twelve polymers in total and covered a 

molecular weight range from 16 to 158 kDa (see Table 2-1). 
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Table 2-1: Nomenclature and molecular characterization of the linear, 3-arm and 5-arm DMAEMA 

polymers synthesized with ATRP.  

Architecture Name N / Molecule
a
 Mn [kDa]

b
 PDI

c
 

Linear 

L110 108 17.1 1.12 

L520 518 81.7 - 

L880 881 138.7 1.73 

L1000 1003 157.9 1.80 

3-Arm 

S-395 95 15.9 1.26 

S-3210 210 34.0 1.16 

S-3300 296 47.5 1.12 

S-3600 596 94.7 1.12 

S-3710 710 112.6 1.13 

5-Arm 

S-5580 575 91.9 1.09 

S-5700 699 111.4 1.12 

S-5920 919 146.0 1.10 

 a
calculated from the NMR-molecular weight; 

b
determined from NMR conversion data; 

c
measured via SEC 

with DMAc as eluent and poly(methyl methacrylate) as standard.  

 

The same polymerization conditions were used for all three types of polymer 

architectures and well-defined star-shaped PDMAEMAs with narrow molecular weight 

distributions were obtained. Then, polyplexes were formed with plasmid DNA (pDNA) in 

increasing ratios of PDMAEMA-nitrogen/DNA-phosphate (N/P ratio) to test them for 

their cytotoxicity as well as TE in Chinese Hamster Ovary (CHO-K1) cells. For ease of 

data analysis, the concentration dependent cytotoxicity data for each polymer sample was 

converted into a single value, defined as the lethal complex concentration for 50 % of the 

cells (LCC50) which could then be plotted against the molecular weight (Figure 2-1a). 

Interestingly, a trend was found that points towards a reduced cytotoxicity (high LCC50 

value) with increasing degree of branching for comparable molecular weights, i.e., 5-arm 

stars are less toxic than 3-arm stars which in turn are less toxic than linear polymers.  
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Figure 2-1: (A) Plot of the LCC50-values of various PDMAEMAs against the molecular weight of the 

polymer. LCC50-values were calculated from MTT experiments using CHO-K1 cells. The symbols 

represent linear (squares), 3-arm star (triangles) and 5-arm star (stars) PDMAEMA. (B) Fraction of 

transfected cells plotted against the relative viability for the polyplexes from DMAEMA polymers at N/P 

ratios 2 (black), 5 (dark grey), 10 (light grey) and 20 (open symbols). The average number of monomers per 

polycation is given next to each entry. Data represent mean value of three independent experiments. The 

arrow represents the general course of a polycation through the graph with increasing N/P ratio (from grey 

= low to black = high N/P ratio). 

 

Cellular toxicity can have a direct influence on the TE, as cell death decreases the 

production of reporter genes. It is therefore reasonable to directly connect the toxicity of a 
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given N/P ratio with the corresponding TE. To have both of these important parameters 

visualized in one graph, we introduced a plot of the TE against relative viability for all 

N/P ratios in the polymer library as depicted in Figure 2-1b. This new type of graph 

allows the reader to quickly identify the polymeric material and N/P ratio with ideal 

transfection properties, i.e. the data points that appear in the upper right quadrant number 

2. Additionally, this type of graph nicely illustrates the effect of increasing the N/P ratio 

for a certain DMAEMA polymer, starting with low toxicity and TE, then going through a 

tradeoff region between increasing TE and toxicity, while finally the toxicity dominates 

and results in a decreased TE. This behavior is illustrated by the arrow in Figure 2-1b. 

From the dataset we could further find that polymers below a critical molecular weight of 

approximately 20 kDa (corresponding to 130 monomer units in case of PDMAEMA), 

exhibit no significant transfection, suggesting that polymers with an intermediate 

molecular weight and a branched architecture would be good candidates for gene 

delivery. 

 

2. Nano-Particulate Non-Viral Agent for the Effective Delivery of pDNA 

and siRNA to Differentiated Cells and Primary Human T Lymphocytes 

With the knowledge from the polymer library containing linear, 3- and 5-arm star 

DMAEMA polymers described in Chapter 2.1, we then tested the transfection properties 

of a star-shaped PDMAEMA with 20 arms (Si-PDMAEMA). This polymer had been 

obtained again by ATRP “core-first” method using a multifunctional silsesquioxane 

nanoparticle as the initiator (Scheme 2-1a).  
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Scheme 2-1. (A) Chemical structure of star-shaped Si-PDMAEMA synthesized via “core-first” method by 

ATRP; (B) Star-like PDMAEMA micelle self-assembled from amphiphilic PB-b-PDMAEMA diblock 

copolymer. 

 

Despite its large molecular weight (Mn = 730 kg/mol), we could achieve very good 

cellular viability coupled with extremely high transfection efficiencies in CHO-K1 cells 

(74 % TE) with 93 % rel. viability on average that surpassed the best results from the 

“gold standard” poly(ethylene imine) (PEI) (50 % TE with 94 % rel. viability on 

average). In various cell lines that are generally considered to be more difficult to 

transfect than CHO-K1 cells, the Si-PDMAEMA performed better relative to PEI as is 

exemplarily shown for C2C12 cells (Figure 2-2). These cells stop dividing when the 

culture plate is densely populated (confluent), which significantly hinders successful 

transfection for most polymeric vectors. Furthermore, the confluent C2C12 cells could 

easily be differentiated into myotubes through a change of the culture medium 

composition. In all of the cases Si-PDMAEMA (Figure 2-2, open symbols) gave higher 

TE for every single transfection experiment as compared to PEI (Figure 2-2, closed 

symbols). 

 



Chapter 2 – Overview over the Thesis 

45 

 

 

Figure 2-2. Analysis of the percentage of transfected cells against the relative viability after transfection in 

C2C12 cells. Transfection efficiencies in dividing (, ), non-dividing myoblasts (, ) and myotubes 

(, ) are plotted against the viability. Black symbols: PEI, white symbols: Si-PDMAEMA. Data shown 

are from individual transfections. 

 

The superior transfection performance of Si-PDMAEMA is based on its general 

architecture, where a multitude of polymeric arms emanate from a common center, rather 

than the specific polymer sample: When polymeric micelles from an amphiphilic diblock 

copolymer (polybutadiene-block-PDMAEMA; PB-b-PDMAEMA) comprising a PB core 

and PDMAEMA corona, which resemble a star-shaped architecture (Scheme 2-1b), were 

used for gene delivery, a comparable performance to that of Si-PDMAEMA was found. 

Both types of nanostructures could also transfect human T lymphocytes with pDNA more 

efficiently as compared to the standard method of electroporation for these cell types. 

Additionally, RNA interference could also successfully be performed with both 

polymeric vectors of star-like architecture, reaching up to 40 % silencing efficiency of the 

targeted gene in human T lymphocytes. The remarkable transfection performance of this 

class of polymers, combined with the large number of different cell lines it can be applied 

to, especially for non-dividing or differentiated cells, makes these star-like polymers 

highly interesting materials for in vitro gene delivery.  
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3. Double-Layered Micellar Interpolyelectrolyte Complexes – How 

Many Shells to a Core? 

MCMs are highly complex nanostructures with possible applications in templating, as 

nanoreactors, for carrying catalysts and in biomedical drug delivery or imaging. By using 

triblock terpolymers, it is possible to obtain MCMs with two chemically different 

compartments in the core of the resulting micelles. However, increasing the number of 

distinguishable compartments to more than two is generally very difficult. 

Here, we established a new route for the formation of distinguishable and chemically 

different compartments in MCMs from ionic triblock terpolymers by using the negatively 

charged corona of those micelles for IPEC formation with oppositely charged polyions. 

The original MCMs used in this work formed through self-assembly of poly(butadiene)-

block-poly(1-methyl-2-vinyl pyridinium)-block-poly(methacrylic acid) (BVqMAA) in 

aqueous solution. The MAA corona stabilizes the micelles and is easily accessible for 

further reactions. First, we used quaternized PDMAEMA (PDMAEMAq), which retains 

its positive charge even at high pH values (pH = 10) where PMAA is fully deprotonated. 

Upon mixing the polycation solution with BVqMAA micelles, an IPEC was immediately 

formed, which collapsed onto the core of the micelles. This new IPEC compartment (2
nd

 

IPEC) comprising PDMAEMAq and PMAA could be distinguished in cryogenic 

transmission electron microscopy (cryo-TEM) measurements from the original intra-

micellar IPEC shell (Vq/MAA). Furthermore, a complete second layer was formed 

(Figure 2-3, left side) leading to an onion-type morphology. Non-complexed MAA from 

the original micellar corona served to stabilize the micelles in solution below a critical 

complexation ratio. The 2
nd

 IPEC layer was found for 3 different block lengths of the 

MAA block in BVqMAA micelles, ranging from 345 to 550 units. The length of the two 

DMAEMAq homopolymers (157 and 820 units) used for complex formation did not 

significantly affect structure formation. If complexation ratios close to charge neutrality 

were reached, a macroscopic phase separation with precipitation of the MCMs was found. 

This macroscopic precipitation at high complexation ratio was avoided when instead of a 

homopolymer the double hydrophilic diblock copolymer of PEG-b-PDMAEMAq was 

used for IPEC formation (Figure 2-3, right side). The new layered compartment from 

PDMAEMAq/MAA IPEC developed as before, but the colloidal stability of the particles 
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was retained even at charge neutralization, because the PEG segment served as stabilizing 

corona chains.  

 

Figure 2-3: Schematic pathway for the formation of double-layered IPECs from BVqMAA triblock 

terpolymer micelles and either PDMAEMAq homopolymers (left) or a PEG-b-PDMAEMAq diblock 

copolymer (right). Scale bars in the insets represent 40 nm. 
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4. Micellar Interpolyelectrolyte Complexes With a Compartmentalized 

Shell 

Next, we used BVqMAA micelles with a very long MAA corona of 1350 units and 

otherwise nearly identical block lengths of the remaining two blocks for the complex 

formation with oppositely charged polycations. There, we found a novel arrangement of 

the newly created compartment instead of the previously layered one in micelles with 

short to medium MAA block length.  

The original incentive behind using BVqMAA micelles with a very long corona (Figure 

2-4a) was to create more than one additional compartment in an onion-type arrangement, 

through the consecutive addition of different polycations. By using a very long corona of 

1350 units as compared to a maximum of 550 units that were previously used, colloidal 

stability even with multiple layers of IPEC compartments should be achieved. In that 

sense, the proposed approach would be similar to a layer-by-layer procedure, without 

alternating between the addition of positively and negatively charged polyions. 

Additionally, we were interested to see whether an increase in the charge density of the 

polycation would lead to a change in the IPEC compartment structure, i.e., a more dense 

compartment. For this purpose a new polycation, poly(2-((2-

(dimethylamino)ethyl)methylamino)ethyl methacrylate) (PDAMA), with a similar 

structure to that of PDMAEMA but carrying two amino groups per repeating unit, was 

synthesized by reversible addition fragmentation (RAFT) polymerization and 

subsequently quaternized to give PDAMAq. 

After analyzing the complexes from long-corona BVqMAA micelles with PDAMAq by 

electron microscopy, we found that complex formation had successfully occurred, but the 

new compartment was anisotropically distributed around the original core of the micelles 

(Figure 2-4b). Instead of a layered structure, up to three individual patches of newly 

formed IPEC decorated the core. The structures are not kinetically trapped, but even re-

form when dialyzed from high salt conditions where the IPEC compartment disintegrates 

(Figure 2-4c) to low salt conditions (Figure 2-4d). Essentially, the same structures as for 

direct mixing at low salt conditions were found again.  
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Figure 2-4. cryo-TEM micrographs of BVqMAA1350 micelles (A) in pH 10 buffer; (B) after the complex 

formation with PDAMAq; (C) after further addition of 500 mM NaCl; (D) after dialysis back to original pH 

10 buffer. The scale bars of the insets represent 50 nm. 

 

The patchy IPEC compartment structure was also independent of the polycation used for 

complexation, as demonstrated by using PDMAEMAq. Finally, we identified the corona 

length as the determining factor for the occurrence of this specific structure: In micelles 

with a MAA-block length of only 400 units, again a layered arrangement of the new IPEC 

compartment was observed. We explain the formation of both types of structures (layered 

and patchy IPEC) through the interfaces generated between the new IPEC compartment 

and both the original micellar core and the solvent. For micelles with a short corona, a 
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patchy arrangement of the newly formed IPEC would quickly lead to an interface 

between IPEC and solvent, which could then lead to further aggregation of the structures 

and loss of colloidal stability. The long MAA corona in the micelles used here permits a 

stabilization of the micelles even for anisotropic arrangements of the IPEC compartment. 

Such a patch instead of a layered morphology allows for an energy minimization of the 

interface between new IPEC and original core, which is not possible in the case of short 

corona micelles. 

 

5. Multicompartment Micelles with Adjustable Poly(ethylene glycol) 

Shell for Efficient in Vivo Photodynamic Therapy 

In the last part of this thesis I explored the capacity of MCMs based on BVqMAA 

micelles to act as a drug delivery system (DDS). For this, I spent time in the laboratory of 

Prof. Kazunori Kataoka in Tokyo, Japan, and the results presented in the following were 

obtained in collaboration with his group.  

A hydrophobically modified porphyrazine derivate was chosen as a model hydrophobic 

drug for the encapsulation in BVqMAA micelles. This drug can create reactive oxygen 

species (ROS) when illuminated with light in the near infrared region and is therefore 

capable of acting as a photosensitizer (PS) in photodynamic cancer therapy (PDT). The 

drug was incorporated into the polybutadiene core during the self-assembly step of the 

BVqMAA triblock terpolymers. The MCM system allowed us to investigate the influence 

of the corona composition on the biological properties of the DDS, by taking advantage 

of the complex formation with a double hydrophilic and positively charged diblock 

copolymer poly(L-lysine)-block-poly(ethylene glycol) (PLL-b-PEG) in the same approach 

as discussed in Chapter 2.3. Simply by adjusting the mixing ratio of the added diblock 

copolymer, we were able to gradually change the composition of the micellar corona from 

pure MAA to PEG.  
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Figure 2-5. Preparation of porphyrazine derivate containing BVqMAA micelles from BVT triblock 

terpolymer, followed by corona modification with PLL-b-PEG diblock copolymers and cryo-TEM 

micrographs for the resulting structures of two BVqMAA/PLL-b-PEG complex micelles. The scale bars in 

the insets represent 50 nm. 
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At high complexation ratios close to charge neutrality we found a novel micellar 

morphology of the MCMs, where the newly formed IPEC is of cylindrical shape and 

oriented perpendicular to the surface of the micellar core (Figure 2-5). The reason for this 

new morphology was identified as the very short block length of the PLL block (40 units) 

as compared to the MAA blocks (400 and 1350 units). At high complexation ratios the 

system is forced into a cylindrical bottlebrush structure to accommodate the large PEG 

chains (270 monomer units) of PLL-b-PEG, which would not be possible in a layered 

arrangement of the PLL/MAA IPEC.  

Using PLL as the cationic block with its primary amines – in contrast to the quaternary 

amines in PDMAEMAq or PDAMAq – further allowed a facile fixation of the corona 

composition through amide formation via activated esters. After fixation, 

BVqMAA/PLL-b-PEG micelles retained their cylinder-on-sphere morphology even under 

highly challenging conditions (high salt concentration), indicating a stability of micellar 

structure even when getting in contact with serum-containing medium or when injected 

into the bloodstream. 

For the evaluation of their drug carrying capabilities and biological properties, the 

micelles were first tested in cell culture. Human lung cancer cells (A549) were treated 

with micelles having an increasing degree of PEGylation. A strong decrease of the 

relative viability (i.e. increase in toxicity) was observed for all drug carrying micelles 

upon illumination (Figure 2-6a), while non-illuminated micelles resulted only in minor 

toxicity, proving the photodynamic activity of the DDS. Non-drug carrying micelles, on 

the other hand, did not contribute significantly to the overall toxicity. A strong 

dependence of the photo-induced toxicity on the corona composition was found, where 

non-PEGylated micelles showed highest toxicity that gradually decreased with increasing 

degree of PEGylation. We found that the uptake behavior into the cells can be controlled 

through the corona composition (Figure 2-6b) and non-PEGylated micelles had the 

highest uptake into A549 cells decreasing with increasing PLL-b-PEG complexation 

ratio, correlating well with trends in toxicity. 
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Figure 2-6. (A) In vitro PDT effect. Relative viability of A549 cells after treatment with BVqMAA400/PLL-

b-PEG micelles and 15 min photoirradiation. (B) In vitro uptake of drug in A549 cells after 24 h incubation. 

(C) In vivo drug accumulation in subcutaneous A549 tumor model 24 h post injection of BVqMAA/PLL-b-

PEG micelles (n = 4). (D) In vivo PDT efficacy study (n = 5). Evolution of the tumor volume with time 

(Illumination at tumor site on day 0. : 1/5 tumor regression. *p > 0.05; **p < 0.001.).  

 

A strong influence of the corona composition on the behavior of the MCMs in animals 

was also seen in the subsequent in vivo study. Only fully PEGylated micelles with a near-

neutral -potential and dense PEG shell showed a prolonged blood circulation time in 

female balb-c nu/nu mice in the range of several hours. Non- or partially PEGylated 

micelles were almost completely cleared from the bloodstream within the first hour after 

intravenous injection. Long-circulating micelles could successfully accumulate in 

subcutaneous A549 tumor models in these mice 24 h after injection by passive targeting 

via the enhanced permeation and retention (EPR) effect, as shown in Figure 2-6c. The 

amount of drug delivered to the tumor by the BVqMAA/PLL-b-PEG micelles was 

sufficient to suppress tumor growth up to 21 days after a single dose injection and 

photoirradiation step (Figure 2-6d). We could therefore successfully demonstrate the 
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drug carrying capacity and therapeutic efficacy of BVqMAA MCMs, while the 

interactions of the micelles in biological surroundings could be tuned by controlling the 

corona composition.  
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6. Individual Contributions to Joint Publications 

The results presented within this thesis were obtained in collaboration with other persons 

and were previously published. In the following the individual contributions of each co-

author are specified. The asterisk indicates the corresponding author(s) of the respective 

publication. 

 

Chapter 3 

This work has been published in Biomacromolecules 12, pp. 4247-4255 (2011) under the 

title:  

“Influence of Polymer Architecture and Molecular Weight of Poly(2-

(dimethylamino)ethyl methacrylate) Polycations on Transfection Efficiency and Cell 

Viability in Gene Delivery” 

by Christopher V. Synatschke, Anja Schallon, Valérie Jérôme, Ruth Freitag*, and Axel 

H. E. Müller* 

This work was conducted in collaboration with the chair of “Process Biotechnology” at 

the University of Bayreuth. I synthesized all materials, conducted their physicochemical 

characterization and wrote the manuscript, except that:  

A. Schallon was involved in the planning of the experiments, performed all of the cell-

culture experiments and corrected the manuscript.  

V. Jérôme, R. Freitag and A.H.E. Müller were involved in scientific discussions and 

correcting the manuscript. 
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Chapter 4 

This work has been published in Biomacromolecules 13, pp. 3463−3474 (2012) under the 

title: 

“Nanoparticulate Non-Viral Agent for the Effective Delivery of pDNA and siRNA to 

Differentiated Cells and Primary Human T Lymphocytes” 

by Anja Schallon, Christopher V. Synatschke, Valérie Jérôme, Axel H. E. Müller , and 

Ruth Freitag* 

This work was conducted in collaboration with the chair of “Process Biotechnology” at 

the University of Bayreuth. I synthesized all materials, conducted their physico-chemical 

characterization and wrote parts of the manuscript, except that: A. Schallon was involved 

in the planning of the experiments, performed of the cell-culture experiments and wrote 

parts of the manuscript. 

V. Jérôme and R. Freitag were involved in scientific discussions, planning of the cell-

culture experiments and wrote parts of the manuscript.  

A.H.E. Müller was involved in scientific discussions and corrected the manuscript. 

 

Chapter 5 

This work has been published in Soft Matter 7, pp. 1714-1725 (2011) under the title: 

“Double-Layered Micellar Interpolyelectrolyte Complexes-How Many Shells to a 

Core?” 

by Christopher V. Synatschke, Felix H. Schacher*, Melanie Förtsch, Markus Drechsler 

and Axel H. E. Müller* 

I conducted all of the experiments and wrote parts of the manuscript, except that:  

F.H. Schacher synthesized the BVT triblock terpolymers, wrote parts of the manuscript 

and was involved in the planning of the experiments. 

M. Förtsch and M. Drechsler conducted all of the cryo-TEM measurements.  

A.H.E. Müller was involved in scientific discussions and corrected the manuscript. 
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Chapter 6 

This work has been published in Macromolecules 46, pp. 6466-6474 (2013) under the 

title: 

“Micellar Interpolyelectrolyte Complexes With a Compartmentalized Shell” 

by Christopher V. Synatschke, Tina I. Löbling, Melanie Förtsch, Andreas Hanisch, Felix 

H. Schacher*, and Axel H. E. Müller*, 

I synthesized the BVT and BVqMAA polymers, was involved in the planning of the 

experiments and wrote the manuscript, except that:  

T.I. Löbling performed all other synthesis, physico-chemical characterization and 

corrected the manuscript. 

M. Förtsch conducted all of the cryo-TEM measurements. 

A. Hanisch assisted with BVT synthesis and corrected the manuscript.  

F.H. Schacher and A.H.E. Müller were involved in scientific discussions and corrected 

the manuscript. 
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Chapter 7 

This work has been published in ACS Nano (DOI: 10.1021/nn4028294) under the title: 

“Multicompartment Micelles with Adjustable Poly(ethylene glycol) Shell for 

Efficient in vivo Photodynamic Therapy” 

by Christopher V. Synatschke, Takahiro Nomoto, Horacio Cabral, Melanie Förtsch, 

Kazuko Toh, Yu Matsumoto, Kozo Miyazaki, Andreas Hanisch, Felix H. Schacher, 

Akihiro Kishimura, Nobuhiro Nishiyama, Axel H. E. Müller*, and Kazunori Kataoka* 

This work was done in collaboration with the group of Prof. Kazunori Kataoka at the 

University of Tokyo, Japan. I conducted all of the experiments and wrote the manuscript, 

except that: 

T. Nomoto was involved in planning of the experiments, conducted some of fluorescence 

microscopy measurements and corrected the manuscript.  

H. Cabral conducted part of the animal experiments, was involved in the planning of 

experiments and corrected the manuscript. 

M. Förtsch conducted all of the cryo-TEM measurements. 

K. Toh and Y. Matsumoto conducted fluorescence microscopy measurements on animals. 

K. Miyazaki assisted with in vivo PDT efficacy measurements and corrected the 

manuscript. 

A. Hanisch assisted with BVT synthesis and corrected the manuscript.  

F.H. Schacher, A. Kishimura, N. Nishiyama, A.H.E. Müller and K. Kataoka were 

involved in scientific discussions and corrected the manuscript.  
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Chapter 3 

 

Influence of Polymer Architecture and Molecular Weight of 

Poly(2-(Dimethylamino)ethyl Methacrylate) Polycations on 

Transfection Efficiency and Cell Viability in Gene Delivery 

 

 

 

The results of this chapter have been published in Biomacromolecules as: 

“Influence of Polymer Architecture and Molecular Weight of Poly(2-

(Dimethylamino)ethyl Methacrylate) Polycations on Transfection Efficiency and Cell 

Viability in Gene Delivery” 

by Christopher V. Synatschke, Anja Schallon, Valérie Jérôme, Ruth Freitag, and Axel H. 

E. Müller 

Reprinted with permission from Biomacromolecules 2011, 12, 4247-4255. Copyright 

2011 American Chemical Society.  
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Abstract 

Nonviral gene delivery with the help of polycations has raised considerable interest in 

the scientific community over the last decades. Herein, we present a systematic study on 

the influence of the molecular weight and architecture of poly(2-(dimethylamino)ethyl 

methacrylate) (PDMAEMA) on the transfection efficiency and the cytotoxicity in CHO-

K1 cells. A library of well defined homopolymers with a linear and star-shaped topology 

(3- and 5-arm stars) was synthesized via atom transfer radical polymerization (ATRP). 

The molecular weights of the polycations ranged from 16 to 158 kDa. We found that the 

cytotoxicity at a given molecular weight decreased with increasing number of arms. For a 

successful transfection a minimum molecular weight was necessary, since the polymers 

with a number-average molecular weight, Mn, below 20 kDa showed negligible 

transfection efficiency at any of the tested polyelectrolyte complex compositions. From 

the combined analysis of cytotoxicity and transfection data, we propose that polymers 

with a branched architecture and an intermediate molecular weight are the most 

promising candidates for efficient gene delivery, since they combine low cytotoxicity 

with acceptable transfection results. 
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Introduction 

The transport of foreign genetic material into eukaryotic cells, or DNA transfection, by 

means of non-viral vectors has been an active field of interdisciplinary research for 

several decades.
1-5

 With efficient vectors it should be possible to find new ways of 

treatment for genetic diseases or significantly improve the production of therapeutic 

proteins.
6
 The use of viruses, although widespread in DNA medicine, as delivery vehicles 

raised some concerns in terms of immunogenicity, pathogenicity and oncogenicity.
7, 8

 

Furthermore, viruses show limitations in the size of the DNA that can be transported and 

chemical modifications as well as large-scale production can be difficult. Synthetic 

vectors can potentially overcome those limitations, while achieving acceptable, albeit at 

present much lower transfection results compared to their viral competitors. Therefore, a 

lot of effort has been put into the development of non-viral vectors, including polycations 

and their derivates. One of the most efficient polycations for gene delivery, which is also 

considered to be the “gold standard” in this particular area, is poly(ethylene imine) (PEI) 

either in its branched or linear form, mostly with a molecular weight around 25 kDa.
9-12

 

Another promising candidate is poly(2-(dimethylamino)ethyl methacrylate) 

(PDMAEMA). A vast amount of articles have been published on the use of PDMAEMA 

or its copolymers for the delivery of genetic material.
13-19

 For systematic studies, this 

material is better suited than branched PEI, since the monomer can be polymerized in a 

controlled manner, e.g. through group transfer- and anionic polymerization
20, 21

 or with 

controlled radical polymerization methods like atom transfer radical polymerization
22

 

(ATRP) and reversible addition (chain) transfer polymerization.
23

 By using such 

controlled polymerization procedures, narrow molecular weight distributions are obtained 

and more complex polymeric architectures, including star-shaped or branched polymers, 

can be produced.
24-27

 Such well-defined structures with a maximum of homogeneity are 

mandatory for establishing structure – property relationships. This is of particular 

importance, since evidence is building up in the pertinent literature, that non-linear 

polymers show better transfection properties than their linear counterparts.
28

 

Star-shaped polycations, in particular, have recently raised considerable interest as 

gene-delivery agents. By connecting the arms of the molecule to a central core, a more 

dense structure is obtained in solution compared to the corresponding linear polymer. 

Georgiou et al. were the first to use star-shaped PDMAEMA and some copolymers as a 

mimic of dendritic structures for gene delivery.
29-31

 In their works, they used group 
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transfer polymerization to first synthesize the arms and subsequently, through the addition 

of a bifunctional crosslinker, connected these arms to a common center, thereby creating 

the star polymers. This so-called arm-first method allows good control over the length of 

the arms and is especially appealing because the synthesis of multifunctional initiators is 

not necessary. A drawback of this method is the retention of linear precursors, probably 

due to a lowering of solution viscosity, reduced chain mobility or termination reactions.
32

 

Also, the final number of arms is hard to control, i.e. it is difficult to obtain large libraries 

of polymeric samples with similar arm-numbers. In their first publication on PDMAEMA 

stars,
30

 Georgiou et al. compared seven star-shaped samples where the arm-number 

varied between 20 – 70. Since then, other groups also reported on their results with star-

shaped PDMAEMA,
33

 often using the core-first approach for the preparation of the 

materials.
34-37

 For example, Li et al. used a functionalized cyclodextrin as an ATRP 

initiator to create star-shaped polymers from different cationic monomers. They found the 

primary and tertiary amine containing polymers to be more effective than quaternized 

ones, but none of the materials was able to reach transfection levels of PEI.
34

 Clearly, 

parameters such as the molecular weight, but also the architecture can have a significant 

influence on the outcome of a transfection experiment. 

However, systematic studies of these parameters on the transfection characteristics to 

our knowledge only exist for linear DMAEMA (co-)polymers, but not for star-shaped 

architectures. Linear homopolymers prepared from free radical polymerization with a 

number average molecular weight between 2.5 – 131 kDa were analyzed with regard to 

their toxicity and transfection by van de Wetering et al. and more recently by Layman et 

al. (Mn from 2.5 to 400 kDa).
18, 38

 The uptake as well as the toxicity of linear PDMAEMA 

up to a molecular weight of 40 kDa was studied with fluorescently labeled polymers 

prepared from ATRP, although no genetic material was transported.
39

 Finally, three 

individual groups investigated the influence of polymer architecture by preparing 

copolymers of DMAEMA with poly(ethylene glycol) or methacrylate derivates thereof.
13, 

40, 41
  

In this study, we systematically analyze the effect of both molecular weight and 

polymer architecture on critical parameters for gene delivery. A library of three polymer 

architectures containing linear, 3-arm stars and 5-arm stars, with molecular weights 

ranging from 16 to 158 kDa, was synthesized via ATRP. The polymers were then 
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evaluated in their ability to transfect Chinese Hamster Ovary (CHO-K1) cells together 

with their cytotoxicity for these cells.  

 

Experimental Part 

Materials 

Anisole (p.a., 99 %), copper(I) bromide (CuBr, 99.999 %), 2-(dimethylamino)ethyl 

methacrylate (DMAEMA, 98 %), ethyl 2-bromoisobutyrate (EBIB, 98 %) 1,1,4,7,10,10-

hexamethyltriethylenetetramine (HMTETA, 97 %) and trioxane ( 99 %) were 

purchased from Sigma-Aldrich (Steinheim, Germany). Copper(II) bromide (CuBr2,  99 

%) was from Fluka. Dioxane and acetone (both p.a. grade) were obtained from Fisher 

Scientific (Leicestershire, UK) and VWR International (Ismaning, Germany), 

respectively. The DMAEMA monomer was passed through an aluminium oxide (basic, 

Sigma-Aldrich) column prior to use in order to remove the stabilizer. EBIB was distilled 

under vacuum and stored under nitrogen atmosphere at 4 °C before use. All other 

chemicals were used as received. For dialysis a Spectra/Por 3 (MWCO = 3500, 

Spectrumlabs, Rancho Dominguez, Canada) dialysis membrane from regenerated 

cellulose was used. 3-(4,5-dimethylthyazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) 

and Hoechst 33258 were from Sigma Aldrich (Taufkirchen, Germany). Milli-Q water was 

used for the preparation of all aqueous solutions. Polymers were prepared as 0.5 mM 

stock solution in Milli-Q water. Cell culture materials, cell culture media and solutions 

were from PAA (Cölbe, Germany). Serum reduced medium OptiMEM was from 

Invitrogen (Carlsbad, California, USA). Plasmid DNA was prepared by using the 

EndoFree Plasmid Kit from Qiagen (Hilden, Germany) and diluted in Milli-Q.  

 

Synthesis 

All polymer samples were prepared by ATRP. A detailed description of the synthesis 

of the star-shaped ATRP initators based on glucose and saccharose is published 

elsewhere.
42

 Briefly, for the star-shaped polymers DMAEMA (50 g, 0.318 mol, 160 eq.), 

CuBr (228 mg, 1.5910
-3

 mol, 0.8 eq.), CuBr2 (88.8 mg, 3.9810
-4

 mol, 0.2 eq.), trioxane 

(5 g, 0.056 mol) and anisole (145 g, 1.34 mol) (flask 1) as well as the respective initiator 
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(here glucose-based initiator with five initiation sites per molecule, 368 mg, 3.9810
-4

 

mol, 1 eq. of initiation sites), HMTETA (458 mg, 1.9910
-3

 mol, 1 eq.) and anisole (5 g, 

0.046 mol) (flask 2) were weighed into sealable flasks and separately degassed with 

nitrogen for 15 minutes. The initiator solution (flask 2) was then transferred with the help 

of a syringe and minimal contact to air to the monomer solution (flask 1). The 

polymerization was started by stirring the reaction mixture in a thermostated oil bath at 60 

°C. For the determination of the conversion NMR spectroscopy was used and the 

integrals of the vinyl protons (6.2 and 5.6 ppm) were compared to the integral of the 

trioxane signal (5.15 ppm). At appropriate conversion, samples were withdrawn from the 

reaction mixture under nitrogen atmosphere, then opened to air, diluted with dioxane and 

dialyzed against a mixture of dioxane and Milli-Q
 
water. The highest conversions that 

were reached in this manner were up to 60 %. In order to remove anisole, residual 

monomer, copper salts and other low molecular weight impurities the dialysis solution 

was subsequently changed from low to high water contents (9:1; 7:3; 1:1 and 1:2). 

Complete dialysis lasted for at least four days under continuous stirring and frequent 

exchange of the solvent. The pure polymers were obtained as white powder after freeze-

drying.  

To reach high molecular weights for the linear PDMAEMA the polymerization was 

carried out with acetone as the solvent for the ATRP. Earlier attempts in our group, where 

anisole was used as the solvent, had resulted in broad molecular weight distributions and 

insufficient molecular weights. Here, DMAEMA (100 g, 0.636 mol, 3000 eq.), CuBr 

(121.7 mg, 8.4810
-4

 mol, 4 eq.), CuBr2 (9.5 mg, 4.2410
-5

 mol, 0.2 eq.), trioxane (10 g, 

0.111 mol) and acetone (295 g, 5.08 mol) were weighed into a sealable flask. EBIB (41.4 

mg, 2.1210
-4

 mol, 1 eq.), HMTETA (205.2 mg, 8.9110
-4

 mol, 4.2 eq.) and acetone (5 g, 

0.086 mol) were mixed in a separate sealable flask and both solutions were degassed with 

nitrogen for 15 minutes. The initiatior solution was then transferred under a nitrogen 

atmosphere to the monomer solution and the polymerization was started by heating the 

final mixture to 40 °C. Again, conversion was monitored with the help of NMR 

spectroscopy and samples were drawn at appropriate conversions. The highest conversion 

that was reached for the final sample was 40 %. Purification of the linear PDMAEMA 

was performed analogously to the star-shaped samples.  
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Characterization 

NMR spectroscopy. All NMR spectra were recorded on a Bruker Avance (Ultrashield) 

300 instrument (300 MHz) in deuterated chloroform (Deutero GmBH, Kastellaun, 

Germany) as solvent. The signal of CHCl3 was used for calibration (7.26 ppm for 
1
H). 

Size exclusion chromatography (SEC). The apparent molecular weights and their 

distributions of the PDMAEMA samples after dissolving them overnight were determined 

with a SEC system using dimethylacetamide (DMAc) with 0.05 % lithium bromide as 

eluent at a flow rate of 0.8 mL/min. The equipment consisted of one pre-column and two 

analytical columns (PSS GRAM, 10
2
 and 10

3
 Å pore size, 7 mm particle size) and a 

refractive index (RI) detector. The measurements were performed at 60 °C and linear 

PMMA standards with a narrow molecular weight distribution and methyl benzoate as 

internal standard were used for calibration.  

 

Plasmid DNA 

Plasmid pEGFP-N1 (4.7 kb) (Clontech Laboratories, Mountain View, California 

USA) encoding for the eGFP (green fluorescent protein), was used in all transfection 

experiments. The plasmid was amplified in Escherichia coli DH5 alpha strain in TB 

medium to sufficient quantities by using standard molecular biology techniques, 

including harvesting and purification via Qiagen’s Giga-Prep kits. Plasmid DNA (pDNA) 

concentration and quality were determined by A260/280 ratio and by agarose gel 

electrophoresis, respectively. 

 

Mammalian Cell Line and Culture Conditions 

The Chinese Hamster Ovary CHO-K1 (CCL-61, ATCC) cell line used in the 

transfection experiments was maintained in RPMI 1640 cell culture medium 

supplemented with 10 % FCS, 100 µg/mL streptomycin, 100 IU/mL penicillin, and 2 mM 

L-glutamine (Growth medium). Cells were cultivated at 37 °C in a humidified 5 % CO2 

atmosphere.  
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Complex Formation 

pDNA/polymer polyplexes were prepared at room temperature using 3 µg pDNA and 

varied amounts of the respective polycation stock solution to achieve the indicated 

PDMAEMA-nitrogen/DNA-phosphate (N/P) ratios. For this purpose, the pDNA was 

diluted in a final volume of 200 µL of 150 mM NaCl-solution. The required polymer 

solution was added in a single drop to the pDNA solution and the mixture was 

immediately vortexed for 10 sec at full speed, followed by incubation at room 

temperature for 30 min. 

 

Transfection of Mammalian Cells 

Cells were seeded in 2 mL growth medium at a density of 2 x 10
5
 cells/well in 6-well 

plates 24 h prior to transfection. One hour prior to transfection, cells were rinsed with 

PBS and supplemented with 2 mL OptiMEM. The polyplex suspension (200 µL) was 

added to the cells and the plates were centrifuged for 5 min at 200 g and placed for 4 h in 

the incubator. Afterwards, the medium was removed, 2 mL of fresh growth medium were 

added, and the cells were further incubated for 20 h. Cells were harvested by 

trypsinization and resuspended in PBS. The relative expression of eGFP fluorescence of 

1 x 10
4
 cells was quantified via flow cytometry using a Cytomics FC 500 equipped with 

the CXP Analysis research software (Beckman Coulter, Krefeld, Germany). The 

parameters of the device were set, so that the fluorescence intensity value of the control 

cells (non-treated) was below 100. All cells showing a fluorescence intensity above this 

value were recorded as transfected.  

 

MTT Assay (Cytotoxicity Studies) 

The cytotoxicity of the polyplexes at various N/P-ratios was evaluated in 96-well 

microtitre plates by the MTT assay following essentially the transfection protocol. The 

CHO-K1 cells were seeded in growth medium at a density of 2 x 10
4
 cells/well 24 h prior 

to the experiment. One hour prior to the experiment, the medium was discarded and 

serum-free growth medium was added. Cells were incubated with the indicated polyplex 

preparation for 4 h, then the medium was replaced by serum-containing medium 

(analogously to the transfection protocol above). After 20h incubation, cells were rinsed 

with PBS and further incubated in 200 µL MTT solution (0.5 mg/mL in PBS) for 2 h. The 
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solution was aspirated, replaced with 200 µL DMSO and mixed at 150 rpm for 5 min to 

dissolve the formazan crystals produced in the reaction. Absorbance was then measured 

at 580 nm in a microplate reader (Genios Pro, Tecan GmbH, Crailsheim, Germany) with 

untreated cells serving as controls. The lethal complex concentration (LCC50) was defined 

as polymer concentration of the complex at which 50 % of metabolic activity could be 

measured. 

  

Statistical Analysis  

Group data are reported as mean ± SD. For transfection results, the Student’s t-test was 

used to determine whether data groups differed significantly from each other. Statistical 

significance was defined as having P-values < 0.05 for significance and P-values < 0.01 

for great significance. To determine the significance of more than two groups of data, 

ANOVA was used with a defined P-value < 0.05 for significant differences.  
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Results and Discussion 

The aim of this work was to study the influence of polymer architecture and molecular 

weight on both transfection efficiency (TE) and cytotoxicity of DMAEMA-based 

polymers in gene delivery experiments. For this purpose, a library of three different 

polymer architectures, namely linear, 3-arm- and 5-arm stars, was synthesized by means 

of ATRP. We chose this controlled radical polymerization method, as it allows a precise 

control of the molecular weight of the resulting polymers, while ensuring narrow 

molecular weight distributions. This is in contrast to many other studies published in the 

pertinent literature, where the PDMAEMA used for the transfection experiments is 

frequently prepared via free radical polymerization. Such polymers typically have a broad 

molecular weight distribution, especially in case of larger molecules.
18, 38

 With such 

polydisperse samples it is almost impossible to discern the influence of the individual 

species. Instead meaningless average values are determined. Any systematic investigation 

of the influence of molecular parameters (architecture, molecular weight, etc.) on the 

gene delivery ability requires instead polymers with a minimal heterogeneity in these 

parameters. This becomes even more important for architectures with a higher complexity 

such as stars. Furthermore, when ATRP is used to prepare the polycations, functional 

end-groups remain on the polymer chains, which can be used for subsequent 

modifications such as fluorophore labelling, as was demonstrated in an earlier 

publication.
28

  

 

Polymer Synthesis and Characterization 

The polymerization process of the linear and star-shaped samples is depicted in 

Scheme 3-1. We used a core-first approach with functionalized sugars (glucose
43

 and 

saccharose
44

) as initiators for the star polymers (Scheme 3-1B and C, respectively). Due 

to steric hindrance, the actual arm number per molecule is lower than the number of 

initiation sites. In our experience, the average arm-number for the glucose-based 

polymers is around three arms per molecule and we confirmed this for the S-3300 sample 

through alkaline cleavage of the arms, where an average number of arms of 3.1 was 

determined. PDMAEMA from the saccharose-based initiator usually has slightly more 

than five arms (5.4 – 5.6).
22

 A detailed description of the synthesis of the initiators and 

synthetic procedure for the cleavage of the arms has been published previously.
42, 45
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Scheme 3-1: Synthesis of the PDMAEMA samples with linear (A), 3-arm (B) and 5-arm (C) star-shaped 

architecture, from the respective initiators via ATRP. Due to steric hindrance not all initiating sites of the 

star initiators can form polymer chains. The bottom line shows a schematic representation of the respective 

polymer architecture. 
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Table 3-1: Nomenclature and molecular characterization of the linear, 3-arm and 5-arm DMAEMA 

polymers synthesized with ATRP. Molecular weight averages were calculated from NMR conversion data 

and PDI was determined with SEC. 

Architecture Name N / Molecule
a
 Mn [kDa]

b
 PDI

c
 

Linear 

L110 108 17.1 1.12 

L520 518 81.7 - 

L880 881 138.7 1.73 

L1000 1003 157.9 1.80 

3-Arm 

S-395 95 15.9 1.26 

S-3210 210 34.0 1.16 

S-3300 296 47.5 1.12 

S-3600 596 94.7 1.12 

S-3710 710 112.6 1.13 

5-Arm 

S-5580 575 91.9 1.09 

S-5700 699 111.4 1.12 

S-5920 919 146.0 1.10 
a
calculated from the NMR-molecular weight; 

b
determined from NMR conversion data; 

c
measured via SEC 

with DMAc as eluent and poly(methyl methacrylate) as standard. 

 

As shown in Table 3-1, for each architecture we synthesized a series of polymers with 

increasing average molecular weights. The name of each sample is given as the polymer 

architecture in capital letters, while the subscripts denote the average number of 

monomers per molecule as determined from the NMR conversion data. SEC 

measurements confirmed controlled polymerization conditions, as polymers show a rather 

narrow molecular weight distribution, at least for the star-shaped polymers. One of the 

linear polymers (L520) could not be detected in the SEC measurements, even at high 

polymer concentrations (> 5 mg / mL). The reason for this remains obscure. Additionally, 

the polydispersity indices (PDI) of the linear polymers are considerably higher than those 

of the star-shaped samples. This could be an indication of an uncontrolled polymerization 

of the linear samples, caused for example through a complex formation between the 

growing polymer chains and the copper catalyst. Also, PDMAEMA is known to interact 

with the column material during size exclusion chromatography, which has to be 

suppressed through the addition of salt to the eluent. An interaction of the sample with the 

column material would also result in a broadening of the molecular weight distribution 
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and should be more pronounced for the linear samples, because of their less dense 

structure and increased hydrodynamic radius compared to the branched structures. For all 

further discussions, in particular the nomenclature of the polymers, the molecular weight 

determined via NMR was used.  

 

Cytotoxicity Studies by MTT Assay 

The polycation library was then used to systematically study the effect of both 

molecular weight and polymer architecture on cytotoxicity and gene delivery efficiency 

in mammalian cells. All experiments were performed using Chinese Hamster Ovary 

(CHO-K1) cells, as this cell line is well established in our group and also commonly used 

for recombinant protein production in the biopharmaceutical industry. The cytotoxicity of 

the polyplexes from the indicated polymers at different N/P ratios was determined by 

MTT assay. The results are shown in Figure 3-1, where the average of the three 

experiments is given as the residual cell viability relative to an untreated cell population.  
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Figure 3-1: Relative viability of CHO-K1 cells incubated with polyplexes made of linear, 3-arm and 5-arm 

PDMAEMA of varying molecular weights at increasing N/P ratios (1, 2, 5, 10, 20 and 50). Incubation 

period was 4 h with polyplexes in serum-free media and 20 h in growth media at a cell seeding density of 

2 x 10
4
 cells/well. The results are expressed as a percentage of the control cell culture. Data represent mean 

± SD, n ≥ 3. The Students t-test was used to determine the N/P ratios that significantly differ from 100 % 

viability (*, P < 0.05; #, P < 0.01).  

 

As shown in Figure 3-1, all polyplexes became toxic at a sufficiently high 

concentration of the polycation (N/P ratio), as can be seen from the decreasing average 

relative viability of the cells. A decrease of viability with increasing N/P ratio can be seen 

for all polymers used for complex formation except the ones with the lowest molecular 

weights, namely L110 and S-395, which show the lowest cytotoxicity (highest residual cell 

viability) at intermediate N/P ratios. Both low molecular weight polymers showed no 

significant cytotoxicity (P < 0.01) in the Students t-test. Only at N/P = 50 for L110 and at 

N/P = 20 for S-395 a significant difference (P < 0.05) was observed in the Students t-test 

compared to 100 % viability, indicating a slightly toxic behavior. Polycations in general 

are toxic to cells as they interact with various important anionic species found in 

biological systems including the membrane lipids, (poly)nucleotides and many proteins.
39, 

46, 47
 As the N/P-ratio increases, the fraction of non-complexed polycations in the 
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preparation and hence the cytotoxicity increases. The smallest polycations included in our 

investigation on the other hand show low general toxicities and can be considered quasi 

non-toxic in the investigated range.  

In order to simplify the amount of data and allow a better comparison between the 

individual polymers as well as the different architectures, the LCC50 (50 % lethal 

concentration of complexes at a fixed DNA concentration) value was determined for each 

polyplex solution. The LCC50 value then indicates the polycation concentration where the 

viability compared to the control cells reached 50 %. The value was extrapolated from a 

plot of the viability against the polymer concentration (see Schallon et al.
28

 for details). In 

Figure 3-2 the LCC50 values are plotted against the molecular weight of each polymer in 

a double logarithmic scale. A smaller LCC50-value represents a more toxic polymer, since 

a lower molar polycation concentration is necessary to reduce viable cell numbers to 50 

%. A steady decrease of the LCC50 value with increasing molecular weight of the 

polycations can be seen from Figure 3-2.  

 

Figure 3-2: Plot of the LCC50-values (50 % lethal complex concentration) of various PDMAEMAs against 

the molecular weight of the polymer in a double logarithmic scale. The symbols represent linear (square), 3-

arm star (triangle) and 5-arm star (star) PDMAEMA. LCC50-values were calculated from MTT experiments 

with CHO-K1 cells. 
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More importantly, when the different architectures are compared for a similar 

molecular weight, the 5-arm star polymers show the lowest toxicities, followed by the 3-

arm stars and finally the linear polymers. Our data therefore hints towards a decrease of 

cytotoxicity of PDMAEMA with increasing arm-number. In this context, a study by 

Newland et al. is of interest.
48

 The authors describe a highly branched PDMAEMA 

prepared through the copolymerization of DMAEMA with ethylene glycol 

dimethacrylate. In their experiments, they observed a decrease in the cytotoxicity of 

irregularly branched PDMAEMA compared to linear PDMAEMA, which suggests that 

polycation cytotoxicity may decrease not only with increasing arm-number as indicated 

by our results, but in general as a consequence of increased branching. Similar trends 

were also described by Xu et al. for different types of branched DMAEMA polymers.
25, 

26, 37
 

The reasons for the cytotoxicity of polycations in general and PDMAEMA in 

particular, have been investigated in several studies. It was found that polycations have a 

tendency to interact with the cellular membrane and membrane proteins.
18, 46

 A decrease 

in the membrane potential was observed, which points towards the formation of holes in 

the cellular membrane.
49

 Furthermore, an interaction of the polycation with important 

proteins and RNA in the cytosol has been speculated upon.
11

 The general conception is 

that polymers carrying more charges per molecule, e.g. larger polycations, are more toxic, 

because they have a stronger tendency to bind negatively charged peptides and eventually 

precipitate within the cytosol.
17, 18

 In a recent study with well-defined linear PDMAEMA 

from ATRP it was found that these polymers induce cytotoxicity through a cooperative 

effect from both membrane disruption and apoptosis.
39

 However, the specific mechanism 

may also depend on the cell type.
47

 As a consequence of this observation, several groups 

have synthesized degradable polycations made from small building blocks, which indeed 

showed a reduced cytotoxicity compared to their non-degradable analogues.
50-53

  

However, such an explanation cannot be applied here, since the polymers used in this 

study are not biodegradable. The reduced cytotoxicity is therefore very likely a result of 

the unique star-shaped architecture of those molecules. A star-shaped molecule has the 

highest density in the core, which decreases with increasing distance from the core.
54

 The 

interaction of the various positively charged nitrogen atoms in such a star with rather 

flexible polyanions such as pDNA should not be hampered significantly. In fact little 

differences can be observed in the stability of polyplexes from the same type of 
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polycation, regardless of its architecture.
55

 In case of a putative interaction with a globular 

protein molecule or even more importantly the phospholipids in the cellular membrane, 

however, we propose that not all nitrogens in a star-shaped polymer can participate in the 

interaction, since those from the inner part of the star would be sterically excluded. Since 

interaction with the phospholipids and the concomitant formation of holes in the 

membrane is an important mediator of cellular cytotoxicity, branched and in particular 

star-shaped and dendritic polymers should be less toxic than their linear counterparts, 

while transfection efficiency would not necessarily be affected.  

 

Transfection Studies 

In order to investigate the structure-function-relationship in regard to gene transfer 

capability, the polycations were then evaluated as transfection agents. We chose the eGFP 

transgene and flow cytometry for analysis, since the choice of a reporter gene assay 

proved not to be crucial for the experimental outcome, as recently reviewed by van Gaal 

et al.
56

 In order to successfully transport genetic material into the nucleus of eukaryotic 

cells, several barriers have to be overcome.
7
 First, the DNA has to be condensed by the 

polycation into small and positively charged particles, so called polyplexes. These 

polyplexes then have to be transported into the cell through the cellular membrane. The 

commonly accepted mechanism for the uptake of polyplexes by cells is via endocytosis.
19, 

57
 Alternatively, it was proposed that some polycations (e.g. dendrimers) have the ability 

to directly penetrate the cellular membrane, as could be shown in experiments on model 

membranes.
58

 In any case, after crossing the cellular membrane the polyplex needs to 

protect the genetic material from degradation. Furthermore, the polyplex has to be 

transported to the nucleus before the genetic material crosses the nuclear membrane.  

When all of these barriers have successfully been overcome, the genetic information 

can be processed leading to the expression of transgenes. In our case, the transgene was 

the enhanced green fluorescent protein (eGFP). Successfully transfected cells appear 

green in this case and thus are easily detected by flow cytometry. From these data, the 

transfection efficiency (TE) was calculated as percentage of green fluorescent cells within 

the total cell population analyzed, Figure 3-3. N/P ratios above values of 20 were not 

tested, as the cytotoxicity of the polycations at N/P = 20 increases (see Figure 3-1) 

generally resulting in a low TE. 
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Figure 3-3: Average transfection efficiency (TE) of linear, 3-arm and 5-arm DMAEMA polymers of 

varying molecular weights using CHO-K1 as hosts and eGFP as reporter protein. Cells were used at a 

seeding density of 2 x 10
5
 per well in 6-well plates. The transfection efficiency was determined for 

increasing N/P ratios (2, 5, 10 and 20) for each polymer and N/P ratio combination. Statistical significance 

was tested by ANOVA and Students t-test and TEs showing differences (P < 0.05) were denoted (*). Data 

represent mean values of five independent experiments  SD.  

 

The average TE was compared at various N/P ratios for polymers with different 

molecular weights and architectures (Figure 3-3). The lowest TE-values determined were 

close to 1 % (L110 with N/P = 5 and S-395 with N/P = 2), these polycations can be 

considered almost non-transfecting. Higher N/P ratios were also tested, leading to an 

increased cytotoxicity without any significant change of the TE (data not shown). 

Possibly, small polycations cannot form sufficiently stable complexes with the DNA in 

order to condense and protect it from degradation. An insufficient buffering capacity of 

small polycations in the context of the proton sponge effect could also be a possible 

reason.
59, 60

 The highest TE values were around 17 – 18 % (L1000 at N/P = 2 and S-5700 at 

N/P = 5). A direct comparison with published studies on the TE of PDMAEMA is 

difficult, because most prior studies discuss a relative fluorescence intensity of the 

expressed proteins and do not disclose the absolute number of transfected cells. The first 



Chapter 3 – Influence of Polymer Architecture and Molecular Weight on TE and Cell Viability 

81 

 

publication on PDMAEMA stars by Georgiou et al.
30

 indeed is one of the few examples 

where the percentage of transfected cells is determined and they achieved maximum 

efficiencies close to 20 %, which is very close to our own results.  

A closer analysis of the results showed only a partial influence of the N/P ratio on the 

TE. Optimal N/P ratios leading to the highest transfection were generally between 5 and 

10. In that range, major differences between all other 3- and 5-arm star polymers were not 

observed. We also analysed the mean fluorescence intensity (MFI) in the eGFP 

expressing cell population, but could not detect any significant differences of the 

expression level of the transgene (see Figure 3-S1). Therefore, in case of a successful 

transfection the transgene expression per cell seems to be independent of the DMAEMA 

polymer used here. Thus, TE values are sufficient to assess the efficiency of the delivery 

of the pDNA to the cell. Within one polymer sample, N/P = 2 displayed a significantly (P 

< 0.05) lower TE than all other tested ones. For S-3300 a bell-shaped dependence of the 

transfection with the N/P ratio was found. For the other star-shaped samples the overall 

transfection may also decrease at higher N/P ratios, thus completing the bell-shaped 

dependence. However those N/P ratios were not tested, because they lead to rather high 

cytotoxicity (Figure 3-1). Bell-shaped patterns have often been described for 

PDMAEMA in the literature. Potential explanations given are on the one hand an 

insufficient condensation of the DNA leading to an ineffective penetration of the 

membrane at low N/P ratios. On the other hand, a large excess of polymer induces 

cytotoxicity and hence a decrease of TE.
14, 17, 18

 

For the linear architecture the N/P ratio seems to be less important as long as the 

cytotoxicty stays below ~30 %. The molecular weight has a much bigger influence. L110 

did not transfect at any N/P ratio tested. Values comparable to the best TE obtained for 

the star polymers could be achieved by increasing the degree of polymerization (i.e. 520 – 

1000). In contradiction to published data showing that TE increased with molecular 

weight of linear polymers,
18, 38

 we never saw significant differences between the TE of 

L520, L880 and L1000. A slight tendency towards more efficient transfection at low N/P 

ratios correlating with low cytotoxicity was observed, but it did not reach statistical 

significance (P > 0.05).  

In contrast to the linear polymers, the stars need a higher N/P ratio for efficient 

transfection. An explanation might be that the accessibility of nitrogens in the core of the 
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star-shaped polymers is decreased. Consequently, not all nitrogens would be able to 

interact with the DNA and a larger quantity of polymer would be necessary to 

compensate for the negative charge. Therefore, better results were achieved at higher N/P 

ratios for the star-shaped architectures. 

Transfection Efficiency against Viability 

The differences in trends of the TE with molecular weight and N/P-ratio discussed 

above makes an interpretation of the influence of the molecular architecture for 

polycations of a given molecular weight difficult. Moreover, for optimal results, TE 

should be considered together with cytotoxicity. In reality, the most efficient polymers for 

gene delivery are often also quite toxic. The gold standard PEI can be seen as a general 

example for this.
46

 Figure 3-4 shows an evaluation of the polymers used in this study 

according to both TE and cytotoxicity at varying N/P ratios. 
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Figure 3-4: (A) Percent of transfected cells plotted against the relative viability for the polyplexes from 

linear (squares), S-3 (triangles) and S-5 (stars) DMAEMA polymers at N/P ratios 2 (black), 5 (dark grey), 

10 (light grey) and 20 (open symbols). Percent of transfected cells were defined as amount of cells 

expressing the transgene related to all cells. The relative viability was calculated as metabolic activity of 

treated cells compared to untreated control cells. The average number of monomers per polycation is given 

next to each entry. Data represent mean value of three independent experiments. (B) Schematic 

representation of the evolution of the combination of TE and relative viability of PDMAEMA polycations 

with increasing N/P ratio. The darker color in the arrow represents the gradual increase in N/P ratio, where 

as an increasing blue staining in the background indicates more transfected cells and increasing red staining 

more dead cells. Plots are divided into four quadrants, 1: high cytotoxicity, high TE; 2: low cytotoxicity, 

high TE; 3: high cytotoxicity, low TE; 4: low cytotoxicity, low TE. 
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For an easier understanding and in order to categorize the entries, Figure 3-4A was 

further divided into four quadrants according to the following criteria: Transfection above 

10 % was defined as “efficient”, while a relative viability above 80 % was defined as an 

acceptable range. In consequence, the most effective gene delivery vehicles tested are 

found in quadrant 2, i.e. they combined a high TE with low cytotoxicity. The two most 

effective polymers identifiable from Figure 3-4A are L1000 at N/P ratio of 2 and S-5700 at 

an N/P ratio of 5. The two other linear polycations with a high molecular weight L880 and 

L520 at N/P ratio of 2 also fall in this quadrant, but show a slightly lower TE. From the S-3 

series, both S-3300 and S-3710 at N/P ratio of 5 show efficient transfections with still 

acceptable cytotoxicity.  

The non-transfecting but also non-toxic polymers are located in quadrant 4 (Figure 3-

4A). Interestingly, these are all star-shaped polymers at N/P ratio of 2, indicating that at 

least for the star-shaped polymers a certain N/P ratio has to be surpassed, before 

transfection can take place, as described above. Some star-shaped polymers of varying 

molecular weight and arm numbers at N/P ratio of 5 are also located in quadrant 4, but 

show a little higher transfection capability, i.e. TEs between 5 and 10 %. For these 

polymers the optimal N/P ratio probably lies somewhere between 5 and 10, since at an 

N/P ratio of 10 their TE is higher, but the cytotoxicity also increases, shifting them to the 

middle of the diagram. Also in this segment are the low molecular weight polymers L110 

and S-395 at all N/P ratios (except S-395 at N/P = 20, which is found in quadrant 3) tested. 

Therefore, we propose that a certain critical molecular weight or alternatively a critical 

amount of nitrogens per molecule exists below which a successful transfection cannot 

take place. This critical value was observed for both linear and star-shaped PDMAEMAs, 

indicating an independence of the polymer architecture. Since this study used only one 

type of polymer, it was impossible to distinguish between the effect of molecular weight 

and number of nitrogens per molecule. However, from the literature it is known that PEI 

gives excellent transfection results at an average molecular weight of 25 kDa (~580 

nitrogens per molecule), while 2 kDa PEI (~47 nitrogens per molecule) is rather 

inefficient.
61

 Although not explicitly tested, we would expect a rather poor performance 

from a 25 kDa PDMAEMA (~160 nitrogens per molecule), pointing towards a greater 

importance of the number of nitrogens rather than the molecular weight. 

In quadrant 3, undesirable properties of the polycations in regard to gene delivery are 

combined, as those polymers show both a low TE and a high cytotoxicity. Not 
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surprisingly, the majority of the entries in this segment come from polyplexes at N/P 20. 

This is consistent with the increased cytotoxicity at increasing N/P ratio. The transfection 

efficiency decreases, since a large amount of cells is killed through the influence of the 

polymers at high concentrations. As discussed before, the polymers at N/P ratio of 10 that 

end up in this quadrant probably signify the upper limit for an effective transfection, as 

the cytotoxicity of the polymers starts to play a more important role in the whole process.  

With increasing N/P ratios the entries in Figure 3-4A move through the different 

quadrants. This is schematically visualized in Figure 3-4B. Generally, at low N/P ratio 

the polymers show no transfection (linear polymers may be an exception to this) and 

negligible cytotoxicity. With increasing N/P ratio (approximately N/P ratio 5), at first the 

transfection also increases, while the cytotoxicity stays at acceptable levels. At an even 

higher N/P ratio of 10 the cytotoxicity of the polymers starts to play a major role and a 

shift to the left side of the diagram can be seen. Finally, at the highest tested N/P ratio of 

20, both viability and TE decrease again, moving the entries for this N/P ratio to the lower 

left corner. Interestingly, the maximum TE value of each polymer is found at a relative 

viability between 70 – 90 %, indicating that a certain cytotoxicity cannot be avoided in a 

successful transfection.  

From these results, we propose that the most efficient polycations for gene delivery 

should have a branched architecture together with an intermediate molecular weight. The 

former ensuring a comparatively low cytotoxicity for a given molecular weight (higher 

LCC50 value) compared to the linear analogues. Noticeably, the architecture of the 

polymer has no detectable influence on the TE as long as the minimum molecular weight 

required for efficient transfection is reached. Therefore, branched polymeric architectures 

might be a promising tool for achieving an optimal balance between a maximum number 

of transfected cells together with a minimal cytotoxicity.  

 

Conclusions 

With increased branching, e.g. arm number, a trend to less toxic behavior at a given 

molecular weight of the respective polycations could be seen. The transfection 

experiments were more difficult to interpret, since they gave a high variance. We found, 

however, that there is a certain minimal molecular weight necessary in order to reach a 
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significant transfection. Additionally, at least for the star-shaped polymers, an increase in 

molecular weight does not necessarily result in an improved gene delivery. Our data 

suggests, that an ideal combination between low cytotoxicity and high transfection should 

be achievable with a branched structure displaying an intermediate molecular weight. In 

the future, it needs to be clarified, whether star-shaped polymers with more than 5 arms 

can further reduce the cytotoxicity, which could lead to an increase in transfection 

efficiency. Also, other structures of e.g. irregularly branched polymers should be tested.  
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Supplementary Material  

 

Figure 3-S1: Mean fluorescence intensity (MFI) for the transfection efficiency data shown in Figure 3-3. 

Statistical significance was tested by ANOVA. Data represent mean values of five independent experiments 

 SD. 
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Chapter 4 

 

Nano-Particulate Non-Viral Agent for the Effective Delivery of 

pDNA and siRNA to Differentiated Cells and Primary Human 

T Lymphocytes 

 

 

 

 

 

 

The results from this chapter have been published in Biomacromolecules as: 

“Nano-Particulate Non-Viral Agent for the Effective Delivery of pDNA and siRNA to 

Differentiated Cells and Primary Human T Lymphocytes” 

by Anja Schallon, Christopher V. Synatschke, Valérie Jérôme, Axel H. E. Müller and 

Ruth Freitag*. 

Reprinted with permission from Biomacromolecules 2012, 13, 3463–3474. Copyright 

2012 American Chemical Society. 
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Abstract 

Delivery of polynucleotides such as plasmid DNA (pDNA) and siRNA to non-dividing 

and primary cells by non-viral vectors presents a considerable challenge. In this 

contribution, we introduce a novel type of PDMAEMA-based star-shaped nanoparticles 

that (i) are efficient transfection agents in clinically relevant and difficult-to-transfect 

human cells (Jurkat T cells, primary T lymphocytes) and (ii) can efficiently deliver 

siRNA to human primary T lymphocytes resulting to more than 40 % silencing of the 

targeted gene. Transfection efficiencies achieved by the new vectors in serum-free 

medium are generally high and only slightly reduced in the presence of serum, while 

cytotoxicity and cell membrane disruptive potential at physiological pH are low. 

Therefore, these novel agents are expected to be promising carriers for non-viral gene 

transfer. Moreover, we propose a general design principle for the construction of 

polycationic nanoparticles capable of delivering nucleic acids to the above-mentioned 

cells. 
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Introduction 

The interest in designing fully synthetic non-viral vectors for gene delivery has never 

waned, 
1
 although in the past the application range of such agents was limited. Compared 

to viral vectors, 
2, 3

 transfection efficiencies of non-viral vectors in general are low and 

none of the known agents can efficiently transfect non-dividing and/or differentiated 

cells.
 4

 For some innovative medical therapies, e.g. RNA interference (siRNA), delivery is 

still considered a substantial bottleneck. 
5, 6

  Currently used non-viral delivery agents are 

typically based on cationic polymers, polypeptides, or lipids, 
7-10

 with poly(ethylene 

imine), PEI, being a major player in the field of commercial products.  

The performance of non-viral transfection agents is typically discussed based on the 

various stages of the delivery process. The poor performance of non-viral vectors in 

transfecting suspension or non-dividing cells has been linked to problems in transfection 

complex attachment to the cellular membrane leading to inefficient endocytosis 
11

 and
 
to a 

presumed inability to transgress the intact nuclear membrane, 
12

 respectively.  

In recent years, we have nevertheless seen a number of studies, which link size and 

structure of non-viral polycationic transfection agents to their performance. 
12, 13

 

Increasing size of the polycation often correlates with improved transfection efficiency, 

but also with an increase in cytotoxicity; the latter being presumably due to a more 

pronounced disruptive interaction with the cellular membrane. 
14, 15

 Concomitantly 

evidence is building up that non-linear polymer structures are more efficient transfection 

agents than linear polymers of the same size. 
2, 16-19

 In this context, poly(2-

(dimethylamino)ethyl methacrylate) (PDMAEMA), first described in the mid-90’s by 

Cherng and co-workers, 
20

 has become an important probe molecule in transfection 

studies, since PDMAEMA can be synthesized by a number of controlled polymerization 

methods (e.g., anionic polymerization and atom transfer radical polymerization (ATRP)). 

Thus, rather homogeneous polycations of different topologies (e.g. linear, branched) 

become available.  In this context, suitable methods for the core-first synthesis of nano-

particular multi-armed DMAEMA stars using ATRP have recently become available, 
21, 

22
 extending the basis for detailed investigation of structure-function relationships. In 

addition, such star shaped architectures can also be produced by using block copolymers 

which can self-assemble to micelles structures given suitable solvents. 
23

 The resulting 
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polymeric micelles have a low critical micelle concentration (cmc), leading to a high 

stability in aqueous solutions, showing many advantages in biomedical applications. 
24

 

Analysis of transfection and cytotoxicity data as a function of polycation size and 

structure published by several groups including our own in the past, 
18, 19, 25, 26, 27, 28

 led to 

the hypothesis that polycations with star-shaped architecture constitute promising 

candidates for efficient transfection agents, although in general for a given structure, PEI-

based structures were superior to, e.g., PDMAEMA-based ones. Georgiou et al. found 

that for optimal polymer architecture with ideal pK value star PDMAEMA 

homopolymers are transfection agents comparable to the dendrimer SuperFect
®
. 

29
 

Recently, Xu and co-workers reported similar transfection efficiency and reduced 

cytotoxicity for star-shaped PDMAEMA homopolymers with a cyclodextrin core 

compared to branched PEI (b-PEI). 
30

 However, all these data were obtained in standard 

cell lines, neither non-dividing cells nor human primary T lymphocytes were ever tested 

in this context. Moreover, it is commonly assumed that the transfection of such cell types 

is difficult or nearly impossible using polycationic agents. 
4
 

Although PDMAEMA and several of its copolymer variants have been widely studied as 

transfection agents for plasmid DNA with varying results (see above), only recently have 

researchers begun to focus on siRNA delivery 
31-33 

mediated by PDMAEMA-based 

polymers. 
34-39

 A comparative study has, e.g., shown that micelle architecture, based on 

triblock copolymers, facilitates an overall release of siRNA compared to the PDMAEMA 

homopolymer or a PEGylated formulation of this polycation, thereby resulting in a potent 

gene silencing effect. 
40

 Recently, PEGylated polycaprolactone nanoparticles with grafted 

short PDMAEMA-arms on the surface were reported as being more efficient than PEI 

and Lipofectamine
®
 in delivering siRNA in vitro and in vivo (i.e., in Hela cell line and the 

corresponding tumor model). 
41

 The only existing agent for efficient siRNA-based gene 

knock-down, in human primary T lymphocytes, is Nucleofection
®
, 

42
 which is on the 

other hand intrinsically restricted to in vitro and ex vivo applications. In this context, as 

recently shown by Weber and co-workers, 
43

 gene knock-down and delivery do not 

always correlate. 

In this contribution, we introduce novel polycationic nanoparticles (Si-PDMAEMA: star 

with 20 arms emanating from a silsesquioxane initiator core; Mic-PDMAEMA: self-

assembly of an amphiphilic polybutadiene-block-poly(2-(dimethylamino)ethyl 
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methacrylate) diblock copolymer) based on multi PDMAEMA-arms emanating from a 

common center. This structure shows, to our knowledge, a never observed capability for 

the transfection of primary and non-dividing cells by adequate biocompatibility. 

Moreover, the Si-PDMAEMA shows also improved transfection efficiency (compared to 

PEI) in non-adherent Jurkat cells, i.e., a suspension cell line known as difficult-to-

transfect and in standard cell lines such as CHO-K1, HEK 293. The novel agents can 

furthermore efficiently deliver siRNA into primary human T lymphocytes and into 

recombinant CHO cells. As far as we ascertain, our data show, for the first time, that a 

polycation can be used successfully to deliver siRNA into human primary T lymphocytes 

and leading to the specific knock-down of the targeted gene. 

 

Experimental Section 

Materials 

Milli Q water was used to prepare aqueous solutions and for dialysis. Anisole (99 %), 

CuBr (99.999 %), CuBr2 (>99 %), 1,1,4,7,10,10-hexamethyltriethylenetetramine 

(HMTETA, 97 %), iodomethane (>99 %), tetrahydrofuran (THF, >99.9 %), 

(trimethylsilyl)diazomethane (2 M solution in diethyl ether) and 1,3,5-trioxane (>99 %) 

were from Sigma-Aldrich (Munich, Germany) and used as received. Dioxane (p.a. 

quality) was from Fisher Scientific GmbH (Schwerte, Germany). The 2-

(dimethylamino)ethyl methacrylate monomer (DMAEMA, 98 %, Sigma-Aldrich) was 

passed through an aluminum oxide column (basic, Sigma-Aldrich) prior to use in order to 

remove the stabilizer. 3-(4,5-dimethylthyazolyl-2)-2,5-diphenyl tetrazolium bromide, 

Hoechst 33258, and branched poly(ethylene imine) (b-PEI, 25 kDa) were from Sigma 

Aldrich, linear PEI (l-PEI, 25 kDa) from Polysciences Europe GmbH (Eppelheim, 

Germany). Polycation stock solutions were 500 µM in Milli Q water. PB290-b-

PDMAEMA240 (Mn = 53,500 g/mol, PDI = 1.07), prepared as described elsewhere, 
44

 was 

kindly donated by Felix Schacher, Macromolecular Chemistry II, University of Bayreuth. 

Cell culture materials, media, and solutions were from PAA Laboratories (Cölbe, 

Germany). Serum reduced medium Opti-MEM was from Life Technologies GmbH 

(Darmstadt, Germany). The PE-conjugated anti-CD3, FITC-conjugated anti-CD4 and 

FITC-conjugated isotype control antibodies used for immunostaining were from BD 

Biosciences (Heidelberg, Germany). Blood was obtained from the Bavarian Red Cross. 
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Plasmid pEGFP-N1 (4.7 kb, Clontech, USA) encoding for the enhanced green fluorescent 

protein (EGFP) driven by the cytomegalovirus immediate early promoter was used in 

most of the transfection experiments. The pIVEX2.3-UK plasmid (4.3 kb, Roche Applied 

Science, Germany), encoding for the human urokinase under the control of a T7 

promoter, was used in control transfection as “non-EGFP expression” plasmid. The 

plasmids were amplified in E. coli DH5 alpha strain in LB medium to sufficient quantities 

using standard molecular biology techniques, including for harvesting and purified using 

the EndoFree Plasmid Kit (Giga Prep) from Qiagen (Hilden, Germany). 

Polymer Synthesis 

For the synthesis of Si-PDMAEMA, 34.4 mg (2.867 x 10
-6

 mol) of the silsesquioxane 

initiator (synthesis and detailed characterization as published elsewhere 
45-47

 were mixed 

with 46 µL (1.691 x 10
-4

 mol) HMTETA and 5 g anisole in a glass flask and sealed with a 

rubber septum (Solution 1). In a separate flask 4.9 g (0.0312 mol) DMAEMA, 19.3 mg 

(1.346 x 10
-4

 mol) CuBr, 7.2 mg (3.223 x 10
-5

 mol) CuBr2, 0.53 g trioxane, and 7 g 

anisole were mixed and the flask was sealed with a rubber septum (Solution 2). Both 

solutions were degassed with nitrogen for at least 15 min. Solution 1 was then transferred 

under nitrogen to Solution 2 with a syringe. The mixture was briefly stirred, a sample for 

NMR conversion analysis was withdrawn, and the polymerization started by heating the 

mixture to 60°C in an oil bath. Progress of the polymerization was monitored by 

following the monomer consumption via 
1
H-NMR by comparing the integrals of the 

signals of the two vinyl protons of DMAEMA (6.21 ppm and 5.61 ppm) with that of the 

internal standard signal of trioxane at 5.14 ppm. After 205 min a conversion of 42 % had 

been reached and the polymerization was quenched by cooling and opening the flask to 

air. For purification the reaction mixture was dialyzed against a dioxane/water mixture 

(initial composition 9:1). Dioxane contents were lowered subsequently to 7:3, 1:1, and 

1:2, and finally to pure water. Dialysis lasted for four days under continuous stirring and 

the final polymer was obtained by freeze-drying. 

Star-like polymer micelles (Mic-PDMAEMA) were prepared by dissolving 144 mg 

PB290-b-PDMAEMA240 (2.7 x 10
-6

 mol, Mn = 53500 g/mol, PDI = 1.07) in 6 mL THF in a 

glass flask (40 mL), equipped with a magnetic stirrer bar. 10 mL of PBS buffer were 

added drop-wise to induce micelle formation. THF was allowed to partially evaporate 

through stirring the open flask overnight at 25°C and any residual THF was then removed 
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through dialysis against PBS for 6 d with regular exchange of the dialysis solution. The 

final polymer concentration was 10.65 g/L. 

Polymer Characterization 

GPC measurements for PB290-b-PDMAEMA240 were performed on a Waters instrument 

with four PSS-SDV gel columns (5 µm) with a porosity range from 10
2
 to 10

4
 Å (PSS 

Mainz, Germany) and THF containing 0.25 wt. % tetrabutylammonium bromide as 

eluent. A differential refractometer was used for detection and narrowly distributed 

polystyrene standards for calibration. The determination of the hydrodynamic radius, Rh, 

of Si-PDMAEMA (Milli Q water; 1 g/L polymer conc.) and Mic-PDMAEMA (PBS 

buffer; 10 g/L polymer conc.) was performed by dynamic light scattering (DLS) in sealed 

cylindrical scattering cells (d = 10 mm) at an angle of 90° using an ALV DLS/SLS-SP 

5022F instrument consisting of an ALV-SP 125 laser goniometer with an ALV 5000/E 

correlator and a He-Ne laser with the wavelength λ = 632.8 nm. Prior to the measurement, 

the solution was filtered through a 5 µm pore size filter to remove any dust particles. The 

CONTIN algorithm was applied to analyze the obtained correlation functions. Apparent 

z-average hydrodynamic radii were calculated according to the Stokes-Einstein equation. 

The <Rh>z, app. was taken as the average of three individual measurements. The copper 

content of the Si-PDMAEMA was determined by inductively coupled plasma optical 

emission spectroscopy (ICP-OES) using a Varian Vista-Pro radial machine. For the 

determination of the arm number and size in Si-PDMAEMA a previously published 

procedure was used, 
21

 i.e. the arms were cleaved off and analyzed via GPC as linear 

polymers. 

 

Potentiometric Titration 

Measurements were performed on an automatic titration machine (Titrando 809, 

Metrohm) equipped with a pH electrode (Unitrode, Metrohm, 6.0258.000) and calibrated 

with Merck buffer solutions. Titrations were performed with 0.1 N HCl solution (Titrisol, 

Merck) in triplicate on 35 mL of polymer solution (0.5 mg/mL in MilliQ water) 

previously adjusted to a pH of 11.5. HCl solution was added dynamically (increment of 

addition was automatically adjusted between 5µL – 100µL depending on the steepness of 

the curve for optimal resolution) and under continuous stirring every 30 seconds until a 
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final pH of 2.8 was reached. The respective apparent pKa values were taken as the pH 

value at a protonation degree of 50 % (α = 0.5) from the potentiometric titration curves.  

 

Zeta Potential Measurement 

For zeta-potential measurements, polyplexes were prepared in 1 mL of a 150 mM 

aqueous NaCl-solution containing a total of 15 µg pDNA, following otherwise the 

‘transfection protocol’ indicated below. Zeta-potential measurements were performed in 

triplicate using the standard capillary electrophoresis cell (DTS 1060) of the Zetasizer 

Nano ZS (Malvern Instruments, Ltd., UK) at room temperature. 

 

Cell Lines and Culture Conditions  

CHO-K1 (CCL-61, ATCC), CHO-EGFP-VEGFA (recombinant CHO cells constitutively 

expressing EGFP
48

), HEK-293 (CRL-1573, ATCC), and Jurkat (TIB-152, ATCC) cells 

were maintained in RPMI 1640 culture medium, A549 (CCL-185, ATCC) and C2C12 

(CRL-1772, ATCC) cells in DMEM culture medium, Wi-38 (CCL-75, ATCC) and L929 

(CCL-1, ATCC) in MEM cell culture medium all supplemented with 10 – 20 % fetal calf 

serum (FCS) (as recommended by ATCC), 100 µg/mL streptomycin, 100 IU/mL 

penicillin, and 2 - 4 mM L-glutamine. Cells were cultivated at 37°C in a humidified 5 % 

CO2 atmosphere. For induction of differentiation, C2C12 cells were grown near to 

confluence in growth medium and the medium was switched to DMEM supplemented 

with 10 % horse serum. The differentiation, verified by the appearance of multinucleated 

and elongated myotubes, occurs after 2 to 4 days. To assess the homogeneity of growth-

arrested and differentiated C2C12 cells, approximately 1 x 10
6
 fixed cells were analyzed 

by flow cytometry. For this purpose, the cell pellet obtained after centrifugation for 5 min 

at 200 g was resuspended in 2 mL Dulbecco-PBS (DPBS), 2 mL ice-cold 70 % ethanol 

were added drop-wise and the mixture stored for at least 2 hours at -20°C. Cells were 

stained with 2 µg/mL Hoechst 33258 and analyzed in a Cytomics FC 500 flow cytometer 

(Beckman Coulter, Krefeld, Germany) equipped with a violet (405 nm) laser. 
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Isolation and Cultivation of Human Primary T Lymphocytes 

Peripheral blood mononuclear cells (PBMCs) were isolated from the blood of healthy 

donors by Ficoll density gradient centrifugation (Lymphocyte separation medium LSM 

1077, PAA Laboratories), according to the supplier’s instructions. The interface cells 

(containing typically 70 – 100 % lymphocytes according to the supplier) were washed 

three times with DPBS by centrifugation for 10 min at 300 g. The freshly isolated 

peripheral blood lymphocytes (PBLs) were seeded at 4 x 10
6
 cells per mL in QPBL 

medium (PAA Laboratories), which contains phytohemaglutinin (PHA) and stimulates 

the growth of T cells. Two to five days cultivation in this medium was sufficient to reach 

~ 95 % CD3
+
 cells with blasted morphology. CD3 expression was analyzed by 

immunostaining using a PE-conjugated anti-CD3 antibody (according to manufacturer’s 

instructions). Immunofluorescence was analyzed by flow cytometry. 

 

Transfection of pDNA 

For transfection of the adherent cell lines, cells were seeded at a density of 2 x 10
5
 cells 

per well in 6-well plates 20 h prior to transfection. One hour prior to transfection, cells 

were rinsed with DPBS and supplemented with 2 mL Opti-MEM medium. For 

transfection of CHO cells in the presence of serum, Opti-MEM was replaced by RPMI 

1640 supplemented with 10 % FCS. Polyplexes were prepared by mixing 3 µg pDNA in a 

final volume of 200 µL of aqueous 150 mM NaCl-solution with sufficient amounts of the 

respective polycation stock solution, added in a single drop, to achieve the intended N/P-

ratio (polymer N/DNA P-ratio). Solutions were vortexed for 10 sec and incubated for 20 

min at room temperature for polyplex formation. The polyplex suspension (200 µL) was 

added to the cells and the plates were centrifuged for 5 min at 200 g and placed for 4 h in 

the incubator. Afterwards, the supernatant was removed by aspiration, 2 mL of fresh 

growth medium were added, and the cells were further incubated for 20 h. For 

transfection of the suspension cells (Jurkat), two hours prior to transfection, cells were 

rinsed with DPBS and seeded at 5 x 10
5
 cells per well in 1.5 mL Opti-MEM medium (6-

well plates). The polyplex suspension (200 µL prepared as described above) was then 

added to the cells and the plates were centrifuged for 5 min at 200 g and placed for 4 h in 

the incubator. Afterwards, 0.5 mL of the medium was removed taking care not to disturb 
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the cells, 2 mL of pre-warmed fresh growth medium were added, and the cells were 

further incubated for 20 h. 

For primary human T lymphocytes, transgene delivery was carried out 3 to 5 days after 

PBMC preparation and cultivation in QPBL medium. 5 x 10
5
 cells were placed in 1.5 mL 

Opti-MEM medium per well in 6-well plates. 200 µL of the polyplex suspension prepared 

as described above were added and the plate placed for 4 h in the incubator. Afterwards, 

0.5 mL of the medium was removed taking care not to disturb the cells, 2 mL of 

pre-warmed fresh QPBL medium were added, and the cells were further incubated for 

48 h. Electroporation of T lymphocytes was performed as previously described. 
42

 

Briefly, 20 µg DNA were pulsed with 5.0 x 10
6
 cells in Opti-MEM at 250 V, 950 µF 

(BioRad Gene Pulse X Cell). Immediately after electroporation, cells were incubated for 

10 min at 37°C followed by transfer into pre-warmed fresh QPBL medium (2 mL) in a 

6-well plate. 

For analysis, adherent cells were harvested by trypsinization and suspension cells by 

centrifugation and resuspended in DPBS. For determination of the viability, dead cells 

were identified via counterstaining with propidium iodide (PI) or trypan blue. The relative 

expression of EGFP fluorescence of 1 x 10
4
 cells was quantified via flow cytometry. 

Cells were initially evaluated by scatter properties (FSC/SSC) in order to select a region 

representing single non-apoptotic cells (elimination of dead cells, debris and cellular 

aggregations). This gated region (R0) was further analyzed for fluorescence (PI/EGFP). 

Dot plots with log of the red fluorescence intensity (PI) on the x-axis and log of the green 

fluorescence intensity (EGFP) on the y-axis were used to estimate the percentage of 

EGFP-expressing cells in the main non-apoptotic cell population (gate R0). Negative 

controls (N/P 0, non-transfected cells or cells transfected with an irrelevant pDNA) were 

used to set the position of quadrants separating GFP-positive living cells (upper left), 

GFP-positive dead cells (upper right), GFP-negative living cells (lower left) and GFP-

negative dead cells (lower right). These quadrants were applied for the analysis of 

transfected cells and percentage cell number / total cell number in the gated region were 

calculated for each quadrant. 
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Delivery of siRNA 

siRNAs were: hCD4-siRNA (sense) 5’- GCAAUUGCUAGUGUUCGGAUUGACUGC - 

3', (anti-sense), 5’ – GCAGUCAAUCCGAACACUAGCAAUUGC - 3’  EGFP-siRNA 
50

 

(sense) 5'’ – AAGCUGACCCUGAAGUUCAUCUGCACC - 3', (antisense), 5’ –

 GGUGCAGAUGAACUUCAGGGUCAGCUU - 3’ (all Eurofins MWG  peron). The 

siRNAs were obtained as duplex and solubilized into 1x siMAX universal buffer (6 mM 

HEPES, 20 mM KCl, 200 µM MgCl2, pH 7.3; Eurofins MWG Operon). EGFP-siRNA 

and hCD4-siRNA were used as negative control in the experiments involving CD4 

knockdown in T lymphocytes and EGFP knockdown in CHO-EGFP-VEGFA cells, 

respectively. For siRNA delivery into EGFP expressing CHO cells (CHO-EGFP-VEGFA 

cells 
48

), cells were seeded at a density of 0.25 x 10
5
 cells per well in 24-well plates 20 h 

prior to delivery. One hour prior to delivery, cells were rinsed with DPBS and 

supplemented with 0.2 mL Opti-MEM medium. siRNA-polyplexes were prepared by 

diluting siRNAs stock solution (10 µM) in a total volume of 50 µL Opti-MEM to the 

indicated final concentration and adding sufficient amounts of the polycation stock 

solution to reach the desired N/P ratio. The mixture was immediately mixed by vortexing 

at full speed followed by incubation at room temperature for 15 min. The polyplex 

suspension (50 µL) was added to the cells, the plates were centrifuged for 5 min at 200 g, 

and placed for 4 h in the incubator. Afterwards, the supernatant was removed by 

aspiration, 1 mL of fresh growth medium was added, and the cells were further incubated 

for 20 h (Si-PDMAEMA) and 30 h (Si-PDMAEMA and Mic-PDMAEMA). The relative 

expression of EGFP fluorescence of 1 x 10
4
 cells was quantified. For determination of the 

viability, dead cells were identified via counterstaining with propidium iodide. Cells were 

initially evaluated by scatter properties (FSC/SSC) in order to select a region representing 

single non-apoptotic cells (elimination of dead cells, debris and cellular aggregations). 

This gated region (R0) was further analyzed for fluorescence (PI/EGFP). To assess the 

efficiency of the siRNA to knockdown the EGFP expression, the median fluorescence 

intensity (FI) values were compared. 

For siRNA delivery to T lymphocytes, cells were washed twice with DPBS and plated in 

250 µL Opti-MEM in 24-well plates at 5 x 10
5
 cells per well for 1 h prior to transfection. 

Polyplexes were prepared and added to the wells as described above. The plates were 

centrifuged for 5 min at 200 g and placed for 4 h in the incubator. Afterwards, 700 µL of 

pre-warmed fresh QPBL medium were added per well and the cells were further 
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incubated for at least 24 h without removing the complexes or replacing the medium until 

subsequent analysis by flow cytometry. 

 

Analysis of CD4 Expression 

For analysis of CD4 expression, cells were harvested by centrifugation (5 min, 200 g, 

4 °C) and resuspended in DPBS. T lymphocytes expressing CD4 receptors were 

identified by immunofluorescence via staining the cells with FITC-conjugated anti-CD4 

or FITC-conjugated isotype control antibodies (according to manufacturer’s instructions) 

on the day of siRNA delivery and at least 24 h after delivery. Dead cells were identified 

via counterstaining with propidium iodide. The relative expression of CD4 was quantified 

via flow cytometry.  

Cells were initially evaluated by scatter properties (FSC/SSC) in order to select a region 

representing single non-apoptotic cells and to eliminate debris which  always compose a 

significant fraction in an activated primary lymphocyte cell culture (gate ”lympho”) and 

by (SSC/PI) in order to select the living cells (PI-negative population) (gate ”living”). The 

expression of the CD4 protein was assessed in histogram plots (green fluorescence 

intensity on the x-axis and cell number on the y-axis) representing the intensity of the 

CD4-FITC fluorescence (CD4
low

: fluorescence intensity between 70 and 170; CD4
high

: 

fluorescence intensity > 170) in the living T lymphocytes (defined as a sub-population of 

gate “lympho” and gate “living”).  

 

Cytotoxicity / Vitality Assay (MTT) 

The toxicity of the polycations was tested (concentration range 0.001 mg/mL to 5.0 

mg/mL, 8 replicate experiments each) according to the ISO 10993-5 protocol by MTT 

assay using L929 murine fibroblasts, cultured in MEM supplemented with 10 % FCS, as 

test cells. The cells were seeded at a density of 1 x 10
5
 cells per well 24 h prior to the 

experiment in 96-well plates. The concentration of the MTT stock solution was 1 mg/mL. 

As 100 % viability control, untreated cells were used. The absorbance was measured 

using a plate reader (Genios Pro, Tecan, Germany); wavelength 580 nm.  
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For T lymphocytes, the MTT assay was performed as follows. 5 x 10
5
 human T 

lymphocytes in 500 µL Opti-MEM medium were transferred into 1.5 mL Eppendorf 

tubes. The polymer was added and the cells were incubated for 4 h at 37°C in the 

incubator. Then, the Opti-MEM medium was replaced by QPBL medium. All medium 

exchange and washing steps were done by centrifugation (5 min, 200 g, 4°C). The cells 

were further incubated for 20 h. Then cells were rinsed with DPBS and further incubated 

in 200 µL MTT solution (1.0 mg/mL in RPMI 1640 without phenol red) for 2 h. The 

tubes were centrifuged for 5 min at 600 g, the MTT solution was discarded and 200 µL 

isopropanol were added to the cell pellet. The tubes were mixed at 150 rpm for 5 min to 

dissolve the formazan crystals produced in the reaction. Absorbance was measured at 580 

nm in the microplate reader with untreated cells serving as controls. For data evaluation, 

Origin 6.1 (OriginLab Corporation, Northampton, USA) software was used, the x-scale 

was plotted logarithmically and a nonlinear fit was used to obtain the LD50 values.  

 

Hemolysis Test 

The membrane damaging properties of the polymers was quantified by analyzing the 

release of hemoglobin from human erythrocytes, according to Parnham and Wetzig. 
51

 

The erythrocytes-containing blood fraction obtained after Ficoll gradient separation 

was centrifuged at 700 g for 10 min. The obtained pellet was washed three times with 

cold DPBS pH 7.4 by centrifugation at 700 g for 10 min and re-suspension in the same 

buffer. Polymer solutions were prepared in DPBS buffer and 100 µL were added to the 

erythrocytes (100 µL) to give final concentrations in the range of 0.001 to 5.0 mg/mL and 

incubated for 60 min under constant shaking at 37°C. After centrifugation (700 g, 10 

min), the supernatant was analyzed for released hemoglobin at 580 nm.  The absorbance 

was measured using a plate reader (Genios Pro, Tecan, Germany). For comparison, 

collected erythrocytes were washed with DPBS and either lysed with 0.2 % Triton X-100 

yielding the 100 % lysis control value (A100) or resuspended in DPBS as reference (A0). 

The analysis was repeated with blood from at least six independent donors. The hemolytic 

activity of the polycations was calculated as follow: 
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% hemolysis = 100*(A – A0)/(A100 – A0) 

with A: absorbance of the sample, A100: absorbance at 100 % hemolysis, A0: absorbance 

at 0 % hemolysis. 

 

Statistical Analysis 

Group data are reported as mean  s.e.m. For transfection results, the Student’s t-test was 

used to determine whether data groups differed significantly from each other. Statistical 

significance was defined as having P < 0.05. 
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Results and Discussion 

Polymer Synthesis and Characterization  

As basis for the investigation, a well-defined 20-armed star (Si-PDMAEMA) was 

synthesized via ATRP of DMAEMA, from a silsesquioxane initiator core (Scheme 4-1a) 

based on a procedure previously published by one of our groups. 
21

 Progress of the 

polymerization was monitored by following the monomer consumption via 
1
H-NMR as 

evidenced by the decrease in the integral of the two vinyl protons at 6.21 ppm and 5.61 

ppm. Trioxane was added as an internal standard to the mixture, because it gives a 

characteristic signal at a chemical shift of 5.14 ppm and does not participate in the 

reaction. The polymerization was quenched at 42 % monomers conversion, which 

corresponds to an average degree of polymerization (DP, or number of DMAEMA units 

per molecule) of 4,570, or a number average molecular weight Mn of 730 kDa assuming 

that the monomers were homogenously distributed among all growing particles. Due to 

steric hindrance, not all putative initiation sites of the silsesquioxane initiator can be 

expected to start a polymer chain
21

 and the number of arms per star is therefore below the 

theoretically possible 58. In order to determine the average number and length of the 

arms, these were cleaved off and their molecular weight distribution was determined by 

gel permeation chromatography (GPC). The number average Mn of the arms was 23,500 

Da, and the weight average Mw was 33,500 Da, which corresponds to a polydispersity 

index (PDI) of 1.42 and a DP of 235 monomers per arm. From this, an average number of 

19.5 arms was calculated for the produced Si-PDMAEMA. The number of arms is in 

good agreement with the values of 19 to 24 arms that have been determined for other star-

shaped polymers prepared using the same initiator. 
21

 A z-average hydrodynamic radius, 

<Rh>z, app., of 37.2 ± 3.5 nm was determined for the Si-PDMAEMA by dynamic light 

scattering (DLS). 

It is known that branched poly(ethylene imine) (b-PEI) shows a high buffering capacity, 

because of the large number of nitrogen atoms in its chemical structure.  The so-called 

“proton sponge effect” is a result of this buffering capacity and it is said to result in an 

effective escape of PEI-based-polyplexes from the endosome, explaining the high 

transfection efficiency of this polymer. 
52, 53

  

We conducted potentiometric titration experiments for the Si-PDMAEMA star-shaped 

polymer as well as for b-PEI. From the titration experiments apparent pKa values of pKa, 
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app.(b-PEI) = 7.05 and pKa, app.(Si-PDMAEMA) = 6.73 were determined. The titration was 

performed at a mass concentration of 0.5 mg/mL in MilliQ water (corresponding to molar 

nitrogen concentration of 11.6 mM and 3.13 mM for b-PEI and Si-PDMAEMA, 

respectively) with 0.1M HCl solution. b-PEI had a larger buffering region ranging from 

pH 9.6 – 4.2 than Si-PDMAEMA, which showed a buffering effect from pH 8.9 – 4.6. 

The overall amount of buffered HCl was greater for b-PEI (2.61 mL) than for Si-

PDMAEMA (1.25 mL), which is explained by the higher molar nitrogen concentration of 

b-PEI. In the buffering region relevant for the endosomal environment (pH 7.4 – 5) b-PEI 

shows a slightly better buffering capacity by mass concentration than Si-PDMAEMA, 

with 1.27 mL of buffered 0.1M HCl for b-PEI and 0.94 mL for Si-PDMAEMA. 

Elemental analysis of the polycations indicated inter alia the presence of 15.55 ppm Cu, 

i.e. not all of the copper catalyst had been removed from the final product during dialysis, 

probably due to strong binding by the PDMAEMA arms. However, given the low 

cytotoxicity of Si-PDMAEMA, see below, significant release of copper ions during 

application is unlikely.  

To demonstrate the general potential of multi-arm star-shaped polycationic nanoparticles 

as polynucleotide delivery vehicles, a second structure of similar design was produced via 

self-assembly (formation of star-like micelles) of an amphiphilic diblock copolymer. For 

this purpose, polybutadiene-block-poly(2-(dimethylamino)ethyl methacrylate) (PB290-b-

PDMAEMA240) was synthesized via sequential living anionic polymerization as 

previously published. 
44

 The diblock copolymer had a number-average molecular weight, 

Mn, of 53,500 Da and a very narrow PDI of 1.07. A micellar, star-shaped gene delivery 

agent, Mic-PDMAEMA, was obtained via the self-assembly of PB290-b-PDMAEMA240 

into micelles upon a change in solvent from THF, which solubilizes the entire diblock 

copolymer, to PBS, which only solubilizes the PDMAEMA block (Scheme 4-1b). An 

<Rh>z, app. of 27 ± 3 nm was determined for the Mic-PDMAEMA by DLS. The 

hydrodynamic radii of the two delivery agents are thus in the same range. 
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Scheme 4-1. Synthetic procedure for Si-PDMAEMA preparation from multi-functional initiator via ATRP 

(a) and self-assembly of amphiphilic diblock copolymer PB290-b-PDMAEMA240 to Mic-PDMAEMA star-

shaped micelles (b). 

 

The first step in polynucleotides delivery is the formation of polyplexes between the 

polycationic delivery agent and the negatively charged polynucleotide. Surface charge of 

polyplexes is an important factor especially for unspecific uptake into cells by adsorptive 

endocytosis mediated by proteoglycans. 
54

 We determined the zeta potential of the Si-

PDMAEMA and Mic-PDMAEMA polyplexes at various polymer N / DNA P-ratios 

(Table 4-S1). The zeta potential of the polyplexes increased with increasing N/P ratio and 

at N/P ratios equal to or larger than 5 positive values up to +10.5 mV were obtained.  

 

pDNA Delivery by Si-PDMAEMA 

The Si-PDMAEMA was tested by standardized transfection procedures, using EGFP as 

reporter gene, in a panel of model cell lines including adherent (CHO-K1, HEK-293, Wi-

38, A549) and suspension (Jurkat) cells. In addition, C2C12 cells were used as model for 

non-dividing and differentiated cells and human T lymphocytes were used as example for 

primary cells. b-PEI (25 kDa), i.e. the standard non-viral transfection agent used in our 
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group, served as control. While depending on N/P-ratio and cell type, transfection 

efficiencies were consistently higher for Si-PDMAEMA than for b-PEI at slightly 

reduced cytotoxicities (Table 4-1). This included the Jurkat cells, where the best 

transfection efficiency was 46.1 % ± 3.7 for Si-PDMAEMA compared to 6.2 % ± 2.6 for 

b-PEI (n  5). In order to exclude a false positive measurement, we also performed 

transfection with a blank pDNA (“control plasmid”). The data presented in Table 4-1 and 

Figure 4-S2 clearly demonstrate that the measured increase in fluorescence in the Si-

PDMAEMA transfected cells is due to EGFP expression and not to an increased 

autofluorescence of the cells due to polymer accumulation.  Jurkat cells are suspension 

cells, which are difficult to transfect with non-viral vectors because they sparsely 

internalize cationic complexes. 
11

 The low values obtained for b-PEI are in accordance 

with the data from the literature 
55, 56

 and were thus expected, while the much better value 

obtained for Si-PDMAEMA were a first indication for a fundamentally different 

performance of this transfection agent.  
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Table 4-1. Transfection efficiency and cell viability after transfection with polyplexes based on b-PEI and 

Si-PDMAEMA. 

Cell line  Transfection efficiency (%) Viability (%) 

  PEI Si-PDMAEMA PEI Si-PDMAEMA 

 N/P 5 36.6 ± 12.0 59.8 ± 18.9 95.3 ± 3.7 93.7 ± 4.4 

CHO-K1 N/P 10 49.1 ± 17.6 73.5 ± 8.0 94.4± 3.9 92.9 ± 3.0 

 N/P 20 40.9 ± 20.6 70.5 ± 6.3 87.3 ± 8.7 91.6 ± 3.2 

      

 N/P 5 n. d. 0.2 ± 0.2 n. d. 98.5 ± 0.7 

Control plasmid 
a
 N/P 10 n. d. 1.6 ± 1.1 n. d. 97.4 ± 2.8 

 N/P 20 n. d. 0.8 ± 0.1 n. d. 95.0 ± 1.9 

       N/P 5 23.5 ± 9.7 33.9 ± 15.0 83.9 ± 10.1 88.0 ± 6.8 

HEK-293 N/P 10 36.1 ± 8.2 50.3 ± 15.1 82.7 ± 14.3 90.8 ± 5.9 

 N/P 20 32.8 ± 7.7 55.2 ± 15.2 79.1 ± 17.7 83.4 ± 9.6 

       N/P 5 20.3 ± 3.1 9.8 ± 3.5 71.0 ± 6.5 76.8 ± 7.3 

Wi-38 N/P 10 19.2 ± 3.9 26.9 ± 5.5 66.6 ± 5.7 73.3 ± 6.4 

 N/P 20 2.1 ± 1.7 20.9 ± 6.4 39.4 ± 16.6 53.8 ± 7.9 

       N/P 5 21.7 ± 21.2 45.8 ± 28.0 93.2 ± 4.7 91.4 ± 4.0 

A549 N/P 10 36.1 ± 14.2 48.6 ± 22.0 74.8 ± 7.9 86.0 ± 9.4 

 N/P 20 20.0 ± 7.7 43.0 ± 9.8 48.7 ± 16.1 70.1 ± 21.3 

       N/P 3 0.6 ± 0.4 24.1 ± 0.0 81. 4 ± 2.9 76.6 ± 4.8 

Jurkat 
b, c

 N/P 5 2.0 ± 1.4 33.3 ± 2.7 84.3 ± 4.2 54.4  ± 0.6 

 N/P 10 4.4 ± 3.1 46.1 ± 3.7 69.0 ± 19.3 44.2 ± 15.3 

 N/P 20 6.2 ± 2.6 28.6 ± 16.3 39.9 ± 22.0 53.6 ± 17.7 

      
 N/P 5 n. d. 0.4 ± 0.1 n. d. 71.8  ± 3.5 

Control plasmid 
a
 N/P 10 n. d. 0.3 ± 0.0 n. d. 60.6  ± 7.7 

 N/P 20 n. d. 0.4 ± 0.2 n. d. 53.1 ± 2.4 

The cells were transfected with pEGFP-N1 (EGFP expression plasmid) and in the case of CHO-K1 and 

Jurkat cells additional transfections were performed with a control plasmid (pIVEX2.3-UK, non-EGFP 

expression plasmid) to exclude that accumulation of polymer merely induces an increase of the cell 

autofluorescence. DNA concentration: 15 µg/mL. The EGFP expression was measured 24 h after 

transfection by flow cytometry and analyzed as described in the materials and methods section. The 

transfection efficiency data represent the percentage of living cells expressing EGFP in the non-apoptotic 

cell population defined by scatter properties as determined by flow cytometry analysis. For determination of 

the viability, dead cells were identified via counterstaining with propidium iodide. 
a, b

: Representative flow 

cytometry dot plots are provided in the supplementary information (Figure 4-S1 and Figure 4-S2). Data 

represent mean ± s.e.m., n ≥ 5, safe for 
c
: n ≥ 3. n. d.: not determined. 
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C2C12 myoblast cells show growth arrest at confluency and differentiate into myotubes 

when cultivated in DMEM containing 10 % horse serum. 
57

 They are therefore a 

convenient cell model to compare the transfection efficiency of Si-PDMAEMA in 

dividing and non-dividing cells. The transfection of dividing C2C12 with PEI had 

previously been proven inefficient. 
58

 In our hands, Si-PDMAEMA was up to 9-fold more 

efficient in transfecting C2C12 cells than b-PEI, at similar or slightly improved 

viabilities. As shown in Table 4-2, transfection efficiencies between 20 and 30 % were 

achieved with Si-PDMAEMA in dividing C2C12. Values in the same range were 

previously only obtained with lipid-based transfection reagents; although in most of these 

cases higher toxicities were recorded. 
59-61

  

 

Table 4-2. Transfection efficiency and cell viability after transfection with polyplexes based on b-PEI and 

Si-PDMAEMA in the C2C12 cell line at N/P ratios 5, 10, and 20.  

Cell line  Transfection efficiency (%) Viability (%) 

  PEI Si-PDMAEMA PEI Si-PDMAEMA 

Dividing N/P 5 1.5 ± 2.3 12.9 ± 2.1 90.1 ± 3.1 92.7 ± 0.9 

 N/P 10 4.8 ± 1.4 22.3 ± 2.0 88.3 ± 5.0 90.94 ± 1.7 

 N/P 20 16.6 ± 4.1 27.7 ± 5.2 79. 2 ± 3.3 81.7 ± 2.1 

      

Non-dividing 
a
 N/P 5 0.8 ± 0.5 7.3 ± 3.9 88.6 ± 5.9 88.3 ± 6.0 

 N/P 10 2.7 ± 1.6 15.8 ± 6.2 82.0 ± 7.3 83.4 ± 8.4 

 N/P 20 2.7 ± 2.3 13.4 ± 6.9 63.7 ± 14.6 61.3 ± 17.5 

      

Differentiated 
b
 N/P 5 1.3 ± 1.3 7.6 ± 3.2 85.6 ± 10.0 90.0 ± 4.9 

 N/P 10 1.9 ± 1.2 18.8 ± 4.7 79.0 ± 10.0 83.8 ± 8.2 

 N/P 20 1.4 ± 1.3 11.3 ± 6.8 49.7 ± 25.2 54.2 ± 16.4 

The cells were transfected with pEGFP-N1. DNA concentration: 15 µg/mL. 48 h prior to transfection, 

C2C12 cells were cultivated in RPMI supplemented with 10 % FCS (dividing), let grow to confluency in 

this medium (non-dividing) or cultivated in DMEM supplemented with 10 % horse serum (differentiated). 

Prior to transfection, the cell cycle distribution of the “non-dividing” and “differentiated” cells was assess 

by flow cytometry (
a
: sub-G1: 0.5 %, G1: 81.3 %, S: 15.3 %, G2/M: 0.5 %, 

b
: sub-G1: 7.7 %, G1: 87.5 %, 

S: 5.1 %, G2/M: 0.2 %). The EGFP expression was measured 24 h after transfection by flow cytometry. 

Representative flow cytometry dot plots are provided in the supplementary information (Figure 4-S3). The 

transfection efficiency data represent the percentage of living cells expressing EGFP in the non-apoptotic 

cell population defined by scatter properties as determined by flow cytometry analysis. For determination of 

the viability, dead cells were identified via counterstaining with propidium iodide. Data represent mean ± 

s.e.m., n ≥ 9.  

 

Moreover, while transfection efficiencies of b-PEI decreased considerably, when C2C12 

cells were, prior to transfection, growth-arrested or differentiated into myotubes, this was 



Chapter 4 – Effective Delivery of Nucleic Acids to Differentiated Cells and Human T Lymphocytes 

113 

 

not the case for Si-PDMAEMA (Table 4-2 and Figure 4-1). Most importantly, Si-

PDMAEMA was not only better than PEI in average but also for every individual 

transfection at a N/P ratio of 10 as shown in Figure 4-1. 

 

 

Figure 4-1. Analysis of the percentage of transfected cells against the relative viability after transfection in 

C2C12 cells. Prior to transfection, C2C12 cells were cultivated in growth medium (“dividing”), or growth 

arrested (evaluated by cell cycle analysis) by culturing the cells to confluency (“non-dividing”) or 

differentiated into myotubes (evaluated from the appearance of elongated, multinucleate cells) by culturing 

the cells in DMEM containing 10 % horse serum for 2 days (“differentiated”). For transfection polyplexes 

were formed with either b-PEI or Si-PDMAEMA and 15 µg/mL pEGFP-N1 at a N/P ratio of 10. 24 h 

post-transfection, the cells were counterstained with propidium iodide to identify dead cells and analyzed 

for EGFP expression by flow cytometry. Representative flow cytometry dot plots are given in the 

supplementary information (Figure 4-S3). Transfection efficiencies in dividing (, ), non-dividing 

myoblasts (, ) and myotubes (, ) are plotted against the viability. Black symbols: b-PEI, white 

symbols: Si-PDMAEMA. Data shown are from individual transfections. 

 

To our knowledge, this is the first time that such efficient gene transfer could be shown in 

C2C12 myotubes. The recognized route for nuclear entry of pDNA after PEI transfection, 

is during mitosis when the nuclear membrane breaks down. 
62

 The data presented here on 

the successful transfection (i.e., successful translocation of the pDNA into the nucleus) of 

non-dividing cells by Si-PDMAEMA imply that in contradistinction this transfection 

agent does not necessarily require breakdown of the nuclear envelope for delivery of 

exogenous pDNA into the nucleus. 
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Finally, we included human primary T lymphocytes in our panel, because efficient tools 

for their transfection are rare and would be of high interest not only for research, but also 

for medical applications. Most conventional methods fail to efficiently transfect T 

lymphocytes and Nucleofection
®
, currently the most efficient method for this purpose, is 

restricted to in vitro applications. 
42, 63

 For our study, peripheral blood T lymphocytes 

were isolated from human blood and transfected with b-PEI or Si-PDMAEMA at various 

N/P-ratios or electroporated. Whereas, in the initial experiment, b-PEI did not yield more 

than 1 % and electroporation never more than 10 % transfected T lymphocytes, Si-

PDMAEMA performed best at N/P 10 yielded transfection efficiencies of up to 44 %. 

The robustness of Si-PDMAEMA as transfection reagent for human T lymphocytes was 

subsequently verified at N/P 2.5 to 10 with cells isolated from several independent 

donors. The transfection outcomes achieved at N/P 10 were the most successful in terms 

of EGFP expression (Figure 4-2). In these experiments, as before, electroporation led to 

slightly better results (3 – 12 % transfected cells) than b-PEI, but never reached the values 

achieved with Si-PDMAEMA (Figure 4-2A - B). Moreover, relative fluorescence 

intensities of Si-PDMAEMA transfected cells were slightly higher than for b-PEI 

transfected or electroporated ones, arguing for higher specific transgene expression 

(Figure 4-2C), albeit not of a statistical significance (P=0.01; t-test). Relative viabilities 

were almost independent of the transfection protocol and instead varied in a consistent 

manner with the individual blood donor. In some cases viabilities dropped to 50 %, 

although the majority of the polycation transfected cells showed a relative viability of  

80 % (Figure 4-2D).  
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Figure 4-2. Analysis of the EGFP expression and relative viability after transfection in primary human T 

lymphocytes. Prior to transfection, peripheral blood mononuclear cells (PBMCs) were cultivated for 2 – 3 

days in QPBL medium to stimulate proliferation of the T lymphocytes. On the day of transfection the cells 

were ≥ 95 % CD3
+
 with blast morphology. For transfection, polyplexes were formed with either b-PEI or 

Si-PDMAEMA and 15 µg/mL pEGFP-N1 at a N/P ratio of 10. 24 h post-transfection, the cells were 

analyzed for EGFP expression by flow cytometry. Data shown are from individual transfections. Dot plots 

with log of the red fluorescence intensity (CD3-PE) on the x-axis and log of the green fluorescence 

intensity (EGFP) on the y-axis were used to estimate the percentage of EGFP-expressing cells in the non-

apoptotic cell population (gate A) defined by scatter properties (FSC/SSC). The EGFP-expressing 

lymphocytes were identified as a subpopulation of the CD3
+
 cells. (A) Representative example for the 

analysis of the flow cytometry data. (B) Percentage of EGFP-expressing lymphocytes. (C) Mean 

fluorescence intensity (MFI) of the EGFP expressing lymphocytes. (D) Relative viability of the cells 24 h 

after transfection. The viability is given in percentage of living cells of transfected samples versus living 

cells of the non-transfected control. Data shown are from 5 individual PBMC samples, each obtained from a 

different donor. Results obtained after electroporation are given for comparison. 

 

Biocompatibility of Si-PDMAEMA 

The likely compatibility of Si-PDMAEMA transfection with in vivo applications was 

assessed by a set of standard methods, comprising transfection in the presence of serum, 

as well as cytotoxicity and hemolysis assays; 
2
 b-PEI was used for comparison. Serum 

proteins are known to interact with polycationic transfection agents and lower 

transfection efficiency considerably. 
64

 Due to its compact shape and its high arm density, 
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interaction with serum proteins is apparently reduced in the case of Si-PDMAEMA, 

which performed up to 5-fold better than b-PEI in the presence of 10 % serum (Figure 4-

3). 

 

 

Figure 4-3. Analysis of the percentage of transfected cells after transfection, in the presence of serum, at 

various N/P ratio in CHO-K1 cells. CHO-K1 cells were transfected using b-PEI (black bars) or Si-

PDMAEMA (white bars) in the presence of 10 % FCS at the indicated N/P ratio. For transfection, 

polyplexes were formed with either b-PEI or Si-PDMAEMA and 15 µg/mL pEGFP-N1 at N/P ratios of 5, 

10, and 20. 24 h post-transfection, the cells were counterstained with propidium iodide to identify dead cells 

and analyzed for EGFP expression by flow cytometry.  The data represent the percentage of living cells 

expressing EGFP (“transfected cells”) in the non-apoptotic cell population defined by scatter properties as 

determined by flow cytometry analysis. Data represent mean ± s.e.m. (n ≥ 3). The measured cell viability 

was always > 88 %. 

 

The toxicities of the polycations were tested by MTT assay according to the ISO 10993-5 

protocol using L929 mouse fibroblasts cultured in MEM supplemented with 10 % fetal 

bovine serum as test cells. In addition, cytotoxicity assays were also performed with 

human T lymphocytes.  

Cytotoxicity was tested only for the non-complexed polycations (concentration range 

0.001 mg/mL to 5.0 mg/mL), as these are considered to be more toxic than the DNA-

containing polyplexes. 
14

 Their investigation thus presents a worst-case setting. Both PEI 

and Si-PDMAEMA affected the metabolic activity in a concentration dependent manner 
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when they were added to the L929 cells in the indicated concentration range for up to 4 h. 

Above concentrations of 0.01 mg/mL (b-PEI) and 0.1 mg/mL (Si-PDMAEMA), the 

metabolic activities of the cells decreased significantly and concentrations above 

0.1 mg / mL for b-PEI and 1.0 mg / mL for Si-PDMAEMA reduced the cell viability to 

nearly 20 %. In spite of its almost 30-fold higher molecular weight, Si-PDMAEMA was 

therefore considerably less toxic to the cells than the b-PEI. The LD50 of 0.5 mg/mL 

calculated for Si-PDMAEMA in L929 cells corresponded to 77 times the concentration 

utilized in the subsequent transfection assays performed at a N/P ratio of 10. b-PEI, on the 

other hand, had an LD50 of 0.06 mg/mL, which corresponds to 36 times the polymer 

concentration used in the standard transfection protocol (N/P 10). With an LD50-Si-

PDMAEMA of 0.27 mg/mL, compared to an LD50-b-PEI of 0.03 mg/mL for b-PEI, Si-

PDMAEMA also showed an order of magnitude better biocompatibility in contact with 

human T lymphocytes.  

Compared to b-PEI, Si-PDMAEMA also performed better in the hemolysis assay (Table 

4-3). It is thus possible that the comparatively low cytotoxicity of Si-PDMAEMA is due 

to its architecture, which reduces surface contact with the cell membrane and thus 

decreases membrane destabilization potential. The erythrocytes were incubated with eight 

different polymer concentrations in the range of 0.001 to 5.0 mg/mL for 1 h. Compared to 

b-PEI, which was found to completely lyse the erythrocytes at 5.0 mg/mL, Si-

PDMAEMA showed only moderate hemolytic effects (< 35 %) at physiological pH over 

the entire tested concentration range. Its low hemolytic activity and thus presumably low 

disruptive potential for cell membranes in general augurs well for an eventual use of Si-

PDMAEMA-based agents for the in vivo delivery of plasmid DNA. However, for in vivo 

applications, further modifications of the Si-PDMAEMA are required in order to mask 

the positive charges of the gene vector, which are responsible for unspecific interactions 

with blood components, vessel walls and rapid clearance of the polyplexes from the 

bloodstream. 
65-67

 Toward this end, modifications such as “PEGylation” 
68-70

 or as 

recently reported introduction of polysulfobetaine into the cationic agent 
71

 could be done.   
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Table 4-3. Relative release of hemoglobin in percent (mean  s.e.m.) by human red blood cells after 60 min 

incubation with different concentrations of the cationic polymers at 37°C (n = 6).  

Polymer 
0.001 

mg/mL 

0.005 

mg/mL 

0.01 

mg/mL 

0.05 

mg/mL 

0.1 

mg/mL 

0.5 

mg/mL 

1.0 

mg/mL 

5.0 

mg/mL 

b-PEI 0.1 ± 0.8 5.0 ± 1.9 5.4 ± 3.1 
16.2 ± 

5.0 

26.2 ± 

9.4 

63.3 ± 

12.9 

75.2 ± 

12.0 

101.5 ± 

8.4 

Si-

PDMAEMA 
1.4 ± 2.1 0.9 ± 1.9 0.9 ± 0.2 7.1 ± 1.9 

13.2 ± 

5.8 

22.0 ± 

1.5 

23.4 ± 

5.0 

34.1 ± 

7.2 

 

siRNA-Mediated Knockdown of Gene Expression in Recombinant CHO Cells and T 

Lymphocytes 

RNA interference (RNAi) represents a promising technology for gene-specific 

knockdown, e.g. in the context of developing new therapeutic approaches. 
72

 However, a 

critical factor still limiting the use of siRNA as therapeutic is delivering siRNA to its 

intracellular target site as recently reviewed. 
32, 73

 Recombinant CHO cells constitutively 

expressing EGFP 
48

 and human primary T lymphocytes were used to evaluate the 

potential of Si-PDMAEMA to deliver siRNA into the cells and mediate gene silencing. 

Prior to all silencing experiments, preliminary tests were performed in order to estimate 

the most suitable siRNA concentration and N/P ratio for gene silencing. Therefore, 

referring to published contributions, 
36, 74

 25 and 50 nM siRNA were tested in parallel to 

various charge ratios (N/P 3 to 20). Optimized conditions were found to be 25 or 50 nM 

siRNA and a N/P ratio of 10 gave the best results. A significant silencing effect was not 

detected for incubation time shorter than 30 h, probably due to the high stability of the 

targeted proteins (EGFP t1/2 ≥ 24 h 
75

; CD4 t1/2 = 20 h 
76

)  (data not shown). The results 

presented below were obtained under optimized conditions and reflect the maximal 

knockdown achieved so far. In the recombinant CHO cells, knockdown after incubation 

with the complexes containing 50 nM EGFP-siRNA was evaluated by flow cytometry 

analysis of the EGFP fluorescence in comparison to cells where delivery of siRNA had 

been attempted using b-PEI (Table 4-4). b-PEI/siRNA polyplexes achieved at most a 16 

% reduction of the EGFP expression. This low knockdown efficiency of PEI is in 

agreement with data published elsewhere. 
77, 78

 Si-PDMAEMA triggered a significantly 

higher knockdown (54.6 %). For both polycations, only a minimal effect on cell viability, 

which remained within 85 % of the non-transfected cells, was observed. Similar levels 

were observed in isolated cases for PDMAEMA/siRNA polyplexes in lung cancer cells. 

79, 80
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Table 4-4. Gene silencing in recombinant CHO cells constitutively expressing EGFP.  

 N/P ratio 

 0 5 10 15 

naked siRNA 5.3 - - - 

b-PEI - 0.0 16.0 n.d. 

Si-PDMAEMA - 1.7 54.6 51.0 

EGFP expression was determined by flow cytometry 30h after siRNA delivery using either b-PEI or Si-

PDMAEMA. siRNA concentration: 50 nM at N/P 10. Data represent percentage of knockdown of EGFP 

expression compared to control cells. Viabilities were estimated by propidium iodide staining prior to flow 

cytometry analysis. n.d.: not determined 

 

T lymphocytes are known to be particularly resistant to siRNA uptake enforced by 

conventional non-viral delivery methods excepting Nucleofection
® 42

 and antibody 

fragment-peptide fusion protein-based delivery. 
81

 Based on the promising results 

obtained in the recombinant CHO cell line, we subsequently investigated the potential of 

Si-PDMAEMA for knockdown of CD4-expression in human T lymphocytes. In 

preliminary experiments, screening for optimized delivery conditions, we were able to 

show that Si-PDMAEMA-based delivery of hCD4-siRNA led to significantly higher 

silencing effect than the one obtained after b-PEI-based delivery (data not shown). In 

order to confirm this observation, siRNA delivery/knockdown was repeated with T 

lymphocytes isolated from another donor. In addition, linear PEI (l-PEI, 25 kDa) was 

used instead of b-PEI. Cells mock-delivered with EGFP-siRNA served as control. 

Knockdown after 30 h incubation with the complexes was evaluated by flow cytometry 

analysis. Delivery of the siRNA with l-PEI had no effect on the level of CD4 expression. 

Si-PDMAEMA, on the other hand, achieved a 2.3-fold decrease of CD4
high

 and a 2.3-fold 

increase of the CD4
low

 populations, respectively (Table 4-5). Viability was again within 

85 % of the non-transfected cells in all cases. This is, to our knowledge, the first time that 

a PDMAEMA-based polycation were used successfully to deliver siRNA into human 

primary T lymphocytes and leading to the specific knock-down of the targeted gene.   

 



Chapter 4 – Effective Delivery of Nucleic Acids to Differentiated Cells and Human T Lymphocytes 

120 

 

Table 4-5. Analysis of CD4 expression 30 h after human T lymphocytes were either mock delivered 

(EGFP-siRNA) or delivered with hCD4-siRNA (25 nM each).  

 hCD4-siRNA  EGFP-siRNA 

 CD4
high

 CD4
low

  CD4
high

 CD4
low

 

l-PEI 77.5 22.5  79.9 20.1 

Si-PDMAEMA 29.6 70.3  69 31 

The siRNA was delivered complexed with l-PEI or Si-PDMAEMA (N/P ratio 10). Data represent the 

percentage of CD4
high

 and CD4
low

 cells within the viable CD4
+
 population. The viability was estimated by 

propidium iodide staining prior to flow cytometry analysis. For comparison: cells submitted to the same 

medium changes as the transfected ones, but not receiving any siRNA displayed 66.7 % CD4
high

 and 33.5 % 

CD4
low

. Representative flow cytometry dot plots and histograms are provided in the supplementary 

information (Figure 4-S4). 

 

Verification of the General Design Principle for Improved Non-Viral Transfection 

Agents 

In order to verify our initial hypothesis that many arms emanating from a common center 

is a general design principle for the construction of efficient non-viral polynucleotide 

delivery vehicles, star-like polymer micelles (Mic-PDMAEMA) were produced and their 

efficiency as potential transfection reagent was explored under standard conditions in 

Jurkat cells. The micelle core-based structure was as efficient as Si-PDMAEMA as 

shown by the achieved transfection efficiency ranging from 11 to 35 % transfected cells 

depending on the N/P ratio, although transfection at N/P ratio of 20 led to high 

cytotoxicity (Table 4-6).  

 

Table 4-6. Summary of the Jurkat cells transfection with star-like PDMAEMA-based micelles (Mic-

PDMAEMA) in serum-free medium.  

N/P ratio Transfection efficiency (%) Viability (%) 

N/P 3 11.5 ± 1.4 88.1 ± 3.2 

N/P 5 31.0 ± 3.0 76.2 ± 13.3 

N/P 10 21.2 ± 0.0 79.4 ± 0.4 

N/P 20 35.0 ± 17.4 32.4 ± 20.9 

The cells were transfected with pEGFP-N1 (EGFP expression plasmid). DNA concentration: 15 µg/mL. 

Polymer concentrations were adjusted to the indicated N/P ratios. The EGFP expression was measured 24 h 

after transfection by flow cytometry. The transfection efficiency data represent the percentage of living 

cells expressing EGFP in the non-apoptotic cell population defined by scatter properties as determined by 

flow cytometry analysis. The viability was estimated by propidium iodide staining prior to flow cytometry 

analysis. Data represent mean ± s.e.m. (n ≥ 3)  representative flow cytometry dot plots are provided in the 

supplementary information (Figure 4-S5). 
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Recently, we have in addition published data showing that magnetic core-shell 

nanoparticles displaying similar architecture, can efficiently deliver pDNA to CHO-K1 

cells yielding more than 50 % transfected cells. 
82

 Taken together, these results sustain 

our initial hypothesis that star-shaped architectures with a large number of arms 

irradiating from the core are efficient non-viral vectors. Additional fine tuning of the 

composition of the co-polymers to enhance endosomal release could further increase the 

transfection efficiency of the star-like micelles as recently demonstrated in one monocyte 

cell line by Manganiello and co-workers. 
83

 

The ability of Mic-PDMAEMA to deliver siRNA was tested using the EGFP knockdown 

in the recombinant CHO cells stably expressing this protein as test system. Here also, 

preliminary screening of the optimum for siRNA concentration and N/P ratio was 

performed (data not shown) and the results presented below reflect data obtained under 

these optimized conditions. Knockdown after 30 h incubation with the polyplexes (N/P 

ratio of 20) containing either EGFP-siRNA or hCD4-siRNA (used as control) was 

evaluated by flow cytometry (Figure 4-4). 

 

 

Figure 4-4. siRNA mediated silencing of the EGFP-expression in recombinant CHO cells constitutively 

expressing this protein determined after delivery with b-PEI or Mic-PDMAEMA; siRNA concentration: 

25 nM,  N/P ratio: 20. CHO-EGFP-VEGF cells were either mock delivered (hCD4siRNA, white bars) or 

delivered with EGFP-siRNA (black bars). 30 h post-transfection, the cells were counterstained with 

propidium iodide to identify dead cells and analyzed for EGFP expression by flow cytometry. Data 

represent percentage of knockdown of EGFP expression in viable cells compared to non-treated control 

cells (mean ± s.e.m., n ≥ 3).  
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Whereas b-PEI/siRNA polyplexes achieved at most a 20 % reduction in the fluorescence 

geometric mean, Mic-PDMAEMA delivery resulted in a 43.6 % knockdown and thus 

performed almost in the same range as Si-PDMAEMA (Table 4-4). As before, cell 

viability was only minimally affected (> 85 % in all cases). 

 

Conclusions 

The large polycationic nanoparticles introduced here display, to our knowledge, a never 

before observed capability to deliver nuclei acids to human primary T lymphocytes and to 

non-dividing cells and thus, have considerable advantages over conventional polycations 

for gene delivery. In particular, the proposed new transfection reagent synthesized from 

an inorganic core (Si-PDMAEMA) displays high potentiality for transfection of primary, 

non-dividing and differentiated cells as well as a broad compatibility with established cell 

lines. An additional construct, produced along the same design principle and containing a 

polybutadiene core (Mic-PDMAEMA), also showed more efficient pDNA–deliveries 

than PEI to CHO and Jurkat cells. Furthermore, we established a first proof of principle 

that Si-PDMAEMA and Mic-PDMAEMA can be used for gene silencing using small 

interfering RNA (siRNA) in CHO cells and human primary T lymphocytes. In this 

context, polymers based on diblock copolymers are of particular interest because their 

production is easy and further modification, e.g., including a targeting sequence, would 

be possible. As far as we know, star-like architectures reported before were generally less 

efficient than conventional transfection reagents for gene delivery in particular when 

“hard-to-transfect” cells were concerned. This work establishes that the design principle 

of many arms emanating from a common center results in efficient polynucleotide 

delivery vehicles independent of the core material and therefore offers advanced 

possibilities for the development improved gene vectors in particular for primary cells. 

Moreover, due to its low disruptive potential for cell membranes (hemolytic activity) at 

physiological pH and its ability to transfect cells in the presence of serum, Si-

PDMAEMA might become an attractive system for further in vivo evaluations. 
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Supporting Information  

 

Table 4-S1 Evolution of the zeta potential with increasing N/P ratio for Si-PDMAEMA and Mic-

PDMAEMA polyplexes prepared with at total of 15 µg pDNA in 1 mL of a 150 mM NaCl solution. Data, 

given in mV, represent mean ± s.e.m., n = 3. 

Sample - N/P 3 N/P 5 N/P 10 N/P 20 

Si-PDMAEMA n.d. -30.7 ± 2.1 -0.4 ± 4.0 7.4 ± 1.8 10.1 ± 1.2 

Mic-PDMAEMA n.d. 0.0 ± 0.1 7.3 ± 1.0 8.8 ± 1.3 10.5 ± 0.6 

Plasmid -26.9 ± 3.2 - - - - 

   n.d. = not determined 
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Figure 4-S1 Green fluorescencent protein FACS analysis after transfection of Jurkat cells with b-PEI and 

Si-PDMAEMA. For transfection polyplexes were formed with either b-PEI or Si-PDMAEMA and 15 

µg/mL pEGFP-N1 at N/P 3 to 20. 24 h post-transfection, the cells were analyzed for EGFP expression. 

Cells were initially evaluated by scatter properties (FSC/SSC) in order to select a region representing single 

non-apoptotic cells. This gated region (R0) was further analyzed for fluorescence (PI/EGFP). Dot plots with 

log of the red fluorescence intensity (PI) on the x-axis and log of the green fluorescence intensity (EGFP) 

on the y-axis were used to estimate the percentage of EGFP-expressing cells in the main non-apoptotic cell 

population (gate R0). Negative controls (control; non-transfected cells) were used to set the position of 

quadrants separating GFP-positive living cells (upper left), GFP-positive dead cells (upper right), GFP-

negative living cells (lower left) and GFP-negative dead cells (lower right). These quadrants were applied 

for the analysis of transfected cells and percentage cell number / total cell number in the gated region were 

calculated for each quadrant.  
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Figure 4-S2 Transfection of CHO-K1 and Jurkat cells with EGFP encoding (pEGFP-N1) and control 

(pIVEXUK23) plasmids For transfection polyplexes were formed with either b-PEI or Si-PDMAEMA and 

15 µg/mL pEGFP-N1 or pIVEXUK23 at N/P 10. 24 h post-transfection, the cells were analyzed for EGFP 

expression. Cells were initially evaluated by scatter properties (FSC/SSC) in order to select a region 

representing single non-apoptotic cells. This gated region (R0) was further analyzed for fluorescence 

(PI/EGFP). Dot plots with log of the red fluorescence intensity (PI) on the x-axis and log of the green 

fluorescence intensity (EGFP) on the y-axis were used to estimate the percentage of EGFP-expressing cells 

in the main non-apoptotic cell population (gate R0). Negative controls (Control; non-transfected cells) were 

used to set the position of quadrants separating GFP-positive living cells (upper left), GFP-positive dead 

cells (upper right), GFP-negative living cells (lower left) and GFP-negative dead cells (lower right). These 

quadrants were applied for the analysis of transfected cells and percentage cell number / total cell number in 

the gated region were calculated for each quadrant. 
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Figure 4-S3, Part 1 
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Figure 4-S3, Part 2 
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Figure 4-S3, Part 3: Green fluorescencent protein FACS analysis after transfection of C2C12 myoblasts 

and myotubes with b-PEI and Si-PDMAEMA. Prior to transfection, C2C12 cells were cultivated in growth 

medium (A  “dividing”), or growth arrested (evaluated by cell cycle analysis) by culturing the cells to 

confluency (B  “non-dividing”) or differentiated into myotubes (evaluated from the appearance of 

elongated, multinucleate cells) by culturing the cells in DMEM containing 10 % horse serum for 2 – 3 days 

(C  “differentiated”).  For transfection polyplexes were formed with either b-PEI or Si-PDMAEMA and 15 

µg/mL pEGFP-N1 at N/P 5, 10, and 20. 24 h post-transfection, the cells were analyzed for EGFP 

expression. Cells were initially evaluated by scatter properties (FSC/SSC) in order to select a region 

representing single non-apoptotic cells. This gated region (R0) was further analyzed for fluorescence 

(PI/EGFP). Dot plots with log of the red fluorescence intensity (PI) on the x-axis and log of the green 

fluorescence intensity (EGFP) on the y-axis were used to estimate the percentage of EGFP-expressing cells 

in the main non-apoptotic cell population (gate R0). Negative controls (control; non-transfected cells) were 

used to set the position of quadrants separating GFP-positive living cells (upper left), GFP-positive dead 

cells (upper right), GFP-negative living cells (lower left) and GFP-negative dead cells (lower right). These 

quadrants were applied for the analysis of transfected cells and percentage cell number / total cell number in 

the gated region were calculated for each quadrant. 
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Figure 4-S4 Analysis of CD4 expression after human T lymphocytes were either mock delivered (EGFP-

siRNA) or delivered with hCD4-siRNA. Prior to transfection, Peripheral blood mononuclear cells (PBMCs) 

were cultivated for 2 – 3 days in QPBL medium to stimulate proliferation of the T lymphocytes. On the day 

of transfection the cells are ≥ 95 % CD3
+
 with blast morphology. For transfection, polyplexes were formed 

with either b-PEI or Si-PDMAEMA and 25 nM siRNA at a N/P ratio of 10. 30 h post-transfection, the cells 

were stained with CD4-FITC antibody, counterstained with propidium iodide for estimation of the dead 

cells and then analyzed for CD4 expression by flow cytometry. Cells were initially evaluated by scatter 

properties (FSC/SSC) in order to select a region representing single non-apoptotic cells (gate “lympho”) 

and for scatter and fluorescence (SSC/PI) in order to select the living cells (gate “living”). Non-treated cells 

(“control”), otherwise similarly treated were used to set the regions defined as “CD4
high

” and “CD4
low
”. The 

expression of the CD4 protein was assessed in histogram plots (green fluorescence intensity on the x-axis 

and cell number on the y-axis) representing the intensity of the CD4-FITC fluorescence (CD4
low

: 

fluorescence intensity between 70 and 170; CD4
high

: fluorescence intensity > 170) in the living T 

lymphocytes (defined as a sub-population of gate “lympho” and gate “living”). The data are presented as 

histograms overlays (“control cells”: line and fill color gray  “l-PEI”: black line  “Si-PDMAEMA”: red 

line). 
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Figure 4-S5 Green fluorescencent protein flow cytometry analysis after transfection of Jurkat cells with 

Mic-PDMAEMA.For transfection polyplexes were formed with Mic-PDMAEMA and 15 µg/mL pEGFP-

N1 at N/P 5, 10, and 20. 24 h post-transfection, the cells were analyzed for EGFP expression. Cells were 

initially evaluated by scatter properties (FSC/SSC) in order to select a region representing single non-

apoptotic cells. This gated region (R0) was further analyzed for fluorescence (PI/EGFP). Dot plots with log 

of the red fluorescence intensity (PI) on the x-axis and log of the green fluorescence intensity (EGFP) on 

the y-axis were used to estimate the percentage of EGFP-expressing cells in the main non-apoptotic cell 

population (gate R0). Negative controls (control; non-transfected cells) were used to set the position of 

quadrants separating GFP-positive living cells (upper left), GFP-positive dead cells (upper right), GFP-

negative living cells (lower left) and GFP-negative dead cells (lower right). These quadrants were applied 

for the analysis of transfected cells and percentage cell number / total cell number in the gated region were 

calculated for each quadrant. 
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“Double-Layered Micellar Interpolyelectrolyte Complexes – How Many Shells to a 

Core?” 

by Christopher V. Synatschke, Felix H. Schacher,* Melanie Förtsch, Markus Drechsler, 
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Abstract 

We report on the formation of double-layered micellar interpolyelectrolyte complexes 

(IPECs) from ABC triblock terpolymer precursor micelles and hydrophilic homo- or 

block copolymers. Polybutadiene-block-poly(1-methyl-2-vinyl pyridinium)-block-

poly(sodium methacrylate) (PB-b-P2VPq-b-PMANa) block terpolymers form micelles in 

aqueous solution at high pH exhibiting a PB core, a P2VPq/PMANa intramicellar IPEC 

(im-IPEC) shell, and a PMANa corona, which is negatively charged. Upon mixing with 

either positively charged, quaternized poly(N,N-dimethylaminoethyl methacrylate) 

(PDMAEMAq) homopolymers or its double-hydrophilic block copolymer with 

poly(ethylene oxide) (PEO-b-PDMAEMAq), a further IPEC shell is formed, rendering 

core-shell-shell-corona aggregates. The effects of the ratio of positive to negative charges, 

Z+/-, the composition of the block terpolymer micelles, and the length of the added Dq 

block were investigated. We show that within a certain Z+/- regime stable complex 

micellar IPECs featuring two distinguishable IPEC shells are formed. The so-formed 

complex particles were analyzed by dynamic light scattering and cryogenic transmission 

electron microscopy. 
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Introduction 

Self-assembly of block co- and terpolymers in solution has received considerable interest 

during the past decade.
1, 2

 Typically, such processes lead to the formation of spherical 

micelles,
3, 4

 cylindrical or rod-like aggregates,
5-7

 or vesicles.
8
 Particular interest is devoted 

to the control of size, size distribution, shape, or the number or type of functional groups 

present on the surface of such particles. This can be achieved by controlling the kinetics 

of the self-assembly process,
9
 through changing the polymer composition or 

architecture,
10

 or via the variation of external parameters like the employed solvent,
11, 12

 

pH,
13

 salinity,
14

 or temperature.
15

 

Another possibility to influence self-assembly processes in solution is to employ block 

copolymers with charged compartments, or polyelectrolyte segments.
16, 17

 Such 

polyelectrolytes can be natural (e.g., polynucleic acids) or synthetic polyanions or -

cations and can be further subdivided into weak (e.g., poly(methacrylic acid), PMAA) or 

strong (e.g., poly(styrene sulfonate)) species.
18

 Recent research interest in such materials 

has been primarily based on intrinsic properties such as water solubility, very strong inter- 

and intra-chain interactions, ionic conductivity, and surface activity.
19

 

Mixing of two different block copolymers with polyelectrolyte segments bearing opposite 

charges in aqueous solution leads to electrostatic co-assembly and the formation of 

interpolyelectrolyte complexes (IPECs).
20-22

 The driving force is the entropy gain from 

the release of the counterions. Such IPECs are hydrophobic yet are still able to participate 

in dynamic polyion exchange reactions in aqueous media.
23, 24

 If weak polyelectrolytes 

like PMAA are used, the complex formation is pH-dependent.
25

 In addition, the IPEC 

formation is reversible: the addition of large amounts of salt leads to a screening of the 

charges and to a breakup of the complexes.
20, 26

 If preformed micelles with a charged 

corona are mixed with oppositely charged polyelectrolytes, an elegant route towards 

complex micellar architectures is opened. This has been demonstrated for micelles 

exhibiting a soft polyisobutylene core and a PMAA corona
25, 26

 or for more complex core-

compartmentalized block terpolymer micelles.
27

 

Within this contribution we demonstrate for the first time the formation of two distinctly 

different adjacent IPEC shells within the same complex micellar aggregate. As starting 

material we employ multicompartment micelles exhibiting a soft polybutadiene (PB) 

core, a discontinuous shell consisting of an intramicellar IPEC (im-IPEC) between 
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quaternized poly(2-vinylpyridine) (P2VPq) and poly(sodium methacrylate) (PMANa), 

and a corona of excess PMANa, thus rendering colloidal objects with a negative surface 

charge. These micelles are formed if ampholytic block terpolymers, polybutadiene-block-

poly(1-methyl-2-vinyl pyridinium)-block-poly(sodium methacrylate) (PB-b-P2VPq-b-

PMANa), self-assemble in aqueous solution at pH 10, conditions where methacrylic acid 

is negatively charged.
28

 To this is added another solution containing a positively charged 

polyelectrolyte, being either quaternized poly(N,N-dimethylaminoethyl methacrylate) 

(PDMAEMAq) homopolymers of different chain length or the corresponding double-

hydrophilic block copolymer with poly(ethylene oxide) (PEO-b-PDMAEMAq). This then 

results in further IPEC formation between the PMANa corona and PDMAEMAq and the 

generation of a second IPEC shell. The whole process is shown in Scheme 5-1.  

 

 

Scheme 5-1: Schematic pathway for the formation of double-layered IPECs from PB-b-P2VPq-b-PMANa 

block terpolymer micelles and either PDMAEMAq homopolymers (left) or a PEO-b-PDMAEMAq diblock 

copolymer (right). 
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In case of PEO-b-PDMAEMAq, the PEO chains then serve as the corona of the generated 

core-shell-shell-corona particle and maintain a good solubility in aqueous media. We 

investigated two PDMAEMAq homopolymers of different chain length, in short: Dq162 

and Dq820, and one double-hydrophilic block copolymer, EO325Dq157, the subscripts 

denoting the degree of polymerization of the corresponding block. As precursor micelles 

three different block terpolymers, PB800-b-P2VPq190-b-PMANa345, PB800-b-P2VPq190-b-

PMANa465, and PB800-b-P2VPq190-b-PMANa550, were used. In the following sections a 

shorter nomenclature, BVqMANax, will be used for the precursor micelles, as the first 

two blocks (B and Vq) have the same degree of polymerization in all cases shown in this 

manuscript. The complexations were performed at different Z+/- values. We define Z+/- by 

dividing the number of cationic Dq monomer units added to the micellar solution divided 

by the number of free (non-complexed) anionic MANa units present, as shown in 

equation (5-1).  

 

/

Dq

MANa Vq

n
Z

n n
  


      (5-1) 

 

The structure and the stability of the formed micellar IPECs were analyzed using dynamic 

light scattering (DLS) and cyrogenic transmission electron microscopy (cryo-TEM). 

 

Experimental 

Synthesis 

Materials. The solvents for the preparation of the micellar solutions were purchased in 

p.a. grade and used as delivered. Dimethyl sulfate (Me2SO4, >99 %, Aldrich) and 

hydrochloric acid (32 %) were used as received. Buffer solutions with pH 10 

(H3BO3/KCl/NaOH) were obtained from Fluka and contained about 0.3 wt. % salt. The 

initiator for ATRP, ethylbromo isobutyrate (EBIB) was distilled and stored under 

nitrogen. HMTETA was distilled prior to use. Anisole (p.a. grade, Fluka) and CuBr (>99 

%, Aldrich) were used as received. 
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Synthesis of the PB-b-P2VP-b-PtBMA block terpolymers. The linear block terpolymers 

were synthesized via sequential living anionic polymerization in THF at low temperatures 

using sec-butyl lithium as initiator. A detailed description of the synthetic procedure and a 

comprehensive investigation of PB-b-P2VP-b-PtBMA block terpolymers with different 

volume fractions is reported elsewhere.
29

 

Synthesis of PEO-b-PDMAEMA (EO325D157). EO-b-D was prepared via sequential living 

anionic polymerization in THF using 1,1-diphenyl-3-methylpentyllihium (DPMPLi) as 

initiator. A combination of MALDI-ToF mass spectrometry and 
1
H-NMR yielded the 

composition EO325D157. More details about the synthesis and characterization can be 

found elsewhere.
30

 

Synthesis of PDMAEMA (D162 and D820). D162 was prepared with Atom Transfer Radical 

Polymerization (ATRP) in anisole using an earlier reported protocol.
31

 The ratio of 

monomer to initiator was 500:1 and the reaction was quenched at ~ 40 % conversion 

(followed by 
1
H-NMR). D162 has a molecular weight of MNMR = 25.500 g/mol and a PDI 

of 1.26, measured with THF-SEC with additional 0.25 wt. % tetra-butyl ammonium 

bromide (TBAB). Polystyrene standards were used for calibration (Mn, SEC = 29.300 

g/mol). The ATRP of D820 was accomplished in acetone at 60 °C. The ratio of initiator : 

CuBr : HMTETA : monomer was 1 : 4 : 4 : 1200 and the polymerization was stopped at a 

conversion of 68 % as determined by NMR. The polymer exhibited a molecular weight 

MNMR = 130.000 g/mol and a PDI of 1.51. 

Quaternization of the P2VP block. PB-b-P2VP-b-PtBMA block terpolymers were 

dissolved in dioxane at a concentration of 1 g/L. Afterwards, Me2SO4 (10 eq 

corresponding to the 2-vinyl pyridine groups) was added and the solution was stirred for 

at least 72 hours at 40 °C. The resulting solution of polybutadiene-block-poly(N-methyl-

2-vinyl pyridinium)-block-poly(tert-butyl methacrylate) PB-b-P2VPq-b-PtBMA was 

directly used for the subsequent hydrolysis of the ester moiety of the PtBMA block. From 

IR measurements and iodometric titrations with diluted AgNO3 solutions we determined 

an approximate degree of quaternization of 70-90 %. The quaternization of D or the EO-

b-D diblock copolymer was performed in an analogous way. Here, a quantitative 

quaternization was achieved as proven by 
1
H-NMR spectroscopy.

31
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Dialysis. Dialysis membrane tubing (MWCO 3.500 g/mol, regenerated cellulose ester) 

was purchased from Spectra/Por. Prior to use, the tubes were immersed in de-ionized 

water for 1 h to open the pores. 

Hydrolysis of the PtBMA block. Solutions of PB-b-P2VPq-b-PtBMA in dioxane (c = 1 

g/L) were treated with a 5-fold excess of hydrochloric acid relative to the ester moieties. 

Afterwards, the reaction mixture was refluxed at 120 °C for 24 hours. Full conversion of 

the hydrolysis reaction was confirmed with IR spectroscopy via the disapperance of the 

tert-butyl (1393 cm
-1

 and 1367 cm
-1

) and carbonyl (1722 cm
-1

) signals. 

Preparation of the PB-b-P2VPq-b-PMANa (BVqMANa) micellar solutions. Directly after 

hydrolysis of the PtBMA block, micellar stock solutions (c ~ 1 g/L) were prepared via 

dialysis against pH 10 buffer solution. 

Complexation reactions: Dq167, Dq820 and EO325Dq157
 
were dissolved in a pH 10 buffer 

solution (VWR®, AVS Titrinorm) at a respective concentration of 5 g/L. Afterwards, the 

corresponding volumes to reach a certain Z+/--value (for the definition of Z+/- see the 

Introduction) were added to micellar solutions of BVqMANa345, BVqMANa465, or 

BVqMANa550 (all 1 g/L) in small glass vials and stirred at ambient temperature. In 

general, measurements on the complexes were performed after one week of continuous 

stirring. 

 

Characterization 

Dynamic light scattering (DLS). All experiments were performed using approximately the 

same concentrations (c = 1 g/L). DLS measurements were performed in sealed cylindrical 

scattering cells (d = 10 mm) at an angle of 90° on an ALV DLS/SLS-SP 5022F 

equipment consisting of an ALV-SP 125 laser goniometer with an ALV 5000/E correlator 

and a He-Ne laser with the wavelength λ = 632.8 nm. The C NTIN algorithm was 

applied to analyze the obtained correlation functions. Apparent hydrodynamic radii were 

calculated according to the Stokes-Einstein equation. Prior to the light scattering 

measurements the sample solutions were filtered using Millipore nylon filters with a pore 

size of 1.2 (solutions of the quaternized Dq162, Dq820, or the double-hydrophilic 

EO325Dq157 in pH 10 buffer) or 5 µm (micellar precursors or the double-layered IPECs). 

The polydispersities were determined from unimodal peaks via the cumulant analysis. 
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Cryogenic Transmission Electron Microscopy (cryo-TEM): For cryo-TEM studies, a drop 

of the sample solution (c ≈ 0.1 wt. %, 1 g/L) was placed on a lacey carbon-coated copper 

TEM grid (200 mesh, Science Services, München, Germany), where most of the liquid 

was removed with blotting paper, leaving a thin film stretched over the grid holes. The 

specimens were shock vitrified by rapid immersion into liquid ethane in a temperature-

controlled freezing unit (Zeiss Cryobox, Zeiss NTS GmbH, Oberkochen, Germany) and 

cooled to approximately 100 K. The temperature was monitored and kept constant in the 

chamber during all the preparation steps. After freezing the specimens, they were inserted 

into a cryo-transfer holder (CT3500, Gatan, München, Germany) and transferred to a 

Zeiss EM922 Omega EFTEM instrument. Examinations were carried out at temperatures 

around 100 K. The microscope was operated at an acceleration voltage of 200 kV. Zero-

loss filtered images (Δ E = 0 eV) were taken under reduced dose conditions. All images 

were registered digitally by a bottom mounted CCD camera system (Ultrascan 1000, 

Gatan), combined and processed with a digital imaging processing system (Gatan Digital 

Micrograph 3.9 for GMS 1.4). 

Zeta-potential. The zeta-potential was determined on a Malvern Zetasizer Nano ZS in 

conjunction with an MPT2 autotitrator (Malvern). The electrophoretic mobilities (u) were 

converted into ζ potentials via the Smoluchowski equation ζ = uη/ε0ε, where η denotes the 

viscosity and ε0ε the permittivity of the solvent, water. 

Size Exclusion Chromatography (SEC). Four PSS-SDV gel columns (5µm) with a 

porosity range from 10
2
 to 10

5
 Å (PSS, Mainz, Germany) were used together with a 

differential refractometer and a UV detector at  = 254 nm. Measurements were 

performed in THF with a flow rate of 1 mL/min using toluene as internal standard. 

Narrowly distributed 1-4 polybutadiene were used as calibration standards. 

SEC experiments for the PDMAEMA containing samples were performed using four 

PSS-SDV gel columns (5 µm) with a porosity range from 10
2
 to 10

4
 Å (PSS, Mainz, 

Germany) were used together with a differential refractometer and a UV detector at  = 

254 nm. Measurements were performed in THF with additional 0.25 wt. % 

tetrabutylammonium bromide (TBAB) as eluent and 0.5 ml/min as flow rate. Polystyrene 

standards were used for calibration. 
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1
H-NMR spectroscopy. The absolute number-average molecular weights, Mn, of the 

synthesized block copolymers were determined by 
1
H-NMR in CDCl3 (Bruker AC 250 

spectrometer) using the Mn of the first block, as determined by MALDI-ToF MS or SEC, 

and suitable NMR signal areas of the corresponding blocks. For more details on the 

characterization of the block copolymers the reader is referred to the literature.
32
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Results and Discussion 

Characterization of the Precursor Micelles 

In a recent publication we reported on the preparation of multicompartment-core micelles 

in aqueous media at high pH from polybutadiene-block-poly(1-methyl-2-vinyl 

pyridinium)-block-poly(sodium methacrylate) (BVqMANa) block terpolymers.
28

 The 

micelles consisted of a soft B core, a discontinuous shell of an intramicellar IPEC (im-

IPEC) between positively charged Vq and negatively charged poly(sodium methacrylate) 

(MANa at pH 10), and, depending on the length, a corona of MANa. They were shown to 

react on changes in pH and salinity in a dynamic way. These micelles were used as 

“precursor” materials for the results presented within this contribution. Three block 

terpolymer compositions were used. The first two blocks, B and Vq, are of the same 

length for all three polymers, while the length of the MANa block was varied. The 

solution characteristics of the precursor micelles in pH 10 buffer solution were 

determined by cryo-TEM, DLS and -potential measurements (see Table 5-1).  

 

Table 5-1: Molecular characterization of the BVqMANax block terpolymers and the micellar aggregates in 

aqueous solution at pH 10. 

Polymer Composition
a
 

10
-3

 Mn
b
 

[g/mol] 

<RTEM>n
c
 

[nm] 

<Rh>z, app
d
 

[nm] 
PDIapp

e
 
-Potent. 

[mV] 

1 B800Vq190MANa345 96 79.5 ± 7 170 0.18 -21 

2 B800Vq190MANa465 106 93.5 ± 8 146 0.21 -30 

3 B800Vq190MANa550 113 91 ± 11 88 0.05 -36 

a: the subscripts denote the respective degrees of polymerization; b: calculated for the individual polymer 

chain without taking the counterions into account; c: determined from cryo-TEM images; d: determined via 

DLS at 1 g/L; e: determined via cumulant analysis. 

 

Representative cryo-TEM images of the precursor micelles 1-3 are shown in Figure 5-1, 

where the proposed solution structure of multicompartment micelles can be confirmed. 

The BVqMANax polymers form micelles with a B core (dark grey), which is decorated 

with the im-IPEC consisting of Vq and MANa (small black dots), and a corona of the 

remaining MANa (light grey). With increasing length of the MANa block, the micelles 

appear more homogeneous in size and shape. Several micelles for BVqMANa345 exhibit a 
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non-spherical shape, especially the core of the micelles shows deformations (see Figure 

5-1A), whereas this cannot be seen for polymers with a longer water-soluble block 

(Figures 5-1B and 5-1C). Furthermore, some of the BVqMANa345 micelles seem to be 

interconnected by bridge-like structures (dark grey, shown at higher magnification in the 

inset of Figure 5-1A). Similar structures were previously observed in micellar systems 

prepared from amphiphilic miktoarm stars of polystyrene-arm-polybutadiene-arm-poly(2-

vinyl pyridine) (µSBV) block terpolymers in aqueous media and identified as 

hydrophobic B bridges, originating from the soft “liquid” cores of the aggregates.
33

 For 

both BVqMANa465 and BVqMANa550, such effects were not observed. We attribute this 

to a superior stabilization of the micelles in aqueous solution with an increasing block 

length of the corona-forming block, MANa. 

 

 

Figure 5-1: Cryo-TEM images of micelles formed from BVqMANa345 (A, the inset shows hydrophobic 

bridges between two adjacent micelles at higher magnification), BVqMANa465 (B), and BVqMANa550 (C) 

at concentrations of 1 g/L in aqueous solution at pH 10, all scalebars correspond to 200 nm; below each 

cryo-TEM image are schematic depictions of the proposed solution structure. 

 

The cryo-TEM images were subjected to a detailed image analysis to obtain average sizes 

of the individual compartments. For each micelle and compartment (core, im-IPEC and 
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corona) between 50 and 100 micelles were measured to calculate average values (Table 

5-2).  

 

Table 5-2: Average sizes of the individual compartments of the BVqMANax micelles as determined by 

image analysis of cryo-TEM data. 

Compartment 
BVqMANa345 

[nm] 

BVqMANa465 

[nm] 

BVqMANa550 

[nm] 

RMicelle 79.5 ± 7 93.5 ± 8 91 ± 11 

RCore 38 ± 5 37 ± 8 33.5 ± 4 

Dim-IPEC 5 ± 2 3 ± 1 4 ± 1 

DCorona 40 ± 5 52 ± 6 53 ± 9 

Nagg
a
 3,200 3,000 2,200 

a: estimated with Eq. 5-2; 

 

The smallest micelles are formed for BVqMANa345 with an overall radius of 79.5 nm 

(Table 5-2), whereas both the aggregates found for BVqMANa465 (93.5 nm) and 

BVqMANa550 (91 nm) are larger. The diameter of the corona also increases with 

increasing length of the MANa block. The size of the im-IPEC stays constant at 

approximately 3-4 nm within the experimental error for all three samples discussed. 

However, the core radius seems to decrease with increasing length of the negatively 

charged block from 38 nm for BVqMANa345 to 33.5 nm for BVqMANa550, which points 

to a decrease in the aggregation number, Nagg.. This is in accordance with Burkhardt et 

al.,
3
 who observed a decrease in Nagg. with increasing hydrophilic block length in 

polyisobutylene-block-poly(methacrylic acid) micelles. They explained the decrease of 

Nagg. with the increasing space occupied by the hydrophilic block leading to a repulsive 

force between the corona chains. Such a decrease in Nagg. was also predicted by Borisov 

et al. in theoretical calculations for diblock-copolymer micelles with one ionic block.
34

 A 

rough calculation of Nagg. for our system based on the core diameter as observed in TEM 

(equation (2)) results in an approximate Nagg. of 3200, 3000 and 2200 for BVqMANa345, 

BVqMANa465 and BVqMANa550, respectively. We note that earlier static light scattering 

experiments on BVqMANa550 gave a significantly lower value (Nagg = 234) and that we 

are not able to explain this discrepancy at the moment.
28
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    (5-2) 

with corem : mass of the micellar core; 
chain

PBm : mass of an individual PB chain; AN : Avogadro constant; 

PB : density of polybutadiene; coreR : radius of the micellar core acc. to TEM; 
chain

PBM : molecular weight 

of an individual PB chain. 

 

If the aggregate sizes determined via cryo-TEM are compared to the data obtained from 

DLS measurements (Table 5-1), deviations are found for BVqMANa345 and 

BVqMANa465, whereas in case of BVqMANa550 both methods are in good agreement. 

According to cryo-TEM (Table 5-2, Figure 5-1), BVqMANa345 has an <RTEM>n = 79.5 

nm, while DLS experiments yield <Rh>z, app = 170 nm and a PDI of 0.18. We think that 

this difference can be tentatively explained by the bridges observed (inset in Figure 5-

1A), masking the individual aggregate size. The reason for the difference in R for 

BVqMANa465 (DLS: <Rh>z, app, = 146 nm, PDI = 0.21 and cryo-TEM: <RTEM>n = 93.5 

nm) remains puzzling. In this case, hydrophobic bridges were not observed in cryo-TEM. 

Nevertheless, the increased value obtained by DLS might still hint towards aggregation of 

the micelles taking place in the stock solution. Furthermore, the values for R obtained via 

cryo-TEM represent a number average, whereas DLS gives a z-average. Especially for 

systems with higher PDI values, the differences between these two averages are expected 

to be significant. 

 

Complexation and IPEC Formation 

To generate an additional IPEC layer on top of the already existing im-IPEC shell, the 

BVqMANax micelles were mixed with positively charged polyelectrolytes in aqueous 

solution at pH 10. We have demonstrated this approach recently for the addition of 

poly(ethylene oxide)-block-poly(1-methyl-2-vinyl pyridinium) PEO-b-P2VPq diblock 

copolymers.
27

 In this case, two identical IPEC shells were formed as both the “inner”, 

former im-IPEC, as well as the “outer”, newly generated IPEC, consisted of Vq and 

MANa. Here, we employed either quaternized PDMAEMA (Dq) or PEO-b-PDMAEMAq 

diblock copolymers as oppositely charged polyelectrolytes. The whole process is depicted 

in Scheme 5-1. 
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If cationic homopolymers (Dq162, Dq820) are used for further IPEC formation (Scheme 5-

1, left part), core-shell-shell particles are formed where the previous MANa corona of the 

micelles is transformed into an IPEC layer consisting of MANa and Dq. Furthermore, the 

two IPECs are expected to form two distinctive layers due to immiscibility between Vq 

and Dq. Depending on the absolute ratio of positive to negative charges, Z+/-, this would 

lead to uncharged polymer particles. It has been shown that such IPECs precipitate when 

a critical Z+/- value is reached.
26

 When EO325Dq157 is used for this complexation step, 

core-shell-shell-corona particles are formed. In this case, even for Z+/- = 1, the micellar 

IPECs are expected to remain water-soluble, stabilized through the PEO corona, depicted 

in green (Scheme 5-1, right part). 

We will first discuss the results concerning the IPEC-formation of different BVqMANa 

precursor micelles with Dq162 or Dq820 at different Z+/- values. Afterwards, similar 

experiments will be discussed with EO325Dq157. Unless explicitely stated, the 

concentration of the precursor micelles was in between 0.1 and 1.0 g/L in pH 10 buffer 

solutions for the complexation reactions, a regime proven not to lead to further 

aggregation for BVqMANa550.
28

 However, in case of BVqMANa345 and BVqMANa465, a 

slight increase in hydrodynamic radius was observed with concentration (<Rh>z, app = 172 

nm for 0.17 g/L and <Rh>z, app = 195 nm for 1.0 g/L for BVqMANa345 and <Rh>z, app = 

146 nm for 0.17 g/L and <Rh>z, app = 191 for 1 g/L for BVqMANa465). Therefore, those 

were typically used at 0.17 g/L. The targeted amounts of quaternized homo- or diblock 

copolymers were added at a concentration of 5 g/L prepared in the same pH 10 buffer. 

The highest resulting polymer concentration prepared in that way (solutions of 1.0 g/L 

BVqMANa550 micelles with EO325Dq157 at Z+/- = 1) was roughly 1.7 g/L. The cationic 

homo- or diblock copolymer solution was added under vigorous stirring to the solution 

containing the precursor micelles. In general, the resulting micellar IPECs were examined 

after one week of continuous stirring. 

 

Addition of Dq Homopolymers to BVqMANax Micelles 

BVqMANax precursor micelles were mixed with Dq162 or Dq820 at different Z+/- ratios and 

analyzed by DLS. Exemplarily, the resulting CONTIN plots for BVqMANa345 and Dq162 

at different Z+/- ratios are shown in Figure 5-2, while the results for all different 

combinations are summarized in Table 5-3. 
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Figure 5-2: DLS CONTIN plots for BVqMANa345 (-□-, black), and micellar IPECs with Dq162 at Z+/- = 0.1 

(-ο-, grey), 0.5 (-Δ-, black) and 1.0 (-□-, grey) (A), the inset on the right shows an enlargement of the plot 

peak region. 
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Table 5-3: Apparent hydrodynamic radii of double-layered micellar IPECs prepared from BVqMANax 

block terpolymer micelles and Dq polymers as determined by DLS. 

Entry Sample Z+/-
a
 

<Rh>z,app
b
 

[nm] 
PDI

c
 

1 BVqMANa345 - 170 0.18 

2 + Dq162 0.1 172 0.27 

3 + Dq162 0.5 154 0.24 

4 + Dq162 1.0 184 0.34 

5 + Dq162 1.25 precipitation 

6 + Dq820 0.5 162 0.27 

7 + Dq820 1.0 186 0.27 

8 BVqMANa465 - 146 0.21 

9 + Dq162 0.1 145 0.18 

10 + Dq162 0.5 148 0.21 

11 + Dq162 0.75 170 0.25 

12 + Dq162 1.0 precipitation 

13 + Dq820 0.1 115 0.12 

14 + Dq820 0.5 181 0.21 

15 + Dq820 0.75 precipitation 

16 BVqMANa550 - 88 0.05 

17 + Dq162 0.1 169 0.16 

18 + Dq162 0.25 128 0.17 

19 + Dq162 0.5 precipitation 

20 + Dq820 0.1 110 0.13 

21 + Dq820 0.25 131 0.09 

22 + Dq820 0.5 precipitation 

a: ratio of added positive to remaining negative charges; b: determined via DLS; c: determined via cumulant 

analysis. 

 

For all possible combinations of BVqMANax block terpolymer micelles and Dq 

homopolymers critical Z+/- ratios, above which precipitation of the complexes occurred 

within several hours, were found. Interestingly, as can be seen from Table 5-3, the critical 
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Z+/- value decreases with increasing MANa block length. BVqMANa345 micelles tolerated 

an addition of Dq polymers up to Z+/- = 1, whereas for BVqMANa550 precipitation already 

occurred at Z+/- = 0.5, which is rather puzzling.  

Remarkable differences are also observed if the hydrodynamic radii of the micellar IPECs 

after addition of oppositely charged Dq are compared: for BVqMANa345 and 

BVqMANa465, the micellar size does not significantly change if small amounts (Z+/- < 

0.25 for BVqMANa345 and Z+/- < 0.5 for BVqMANa465) of Dq162 are added. Upon further 

addition of Dq162 the size increases until a critical Z+/- value is reached, where aggregation 

and finally precipitation occurs (Z+/- = 1.25 for BVqMANa345 and Z+/- = 1.0 for 

BVqMANa465). For BVqMANa550, already the addition of 10 % of Dq162 causes an 

increase in Rh from 88 nm to 169 nm. Increasing the Z+/- to 0.25 leads to a decrease in 

size of the micellar IPECs, before precipitation occurs at the critical Z+/- value of 0.5. 

In theory, Dq162 can interact with the negatively charged MANa corona in two possible 

ways: if all MANa chains of the corona are evenly neutralized, a collapse of the corona 

should occur. On the other hand, if only some MANa chains are fully neutralized and 

participate in the IPEC formation, the other uncomplexed MANa chains would retain 

their original length. This would lead to a less drastic change in corona size. This question 

was investigated by Borisov et al. in a recent publication, where molecular dynamics 

simulations on the structural organization of IPECs between oppositely charged linear 

and star-shaped polyelectrolytes were performed.
35

 They found, that for star-shaped 

polyelectrolytes several arms were completely neutralized whilst others did not 

participate at all in the IPEC formation. A similar behavior was also found for small 

amounts of surfactant added to spherical polyelectrolyte brushes.
36

 We assume that a 

similar mechanism is taking place here. This would explain the absence of significant 

changes in Rh for small Z+/- values in case of micellar IPEC formation for BVqMANa345 

and BVqMANa465 with Dq162. If larger amounts of Dq162 are added, a drastic increase in 

the size of the structures indicates the formation of aggregates. This is simply caused 

through less and less “free” MANa being present to stabilize the particles in solution, 

until, finally, the aggregates precipitate. 

If a longer cationic polyelectrolyte, Dq820, is used for the complexation reactions, the 

situation is different. For small Z+/- values (0.1), a slight contraction of the micellar IPECs 

for BVqMANa345 and BVqMANa465 can be seen (Table 5-3, entries 6 and 13), while 
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BVqMANa550 complexes again show an increase in Rh (Table 5-3, entry 20). A tentative 

explanation for the differences observed for BVqMANa550 could be that with increasing 

MANa block length (and a longer polycationic chain, Dq820) inter-micellar linkages are 

also formed to a certain extent. As shown for Dq162, the addition of more Dq820 eventually 

exceeds a critical Z+/- value in all cases and results in precipitation of the formed 

complexes. Considering the PDI of the resulting aggregates (according to DLS), in most 

cases the addition of Dq polymers leads to an increase for the complex micelles 

(exceptions are BVqMAA465 micelles, entries 9 and 13 in Table 5-3). In general, the 

highest PDIs are observed for high Z+/- ratios, shortly before precipitation occurs. This 

observation is reasonable, as increasing complexation of the corona should result in 

poorly stabilized micelles, which in turn promotes aggregation and broadens the micellar 

size distribution. Even though both Dq polymers are moderately polydisperse (PDI(Dq162) 

= 1.26; PDI(Dq820) = 1.51), the effect of the Z+/- ratio seems to be more pronounced. This 

is in accordance with earlier work on star-shaped poly(acrylic acid) complexes with 

quaternized P4VPq homopolymers.
37 

For a validation of a successful complexation and, hence, the formation of a second IPEC 

shell, cryo-TEM was performed for the complexes prepared from all BVqMANax block 

terpolymer micelles and the longer Dq820 polycation. The results are shown in Figure 5-3. 
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Figure 5-3: Cryo-TEM micrographs of complexes formed from precursor micelles and Dq820 at different 

Z+/- ratios; BVqMANa345 at Z+/- = 0.5 (A, the inset shows a single precursor micelle, D shows a higher 

magnification); BVqMANa465 at Z+/- = 0.5 (B, E shows a higher magnification); BVqMANa550 at Z+/- = 0.25 

(C); proposed solution structure of the resulting double-layered micellar IPECs (F); all scale-bars 

correspond to 200 nm. 

 

The cryo-TEM images confirm the proposed core-shell-shell morphology of the 

complexes. Throughout all the samples, but especially for the complexes of 

BVqMANa550 with Dq, highly aggregated particles were found in the cryo-TEM samples. 

This implicates that, although low Z+/- values are used, the particles are not significantly 

charged and do not repel each other anymore. The increase in Rh that is observed in the 

DLS for large Z+/- values could therefore be explained by clustering. One has to keep in 

mind, however, that in the cryo-TEM images a two-dimensional confinement of the 

particles takes place, which might further promote clustering of the particles. Moreover, a 

few precursor-like micelles were found for complexes of BVqMANa345 (inset in Figure 

5-3A) and BVqMANa465 with Dq820 at Z+/- = 0.5. Some of these are depicted in the upper 

left corner of Figure 5-3A and also one shown on the right-hand side of Figure 5-3E. 

Such “precursor” micelles rather were an exception and we believe that these are a result 

of slow mixing during the addition of the Dq solutions. 
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The enlarged images in Figure 5-3D and 5-3E nicely show the double-layered character 

of the micellar IPECs when compared to the original micelles. The grey B core is still 

surrounded by a thin, slightly darker shell. This is supposed to be the former 

discontinuous im-IPEC shell of the precursor micelles, consisting of Vq and MANa. 

Completely covering this part, a new continuous shell has been formed through the 

complexation of the MANa corona with Dq820, depicted in blue in Figure 5-3F. Again, 

the overall size of the micelles as well as the size of the individual compartments was 

determined from the cryo-TEM images for complexes of BVqMANa345 and 

BVqMANa465 with Dq820 and a Z+/- ratio of 0.5. The averaged values from counting 50-

100 particles in each case together with the corresponding standard deviations are shown 

in Table 5-4. Unfortunately, in case of micellar IPECs formed from BVqMANa550 

precursor micelles a detailed evaluation was not possible, due to the strong aggregation 

observed in the cryo-TEM images. Nevertheless, those solutions were stable over months. 

 

Table 5-4: Average compartment dimensions for micellar IPECs from BVqMANax / Dq820 as determined 

by analysis of 50-100 particles. 

Compartment 
BVqMANa345  

[nm] 

BVqMANa345 / 

Dq820 Z+/- = 0.5 

[nm] 

BVqMANa465  

[nm] 

BVqMANa465 / 

Dq820 Z+/- = 0.5 

[nm] 

RMicelle 79.5 ± 7 65 ± 7 93.5 ± 8 61 ± 7 

RCore 38 ± 5 34.5 ± 5 37 ± 8 31 ± 4 

Dim-IPEC 5 ± 2 8 ± 2 3 ± 1 6 ± 2 

DCorona / 2nd IPEC-

Shell 
40 ± 5 23 ± 3 52 ± 6 25 ± 4 

Nagg
a
 3,200 2,400 3,000 1,700 

a: estimated with Eq. 2; 

 

If the overall radius is calculated according to the cryo-TEM micrographs by assuming it 

to be equal to half the core-to-core distance, a number-average <RTEM>n = 65 nm for 

BVqMANa345 and <RTEM>n = 61 nm for BVqMANa465 complexes is found (both were 

formed with Dq820 at Z+/- = 0.5, samples shown in Figure 5-3). This is again distinctly 

smaller than the size observed via DLS, where <Rh>z, app = 162 nm and <Rh>z, app = 181 

nm were determined. This discrepancy between both methods, to our opionion, reflects 
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the tendency of these particles to aggregate after formation of the second IPEC shell, as 

also seen in some of the cryo-TEM images. Nevertheless, this did not seem to affect the 

stability of the micellar IPEC solutions. As a general observation from cryo-TEM, the 

overall size of the micelles seems to decrease after formation of the complexes with 

Dq820. This decrease in the overall size is mainly due to a collapse of the MANa corona 

and the formation of a second IPEC shell. Also, a decrease in the core size was observed 

hinting to a decrease in Nagg. by ~25 % (cf. Eq. 1) for BVqMANa345 (2400 polymer chains 

/ micelle) and ~45 % for BVqMANa465 (1700 polymer chains / micelle). This change in 

Nagg. points towards a dynamic behavior of the micelles upon complex formation. The 

micrographs were further submitted to a grayscale analysis. This is exemplarily shown for 

the complex of BVqMANa345 with Dq820 at Z+/- = 0.5 in Figure 5-4. 

 

 

Figure 5-4: Cryo-TEM micrograph of a single micellar IPEC of BVqMANa345 and Dq820 at Z+/- = 0. 5; the 

black box highlights the area used for the greyscale analysis (A); circle segment showing the four different 

regions revealed via grayscale analysis (B); greyscale analysis of the particle in part A, the numbers 

correspond to the respective areas (C). 
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Figure 5-4A shows a single double-layered micellar IPEC particle. The rectangular black 

box shows the area used for the greyscale analysis in Figure 5-4C. The different 

compartments of the micellar IPEC are depicted in the segments of the drawing in Figure 

5-4B. The B core exhibits a radius of 34.5 nm, and is surrounded by a thin, approx. 8 nm 

thick shell, resembling the former discontinuous im-IPEC shell of the precursor micelles. 

The newly formed IPEC shell, consisting of MANa and Dq, has a thickness of roughly 23 

nm. As a Z+/- ratio of 0.5 was used, an uncomplexed MANa corona should emanate from 

the micellar IPEC. This is schematically shown in Figure 5-4B with a blue/white gradient 

and is not distinguishable in the cryo-TEM image. However, as many of the micelles can 

be found closely agglomerated, the repelling effect of any uncomplexed and, hence, still 

charged MANa seems to be negligible. The numbers shown in Figure 5-4C correspond to 

the different micellar compartments, also illustrated in Figure 5-4A. Ideally, the 

greyscale analysis of the double-layered IPEC should be completely symmetrical. 

However, as the enlarged micellar aggregate was not located right in the centre of the 

cryo-TEM image taken, the electron beam intensity is slightly decreasing from the lower 

right to the upper left corner of Figure 4A. 

 

Addition of EO325Dq157 Diblock Copolymers to BVqMANax Micelles 

If a double-hydrophilic block copolymer with one charged block (Dq) is used to generate 

core-shell-shell-corona structures from different BVqMANax precursor micelles, similar 

structures are supposed to form as shown earlier for Dq homopolymers. The only 

difference is that the other water-soluble block, EO, will serve as a solubilizing corona 

and, thus, further stabilize the resulting micellar IPECs. The micellar solutions were 

mixed with EO325Dq157 at different Z+/- ratios. Exemplarily, the DLS CONTIN plots for 

BVqMANa345 and BVqMANa465 at different Z+/- values are shown in Figure 5-5. 
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Figure 5-5: DLS CONTIN plots for BVqMANa345 (-□-, black), and micellar IPECs with EO325Dq157 at Z+/- 

= 0.5 (-ο-, grey), and 1.0 (-Δ-, grey) (A); BVqMANa465 (-□-, black), and micellar IPECs with EO325Dq157 at 

Z+/- = 0.5 (-ο-, grey), and 1.0 (-Δ-, grey) (B). 

 

For an easier comparison, the results from the DLS measurements of all micellar 

complexes prepared using EO325Dq157 as the cationically charged part are also 

summarized in Table 5-5. 

 

Table 5-5: Solution characteristics of double-layered micellar IPECs prepared from BVqMANax block 

terpolymer micelles and EO325Dq157 block copolymers. 

Entry Sample Z+/-
a
 <Rh>z,app

b
 PDI

c
 

1 BVqMANa345 - 170 0.18 

2 + EO325Dq157 0.5 184 0.28 

3 + EO325Dq157 1.0 11; 610 - 

4 BVqMANa465 - 146 0.21 

5 + EO325Dq157 0.5 147 0.20 

6 + EO325Dq157 1.0 6; 57; 660 - 

7 BVqMANa550 - 88 0.05 

8 + EO325Dq157 0.25 129 0.17 

9 + EO325Dq157 0.5 
10; 104; 

1300 
- 

a: ratio of added positive to remaining negative charges; b: determined via DLS; c: determined via cumulant 

analysis, if applicable. 
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In general, two things are expected to happen when EO325Dq157 is added to solutions of 

BVqMANax precursor micelles: first, the complexation between MANa and Dq results in 

a corona contraction, like that observed when Dq homopolymers were added at different 

Z+/- ratios as described above; second, the EO compartment forms a new corona of the 

IPEC particles, stabilizing them in solution. The contraction of the former corona should 

be accompanied by an decrease in Rh whereas the new EO corona should have the 

opposite effect. As can be seen from Figure 5-5 and the data in Table 5-5, for 

BVqMANa345 and BVqMANa465 a very slight increase in Rh can be observed for Z+/- = 

0.5 (170 to 184 nm and 146 to 147 nm). This might indicate that the corona contraction is 

almost completely compensated by the addition of a new corona-forming block, EO. 

Surprisingly, in both cases larger size distributions are found in DLS measurements if Z+/- 

approaches unity. This can be seen in the CONTIN plots in Figure 5-5A and 5-5B, a new 

population is formed with an Rh > 600 nm. Again, the behavior observed for complexes 

of BVqMANa550 and EO325Dq157 is different: at first (Z+/- = 0.25), they increase in size 

(88 to 129 nm). Aggregation, according to DLS, for this particular system already occurs 

at Z+/- = 0.5. This remains puzzling, as a sterical stabilization of the complex micelles 

would be anticipated due to the EO chains of the corona. One possible explanation would 

be that the intensity of the larger size distribution (entries 3, 6, and 9 in Table 5-5) is 

overestimated in DLS measurements as was demonstrated by Shibayama et. al. for multi-

modal distributions of colloidal particles and polymers in solution.
38

 Further, another 

distribution at low Rh = 10 nm appears. We assume that this represents another micellar 

population, as it would be too large for EO325Dq157 unimers. To further investigate this, 

cryo-TEM was performed on micellar IPECs of all three BVqMANax / EO325Dq157 

combinations at a representative Z+/- value. The results are shown in Figure 5-6. 
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Figure 5-6: Cryo-TEM images for micellar IPECs of BVqMANa345 / EO325Dq157 at Z+/- = 1.0 (A);  

BVqMANa465 / EO325Dq157 at Z+/- = 1.0 (B); BVqMANa550 / EO325Dq157 at Z+/- = 0.5 (C); the insets in each 

part show a single double-layered particle at higher magnification; schematic depiction of the double-

layered IPEC structure (D); all scalebars except for the insets correspond to 200 nm. 

 

In general, the observed structures are similar, as shown in Figure 5-6A-C. In all images 

large, spherical objects with a grey core (B) and a thin, dark ring around the core (the 

former, patchy im-IPEC shell, Vq + MANa) are found. Both are surrounded by a lighter 

grey shell, followed by the newly formed second IPEC shell, appearing dark grey. The 

complex micelles of BVqMANa345 and BVqMANa465 show a rather homogeneous 

distribution, whilst BVqMANa550 exhibits complexes at different stages of IPEC 

formation. For all three samples the double-layered character can be nicely confirmed. 

This is also shown in three insets in Figure 5-6A-C, each depicting a single IPEC 

particle. In case of BVqMANa465 / EO325Dq157 (Figure 5-6B), the distinction between the 
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different shells is less pronounced than for the other two combinations. This could be due 

to ice-crystals that formed during the rapid vitrification of the sample for cryo-TEM 

measurement. Further, in Figure 5-6C (BVqMANa550 / EO325Dq157), small dark dots can 

be seen. These aggregates exhibit an average core diameter of around 12 nm. This is far 

too small to refer to any of the used precursor micelles and could possibly represent the 

smallest distribution which was observed during DLS measurements. We tentatively try 

to explain this rather puzzling fact through aggregate formation from excess EO325Dq157. 

However, the driving force for such a behavior at the relatively low Z+/- value of 0.5 

remains elusive. An alternative was to use a lower Z+/- ratio of 0.25. In this case, no such 

aggregates were found (Figure 5-7 B, for the DLS data also see Table 5-5, entries 2, 5 

and 8). 

 

 

Figure 5-7: Cryo-TEM images of smaller aggregates formed for BVqMANa550 / EO325Dq157 micellar 

IPECs at Z+/- = 0.5 (A); BVqMANa550 / EO325Dq157 at Z+/- = 0.25 (B); the small micrographs (1-7, all were 

taken from the same sample) depict single micellar IPECs at different stages of complexation with 

EO325Dq157; all scalebars correspond to 200 nm. 

 

Figure 5-7A shows the small aggregates formed for BVqMANa550 / EO325Dq157 at Z+/- = 

0.5. If the amount of added EO325Dq157 is reduced (Z+/- = 0.25, Figure 5-7B), micellar 
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IPECs at different stages of complexation are found, which is consistent with the increase 

in PDI as observed by DLS (Table 5-5, entries 7 and 8). We show a variety of examples, 

all found within the same cryo-TEM sample, shown in small micrographs 1-7 in Figure 

5-7 micrograph 1 depicts a precursor micelle of BVqMANa550 (this was rather 

exceptional), and 2-6 then highlight different degrees of complexation and non-

equilibrium 2
nd

 IPEC shell formation. We believe that these structures represent non-

equilibrium aggregates. 

As already shown for the complexes with Dq homopolymers, the sizes of the individual 

compartments were estimated from the cryo-TEM images. The results are summarized in 

Table 5-6. It should be noted that, although for all three samples shown in Figure 5-6A-

C hydrodynamic radii distributions of several hundred nm were found in DLS, structures 

of such dimensions were never observed during cryo-TEM. We therefore ascribe the DLS 

results again to a certain clustering of the micellar IPECs in solution. 
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Table 5-6: Average sizes determined for the individual compartments of BVqMANax / EO325Dq157 complexes as determined by analysis of the cryo-TEM images. 

Compartment 
BVqMANa345  

[nm] 

BVqMANa345 / 

EO325Dq157 Z+/- 

= 1.0 [nm] 

BVqMANa465  

[nm] 

BVqMANa465 / 

EO325Dq157 Z+/- 

= 1.0 [nm] 

BVqMANa550  

[nm] 

BVqMANa550 / 

EO325Dq157 Z+/- 

= 0.25 [nm] 

BVqMANa550 / 

EO325Dq157  Z+/- 

= 0.5 [nm] 

RMicelle 79.5 ± 7 62.5 ± 7 93.5 ± 8 64 ± 7 91 ± 11 60.5 ± 8 61 ± 9 

RCore 38 ± 5 35 ± 3 37 ± 8 32 ± 5 33.5 ± 4 25 ± 5 23 ± 5 

Dim-IPEC 5 ± 2 7 ± 2 3 ± 1 7.5 ± 2 4 ± 1 4.4 ± 1 5 ± 2 

DCorona / 2nd IPEC 

Shell 
40 ± 5 24 ± 3 52 ± 6 27 ± 3 53 ± 9 28 ± 5 28 ± 6 

Nagg
a
 3,200 2,500 3,000 1,900 2,200 900 700 

a: estimated with Eq. 2; 
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According to the image analysis, the overall radius of all micellar IPECs after 

complexation reaches a value of around 60 nm, when EO325Dq157 is used for the 

formation of the outer IPEC shell. However, the size of the individual compartments does 

vary significantly. As already observed for the complexes with Dq homopolymers, the 

size of the B core decreases with increasing MANa block length (Nagg. decreases), while 

the size of the outmost shell increases only marginally. Interestingly, here the size of the 

individual compartments is the same as for the Dq homopolymers within the experimental 

error. Compared to the precursor micelles, the size of the B core (and Nagg, if estimated 

with Eq. 2) decreases by 8 % (BVqMANa345), 13.5 % (BVqMANa465), and 25 % / 31 % 

(BVqMANa550, Z+/- = 0.25 / 0.5), respectively. Both the decrease in size observed for the 

micellar core and the collapse of the corona through the complex formation were also 

observed for the Dq complexes described earlier. This again indicates that such micellar 

particles are dynamic and “adjust” to changes in the surrounding conditions, i.e. to the 

formation of the 2
nd

 IPEC shell. 

 

 

Figure 5-8: Cryo-TEM image of a single micellar IPEC of BVqMANa550 / EO325Dq157 at Z+/- = 0.25; the 

black box highlights the area used for the greyscale analysis (A); circle segment showing the five different 

regions identified via grayscale analysis (B); greyscale analysis of the particle in part A, the numbers 

correspond to the respective areas (C). 
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To our opinion the lighter grey shell, surrounding the former im-IPEC shell of the 

precursor micelles, resembles uncomplexed MANa. Covering this MANa shell, a dark 

grey ring, presumably the newly formed IPEC between Dq and MANa, can be seen. To 

further evaluate the multi-layered character of these complex micelles, the micrographs 

were submitted to grayscale analysis. This is shown in Figure 5-8. 

A single double-layered IPEC micelle is shown in Figure 5-8A. Clearly, two different 

shells around the soft B core are visible. The box drawn around the aggregate was used 

for the grey-scale analysis, which is shown in Figure 5-8C. The grey-scale analysis 

identifies five different regions: region 1, with the lowest contrast, is the EO corona; 2, 

exhibiting the highest electron density, is presumably newly formed IPEC between Dq 

and MANa; 3, uncomplexed MANa; 4, formerly the discontinuous shell of the 

BVqMANax precursor micelles; and 5, the soft B core. The former patchy shell of the 

precursor micelles is rather thin with approx. 4 nm thickness, The newly formed shell(s) 

exhibit a combined thickness of around 28 nm. The core, with 50 nm diameter contracted, 

as compared to the precursor micelles in Figure 5-1C. The different compartments of the 

micellar IPECs are also schematically depicted in the circle segment in Figure 5-8B. 

Finally, the size of the surrounding EO corona cannot be estimated from the cryo-TEM 

micrographs as its electron density is too low. Eventually, the greyscale analysis also 

confirms the existence of double-layered micellar IPECs at this stage. 

 

Conclusions 

We showed that by mixing of different negatively charged BVqMANax block terpolymer 

precursor micelles with oppositely charged Dq or EO-b-Dq diblock copolymers in 

aqueous solution at pH 10 well-defined core-shell-shell-(corona) aggregates with two 

distinguishable IPEC shells can be prepared. We refer to these aggregates as double-

layered IPECs, as both shells are formed as a result of the complexation between two 

oppositely charged polyelectrolytes. It turned out that the block terpolymer composition 

used for the preparation of the precursor micelles plays a crucial role as it affects the 

overall hydrophilic-to-hydrophobic balance of these aggregates. 

If quaternized homopolymers (Dq) are used for the formation of the outer IPEC shell, 

stable micellar core-shell-shell-corona IPECs could be prepared up to a critical Z+/- ratio. 
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Here, remaining uncomplexed MANa serves as the corona. Above that critical Z+/- value, 

further aggregation of the particles occurred. Further, under the rather dilute conditions 

reported here, the length of the added Dq was not observed to be crucial. If similar 

complexation reactions were perfomed using EO325Dq157 diblock copolymers, 

surprisingly, large aggregates were found above the same critical Z+/- ratios, although a 

water-soluble EO corona was formed. Additonally, in samples of BVqMANa550 treated 

with the double-hydrophilic diblock copolymer above Z+/- = 0.25 small aggregates were 

observed in addition to the micellar IPECs, which we tentatively propose to consist of 

excess EO325Dq157. Overall, at optimized Z+/- ratios well-defined core-shell-shell-corona 

micellar IPECs were formed and the existence of a multi-layered structure was confirmed 

by cryo-TEM and greyscale analysis. 

Some open questions remain: how does the dynamic character of the precursor micelles 

affect the formation of the outer IPEC layer? Can one make use of the different 

chemistries present in both adjacent IPEC shells (We could already show that within the 

IPEC formed between MANa and Vq the formation of narrowly dispersed gold 

nanoparticles is possible.
27

)? Why does a truly double-hydrophilic block copolymer, 

EO325Dq157, form aggregates in dilute aqueous solutions? We are currently pursueing 

these issues and hope to be able to adress all points in further contributions. 

 

Acknowledgements 

This work was supported by the VolkswagenStiftung within the framework “Complex 

Materials”. The authors would like to thank D.V. Pergushov for helpful discussions. E. 

Betthausen is acknowledged for the quaternization of PEO-b-PDMAEMA during her 

advanced lab course. C. V. Synatschke acknowledges a scholarship from the state of 

Bavaria under BayEFG as well as support from the Elite Network of Bavaria. 

  



Chapter 5 – Double-Layered Micellar Interpolyelectrolyte Complexes – How many Shells to a Core? 

170 

References 

1. G. Riess, Progress in Polymer Science 2003, 28, 1107-1170. 

2. C. A. Fustin, V. Abetz and J. F. Gohy, European Physical Journal E 2005, 16, 

291-302. 

3. M. Burkhardt, N. Martinez-Castro, S. Tea, M. Drechsler, I. Babin, I. Grishagin, R. 

Schweins, D. V. Pergushov, M. Gradzielski, A. B. Zezin and A. H. E. Müller, 

Langmuir 2007, 23, 12864-12874. 

4. J. F. Gohy, N. Willet, S. Varshney, J.-X. Zhang and R. Jerome, Angewandte 

Chemie – International Edition 2001, 40, 3214-3216. 

5. X. Wang, G. Guerin, H. Wang, Y. Wang, I. Manners and M. A. Winnik, Science 

2007, 317, 644-647. 

6. T. Gädt, N. S. Ieong, G. Cambridge, M. A. Winnik and I. Manners, Nature 

Materials 2009, 8, 144-150. 

7. H. Schmalz, J. Schmelz, M. Drechsler, J. Yuan, A. Walther, K. Schweimer and A. 

M. Mihut, Macromolecules 2008, 41, 3235-3242. 

8. D. E. Discher and A. Eisenberg, Science 2002, 297, 967-973. 

9. H. Cui, Z. Chen, S. Zhong, K. L. Wooley and D. J. Pochan, Science 2007, 317, 

647-650. 

10. Z. Li, M. A. Hillmyer and T. Lodge, Langmuir 2006, 22, 9409-9417. 

11. G. Njikang, D. Han, J. Wang and G. Liu, Macromolecules 2008, 41, 9727-9735. 

12. A. Walther, A. S. Goldmann, R. S. Yelamanchili, M. Drechsler, H. Schmalz, A. 

Eisenberg and A. H. E. Müller, Macromolecules 2008, 41, 3254-3260. 

13. S.-C. Chen, S.-W. Kuo, C.-S. Liao and F.-C. Chang, Macromolecules 2008, 41, 

8865-8876. 

14. Z. Zhu, J. Xu, Y. Zhou, X. Jiang, S. P. Armes and S. Liu, Macromolecules 2007, 

40, 6393-6400. 

15. F. A. Plamper, J. R. McKee, A. Laukkanen, A. Nykänen, A. Walther, J. 

Ruokolainen, V. Aseyev and H. Tenhu, Soft Matter 2009, 5, 1812-1821. 

16. A. Harada and K. Kataoka, Science, 1999, 283, 65-67. 

17. K. Kataoka, H. Togawa, A. Harada, K. Yasugi, T. Matsumoto and S. Katayose, 

Macromolecules 1996, 29, 8556-8557. 

18. J. Koetz and S. Kosmella, Polyelectrolytes and Nanoparticles, Springer Verlag, 

Berlin, 2007. 

19. K. S. Schanze and A. H. Shelton, Langmuir 2009, 25, 13698-13702. 

20. V. A. Kabanov, Russian Chemical Reviews 2005, 74, 3-20. 

21. N. Lefevre, C. A. Fustin and J. F. Gohy, Macromolelcular Rapid Communications 

2009, 30, 1871-1888. 

22. D. V. Pergushov, O. V. Borisov, A. B. Zezin and A. H. E. Müller, Advances in 

Polymer Science 2011, 241, 131-161. 

23. P. S. Chelushkin, E. A. Lysenko, T. K. Bronich, A. Eisenberg, V. A. Kabanov and 

A. V. Kabanov, Journal of Physical Chemistry B 2007, 111, 8419-8425. 

24. P. S. Chelushkin, E. A. Lysenko, T. K. Bronich, A. Eisenberg, V. A. Kabanov and 

A. V. Kabanov, Journal of Physical Chemistry B 2008, 112, 7732-7738. 

25. M. Burkhardt, M. Ruppel, S. Tea, M. Drechsler, R. Schweins, D. V. Pergushov, 

M. Gradzielski, A. B. Zezin and A. H. E. Müller, Langmuir 2008, 24, 1769-1777. 

26. D. V. Pergushov, E. V. Remizova, J. Feldthusen, A. B. Zezin, A. H. E. Müller and 

V. A. Kabanov, Journal of Physical Chemistry 2003, 107, 8093-8096. 

27. F. Schacher, E. Betthausen, A. Walther, H. Schmalz, D. V. Pergushov and A. H. 

E. Müller, ACS Nano 2009, 3, 2095-2102. 



Chapter 5 – Double-Layered Micellar Interpolyelectrolyte Complexes – How many Shells to a Core? 

171 

28. F. Schacher, A. Walther and A. H. E. Müller, Langmuir 2009, 25, 10962-10969. 

29. F. Schacher, J. Yuan, H. G. Schoberth and A. H. E. Müller, Polymer 2010, 51, 

2021-2032. 

30. F. Schacher, M. Müllner, H. Schmalz and A. H. E. Müller, Macromolecular 

Chemistry and Physics 2009, 210, 256-262. 

31. F. A. Plamper, A. Schmalz, E. Penott-Chang, M. Drechsler, A. Jusufi, M. Ballauff 

and A. H. E. Müller, Macromolecules 2007, 40, 5689-5697. 

32. F. Schacher, A. Walther, M. Ruppel, M. Drechsler and A. H. E. Müller, 

Macromolecules 2009, 42, 3540-3548. 

33. A. Walther and A. H. E. Müller, Chemical Communications 2009, 1127-1129. 

34. O. V. Borisov and E. B. Zhulina, Macromolecules 2002, 35, 4472-4480. 

35. S. V. Larin, A. A. Darinskii, E. B. Zhulina and O. V. Borisov, Langmuir 2009, 25, 

1915-1918. 

36. L. Samokhina, M. Schrinner and M. Ballauff, Langmuir 2007, 23, 3615-3619. 

37. D. V. Pergushov, I. A. Babin, F. A. Plamper, A. B. Zezin and A.  . E. M ller, 

Langmuir 2008, 24, 6414-6419. 

38. M. Shibayama, T. Karino and S. Okabe, Polymer 2006, 47, 6446-6456. 

 

  



Chapter 5 – Double-Layered Micellar Interpolyelectrolyte Complexes – How many Shells to a Core? 

172 

 



Chapter 6 – Micellar Interpolyelectrolyte Complexes With a Compartmentalized Shell 

173 

Chapter 6 

 

Micellar Interpolyelectrolyte Complexes with a 

Compartmentalized Shell 

 

 

 

 

 

 

 

 

 

 

 

The results presented in this chapter have been published in Macromolecules as: 

“Micellar Interpolyelectrolyte Complexes with a Compartmentalized Shell” 

by Christopher V. Synatschke, Tina I. Löbling, Melanie Förtsch, Andreas Hanisch, Felix 

H. Schacher,
*
 and Axel H. E. Müller

* 

Reprinted with permission from Macromolecules 2013, 46 (16), pp. 6466-6474. 

Copyright 2013 American Chemical Society. 



Chapter 6 – Micellar Interpolyelectrolyte Complexes With a Compartmentalized Shell 

174 

  



Chapter 6 – Micellar Interpolyelectrolyte Complexes With a Compartmentalized Shell 

175 

Abstract 

We investigate the formation of micellar interpolyelectrolyte complexes (IPECs) from 

multicompartment micelles (MCMs) of polybutadiene-block-poly(1-methyl-2-

vinylpyridinium methylsulfate)-block-poly(methacrylic acid) (BVqMAA) triblock 

terpolymers and polycations of opposite charge. As cationic material, predominantly a 

polymer with a high charge density is used: quaternized poly(2-((2-

(dimethylamino)ethyl)methylamino)ethyl methacrylate) (PDAMAq), which carries two 

positive net charges per monomer unit. Upon IPEC formation at different charge 

stoichiometries, particles with a compartmentalized IPEC shell are formed. These rather 

unusual structures even form when both BVqMAA micelles and PDAMAq are mixed at 

rather high salinity, followed by dialysis, indicating that the structures formed are not 

kinetically trapped. Whereas the nature of the polycation seems to play a minor role, our 

studies suggest that the length of the PMAA corona is the key factor for the formation of 

a compartmentalized IPEC shell. 
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Introduction 

Block copolymers have the ability to form a great variety of nanostructures both in the 

bulk and in solution through microphase separation originating from the intrinsic 

immiscibility between different polymer chains.
1
 Understanding and controlling such 

self-assembly processes allows for the preparation of functional materials for various 

kinds of applications.
2
 Some of these materials have been known for several decades, for 

example the use of ABA-type block copolymers as thermoplastic elastomers (Kraton
®
) or 

as polymeric emulsifiers (Pluronic
®
). In recent years, other fields have also demonstrated 

the potential of block copolymer nanostructures for different purposes. As such, 

semiconducting polymers with precisely tuned bandgaps can act as organic solar cells, 

transforming light into electricity or in the reverse process as organic light emitting 

diodes.
3
 Also, thin films of block copolymers have been used as templates for the 

deposition of inorganic materials
4
 and in lithographic applications,

5
 where well-defined 

domain sizes and periodic structures are desirable.
6,7

 In solution, block copolymers form 

well-defined micelles or vesicles, depending on the volume fraction of solvophobic and 

solvophilic segments. Apart from studying the underlying principles of structure 

formation,
8
 such particular systems have already been extensively used for the 

transportation of therapeutic cargos in biomedical applications. Often, hydrophobic drug 

molecules are enclosed in the core of such micelles, thereby enhancing solubility, 

circulation time, and bio-availability at the same time.
9
 Further, ionic cargo such as 

plasmid DNA,
10-12

 small interference RNA
13,14

 and photosensitizers
15

 have been 

encapsulated as well, when ionic diblock copolymers were used for micellization.  

The level of structural variety and complexity of the resulting structures increases 

dramatically as compared to diblock copolymers when ternary or even quaternary block 

copolymers are considered. Already for ABC triblock terpolymers, a vast library of bulk 

structures has been found.
16,17

 In solution-based structures, the additional segment can 

lead to further segregation of core or corona. Core-segregated micelles are often termed 

multicompartment micelles (MCM), and are an interesting class of materials, since they 

can combine different chemical environments in close proximity. Common examples for 

a compartmentalization of the core were achieved with triblock terpolymers containing a 

hydrocarbon and a fluorocarbon block.
18,19

 Janus particles can be seen as an extreme case 

of nanostructures with a phase separated corona, since it is strictly segragated into two 

hemispheres.
20-23

 MCMs are potentially useful as nanoreactors or multifunctional drug 
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carriers, as has been reviewed recently.
24

 Individual MCMs from triblock terpolymers can 

further be used as building blocks for the formation of even larger superstructures, as has 

been shown in a controlled manner by controlling the kinetic pathway via suitable solvent 

sequences.
25

  

If more than three (core, shell, corona) individual compartments within micellar 

structures are targeted, one possibility would be the use of ABCD tetrablock 

quaterpolymers. However, their synthesis is challenging and often limited to certain block 

sequences. We have recently shown that interpolyelectrolyte complex (IPEC) formation 

between charged MCMs from amphiphilic and ampholytic triblock terpolymers and 

oppositely charged homopolymers or diblock copolymers can be used to generate well-

defined and multi-layered soft nanoparticles. The IPEC formation is driven by both 

electrostatic interactions and a gain in entropy for the whole system via the release of low 

molecular weight counterions.
26,27

 Our initial system was based on polybutadiene-block-

poly(1-methyl-2-vinylpyridinium)-block-poly(methacrylic acid) (BVqMAA) triblock 

terpolymers, which formed MCMs with a negatively charged poly(methacrylic acid) 

(PMAA) corona in aqueous media.
28-30

 The structures featured a soft and dynamic 

polybutadiene (PB) core and a patchy shell, consisting of intramicellar 

interpolyelectrolyte complexes (im-IPECs) between positively charged poly(1-methyl-2-

vinylpyridinium) (P2VPq) and PMAA. We demonstrated that additional shells can be 

formed by adding either quaternized poly(2-(dimethylamino)ethyl methacrylate) 

(PDMAEMAq) or double hydrophilic block copolymers of P2VPq or PDMAEMAq with 

poly(ethylene oxide) (VqEO or DqEO).
28,30

 This facile approach can also be used to 

introduce new functionalities, e.g. a thermo-responsiveness, by using poly(sodium 

acrylate)-block-poly(N-isopropylacrylamide) as a complexing polymer to form a 

PNiPAAm corona to an MCM with inverse sequence of charges, polybutadiene-block-

poly(sodium methacrylate)-block-poly(2-((methacryloyloxy)ethyl)trimethylammonium 

methylsulfate) (BMAADq).
31

  

In the work presented here, we extend our concept to polycations with higher charge 

density, poly(2-((2-(dimethylamino)ethyl)methylamino)ethyl methacrylate) (PDAMAq), 

quaternized with methyliodide, carrying two positive charges per monomer unit. Complex 

formation was carried out with two different BVqMAA systems, where PB and P2VPq 

are of the same length but with a shorter (DP = 400) and longer (DP = 1350) PMAA 

corona. In case of the long PMAA corona, we found rather unexpected structures with a 

compartmentalized IPEC shell for charge ratios, Z+/-, below 0.7. The micellar IPECs were 
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in all cases characterized in detail by cryogenic transmission electron microscopy (cryo-

TEM) and dynamic light scattering (DLS).  

 

Experimental Part 

Materials 

trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB, 99.0 %, 

Aldrich), silver trifluoroacetate (AgTFA, 99.99 %, Aldrich), basic aluminum oxide 

(Sigma-Aldrich), ammonia solution (32 %, VWR International), HCl (37 %, VWR 

International) and pH 10 buffer solution (Titrinorm, VWR International) with an ionic 

strength of approximately 0.05 M were used as received. Dioxane, methanol, isopropanol, 

anisole and chloroform were of analytical grade and used as received. Deuterated 

chloroform and deuterated water were provided by Deutero (Kastellaun, Germany). For 

anionic polymerization THF (Sigma-Aldrich, p.a. quality) was first distilled over CaH2 

followed by a distillation over potassium and stored under N2 before use. Butadiene 

(Rießner-Gase, 2.5) was purified by passing through columns filled with molecular sieves 

(4 Å) and basic aluminum oxide, before condensation into a glass reactor and storage 

over dibutylmagnesium. 2-Vinylpyridine (97 %, Aldrich) was de-inhibited by passing 

through a basic aluminium oxide column, subsequently stirred for 30 min with 2 mL of 

trioctylaluminium per 10 mL of 2-vinylpyridine and finally condensed to a sealable glass 

ampule under reduced pressure. tert-Butyl methacrylate (tBMA, 98 %, Aldrich) was 

stirred with 0.5 mL of trioctylaluminium per 10 mL of tBMA for 30 min and then 

condensed to a sealable ampule under reduced pressure. 1,1-Diphenylethylene (DPE, 

Aldrich, 97 %) was stirred with sec-Butyllithium (sec-BuLi) under N2 and then distilled. 

sec-BuLi (Aldrich, 1.4 M in cyclohexane), dibutylmagnesium (Aldrich, 1M in heptane) 

and trioctylaluminum (Aldrich, 25 wt. % in hexane) were used as received. For the 

synthesis of the 2-((2-(dimethylamino)ethyl)methylamino)ethyl methacrylate (DAMA) 

monomer, 2-((2-(dimethylamino)ethyl)methylamino)ethanol (98 %, Aldrich), 

methacryloyl chloride (97 %, Fluka), triethyl amine (99 %, Merck) and dry pyridine were 

used without further purification. RAFT polymerization was achieved with 2-(2-

cyanopropyl)dithio benzoate (CPDB, 97 %, Aldrich) as chain transfer agent and 

azobisisobutyronitrile (AIBN, 98 %, Aldrich) as initiator, which were used without 

further purification. Quaternization reactions were performed with either methyl iodide 

(99 %, Merck) in case of PDAMA or dimethyl sulfate (Me2SO4, >99 %, Aldrich) for 2-
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vinylpyridine and were used without further purification. Milli-Q water purified with a 

Millipore filtering system was used in all cases. For dialysis, membranes made from 

regenerated cellulose (Spectrum Laboratories, Spectra/Por MWCO 3.5 kDa and 12-14 

kDa) were used. 

 

Synthesis of Polybutadiene-block-poly(2-vinylpyridine)-block-poly(tert-butyl 

methacrylate) (BVT) Block Terpolymers 

Sequential living anionic polymerization with sec-BuLi as initiator and THF as solvent in 

a laboratory autoclave (2.5 L) at low temperatures was used for the synthesis of BVT 

triblock terpolymers. The procedure was carried out analogue to our previously published 

procedures (see Scheme 6-S1).
16,32

 During the polymerization of the tert-butyl 

methacrylate (tBMA) block, samples were withdrawn at different conversions, thereby 

creating polymers varying only in the block length of their final block, while both 

previous blocks are of the same length. In detail, 1.6 L of dry THF were placed in a 2.5 L 

laboratory autoclave (Büchi) and titrated at -20 °C with 1.6 mL of sec-BuLi solution (1.4 

M in hexane) to remove any protic species that might terminate the polymerization and 

left to warm to room temperature overnight. The so-formed alkoxides exhibit stabilizing 

effects on the living chain end and in the case of tBMA well-defined polymers are 

accessible without addition of LiCl.
33

 After cooling the reaction solution to -70 °C, 0.69 

mL of sec-BuLi (1 eq., 9.66 × 10
-4

 mol) were added, followed by the addition of 63.5 mL 

of butadiene (41.91 g, 800 eq., 0.7748 mol) and polymerization for 8 h at -25 °C and 

further 2 h at -10 °C. 2-Vinylpyridine (21.68 g, 210 eq., 0.2062 mol) was added at -70 °C 

and stirred for 2 h, before 0.85 mL of DPE (5 eq., 4.815 × 10
-3

 mol) was injected and the 

solution stirred for 2.5 h at -50 °C. Then, at -70 °C, 167.9 g of tBMA (1200 eq., 1.181 

mol) were added to the solution, which led to an immediate rise in the temperature to -60 

°C. The reaction temperature was increased to -50 °C and approximately 1/3 of the 

reaction solution was withdrawn and quenched in degassed isopropanol (200 mL) after 40 

min, 2 h and 8 h of reaction time, respectively. The final polymer was obtained after 

precipitation from THF containing butylated hydroxytoluene (BHT) as stabilizer into a 

1/1 mixture of methanol and H2O. The degrees of polymerization (DP) of each block 

were calculated from a combination of MALDI-ToF-MS of the polybutadiene block and 

1
H NMR of the final triblock terpolymer and determined to be B830V180T400 (40 min) and 

B830V180T1350 (8 h) for the two polymers used in this work, respectively. Size exclusion 
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chromatography (SEC) of the two polymers showed bimodal distributions in the elution 

curves of both polymers (Figure 6-S1), which come from a small amount of terminated 

BV diblock copolymer during the injection of tBMA monomer. The polydispersity 

indices (PDI) were determined to be 1.04 and 1.08 for B830V180T400 and B830V180T1350, 

respectively. 

 

Preparation of Polybutadiene-block-poly(1-methyl-2-vinylpyridinium 

methylsulfate)-block-poly(methacrylic acid) (BVqMAA) Precursor Micelles 

In a typical reaction, 100 mg of the desired BVT triblock terpolymer were dissolved in 

100 mL of dioxane and 200 eq. of Me2SO4 compared to the moles of 2-vinylpyridine 

units were added to the solution (Scheme 6-S1). After stirring at 40 °C for 5 d, 200 eq. of 

HCl (concentrated HCl, 37 %) per mol of tBMA units were added and the mixture was 

refluxed at 110 °C for 24 h and 48 h in case of the B830V180T400 and B830V180T1350, 

respectively. Self-assembly of the resulting BVqMAA polymers was achieved through 

dialysis (MWCO = 12-14 kDa) to pH 10 buffer with an ionic strength of approximately 

0.05 M over a period of at least three days.  

 

Synthesis of 2-((2-(dimethylamino)ethyl)methylamino)ethyl methacrylate (DAMA) 

In a 1 L 2-neck-flask equipped with a magnetic stir bar, 300 mL of dry pyridine, 67 mL of 

2-((2-(dimethylamino)ethyl)methylamino)ethanol (0.414 mol, 1 eq.) and 115 mL of 

triethylamine (0.828 mol, 2 eq.) were mixed, sealed with a septum and purged with argon 

for 30 min. Then, the reaction mixture was cooled to 0 °C and 81 mL of methacryloyl 

chloride (0.828 mol, 2 eq.) was added slowly via a dropping funnel. The reaction mixture 

was allowed to warm to room temperature and stirred for 24 h before excess of 

methacryloyl chloride was converted to isopropyl methacrylate through addition of 15 

mL isopropanol. After evaporation of the volatile components, the crude product was 

separated via column-chromatography using an eluent of 

chloroform/methanol/concentrated ammonia in a ratio of 100/10/1. The DAMA monomer 

was obtained after vacuum distillation as a clear colorless liquid in rather low yields (~ 

20 %) and purity was proven with 
1
H NMR spectroscopy (Figure 6-S2).  
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RAFT Polymerization of DAMA 

In a typical reaction 1.00 g DAMA (4.67 mmol, 200 eq.), 5.20 mg 2-(2-

cyanopropyl)dithio benzoate (CPDB, 2.35 × 10
-2

 mmol, 1 eq.), 1.00 mg AIBN (6.09 × 10
-

3
 mmol, 0.25 eq.) and 4.00 mL anisole were placed in a round bottom flask sealed with a 

rubber septum and equipped with a stir bar. After purging the reaction mixture with argon 

for 30 min, the polymerization was started by placing the flask in an oil bath at 70 °C. 

Periodically, aliquots of 0.1 mL were removed with a gas-tight, argon flushed syringe for 

1
H NMR analysis to monitor the conversion. The reaction was stopped after 5 h and 45 

min at a conversion of 42 % by rapid cooling of the reaction mixture to room temperature 

and opening to air. Purification was achieved through dialysis to THF and subsequent 

freeze-drying from dioxane.  

 

Quaternization of PDAMA  

For the quaternization 0.0562 g of PDAMA (0.52 mmol of nitrogen atoms) was dissolved 

in 10 mL of deionized water and 0.25 mL methyl iodide (4.02 mmol, 7.7 fold excess 

compared to nitrogen atoms) was added. The solution was stirred for at least 48 h at room 

temperature. Excess quaternization agent was removed by dialysis against 20:80 and 

50:50 water:dioxane mixtures for two days, respectively. Afterwards, the quaternized 

PDAMAq was freeze-dried and from 
1
H NMR measurements a degree of quaternization 

of 100 % was determined, as indicated by the complete shift of the corresponding signals 

(Figure 6-2).  

 

Characterization 

Size Exclusion Chromatography (SEC). For the PB and BV precursor polymers and BVT 

triblock terpolymers, an instrument equipped with four PSS-SDVgel columns (5 µm, 

8×300 mm) with a porosity range from 10
2
 to 10

5
 Å (PSS Mainz, Germany) was used 

together with a differential refractometer and a UV detector at 260 nm. Measurements 

were performed in THF with a flow rate of 1 mL/min using toluene as internal standard at 

40 °C. The system was calibrated with narrowly distributed 1,4-PB standards. SEC 

measurements of PDAMA were performed on a system equipped with a set of two 

columns (8 μm, 8×300 mm), PL-aquagel-OH and PL-aquagel-OH-30 and a differential 

refractometer. A mixture of 60 % H2O with 0.01 mol/L NaH2PO4 and 0.1 mol/L NaN3 at 
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pH = 2.5 and 40 % methanol was used as eluent at an elution rate of 1 mL/min at 35 °C. 

PDMAEMA samples were used for calibration. 

MALDI-ToF-MS. Measurements were performed on a Bruker Daltonics Reflex III 

instrument equipped with an N2 Laser (337 nm) and an acceleration voltage of 20 kV in 

positive ion mode. Sample preparation was done according to the “dried-droplet” method. 

In detail, matrix (DCTB, conc. 20 mg / mL), analyte (conc. 10 mg / mL) and salt 

(AgTFA, conc. 10 mg / mL) were separately dissolved in THF, subsequently mixed in a 

ratio of 20/5/1 µL. Approximately 1 µL of the final mixture was applied to the target spot 

and left to dry under air. 

1
H NMR. Spectra were recorded on a Bruker Ultrashield 300 machine with a 300 

MHz operating frequency using either deuterated chloroform or deuterated water as 

solvents. 

Dynamic Light Scattering (DLS). Measurements were performed on an ALV 

DLS/SLS-SP 5022F compact goniometer system with an ALV 5000/E cross correlator 

and a He–Ne laser ( = 632.8 nm). The measurements were carried out in cylindrical 

scattering cells (d = 10 mm) at an angle of 90°. Angular-dependent light scattering 

experiments were performed at angles ranging from 30° to 120° with an interval of 10°. 

Prior to the measurements samples were passed through nylon filters (Magna, Roth) with 

a pore size of 5 μm to remove impurities/dust particles. The C NTIN algorithm was 

applied to analyze the obtained correlation functions. Apparent hydrodynamic radii 

(harmonic z-average radius, <Rh>z,app.) were calculated according to the Stokes–Einstein 

equation and polydispersities were obtained via the cumulant analysis where applicable. 

Zeta Potential. The zeta potential of micellar solutions was determined on a 

Malvern Zetasizer Nano ZS. The electrophoretic mobilities (u) were converted into zeta 

potentials via the Smoluchowski equation  = u/0, where  denotes the viscosity and 

0 the permittivity of the solvent (water). Values were determined in triplicate from the 

same sample. 

Cryogenic Transmission Electron Microscopy (cryo-TEM). For cryo-TEM studies, 

a drop (~2 μL) of the aqueous micellar solution (c ~ 0.5 g×L
-1

) was placed on a lacey 

carbon-coated copper TEM grid (200 mesh, Science Services), where most of the liquid 

was removed with filter paper, leaving a thin film spread between the carbon coating. The 

specimens were shock vitrified by rapid immersion into liquid ethane in a temperature-

controlled freezing unit (Zeiss Cryobox, Zeiss NTS GmbH) and cooled to approximately 
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90 K. The temperature was monitored and kept constant in the chamber during all of the 

preparation steps. After freezing the specimens they were inserted into a cryo-transfer 

holder (CT3500, Gatan) and transferred to a Zeiss EM922 OMEGA EFTEM instrument. 

Measurements were carried out at temperatures around 90 K. The microscope was 

operated at an acceleration voltage of 200 kV. Zero-loss filtered images (ΔE = 0 eV) were 

taken under reduced dose conditions. All images were recorded digitally by a bottom 

mounted CCD camera system (Ultrascan 1000, Gatan), and processed with a digital 

imaging processing system (Gatan Digital Micrograph 3.9 for GMS 1.4). 
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Results and Discussion 

We have previously shown that polybutadiene-block-poly(1-methyl-2-vinylpyridinium)-

block-poly(methacrylic acid) (BVqMAA) triblock terpolymers form multicompartment 

micelles in aqueous media with a polybutadiene core, an im-IPEC shell consisting of 

P2VPq and PMAA and a negatively charged corona of PMAA (when the degree of 

polymerization was higher for PMAA than for P2VPq). BVqMAA with different lengths 

of the PMAA segment were used and further complexation with VqEO or DqEO diblock 

copolymers or with quaternized PDMAEMAq led to multi-layered micellar IPECs, in 

case of DqEO even with a clearly distinguishable second IPEC shell.
28,30

 Herein, we 

investigate the complexation between BVqMAA with two different lengths of the corona 

segment (400 and 1350 repeating units) and poly(2-((2-

(dimethylamino)ethyl)methylamino)ethyl methacrylate) (PDAMAq, Scheme 6-1), a 

polycation carrying two positive net charges per monomer unit and with a high structural 

similarity to PDMAEMAq. First, we shortly describe the structure of the BVqMAA 

before we focus on the preparation of PDAMAq using reversible addition fragmentation 

transfer (RAFT) polymerization, followed by subsequent quaternization. Afterwards, 

PDAMAq and BVqMAA are mixed at different ratios of positive to negative charges, Z+/-

, and the resulting structures are analyzed in detail with microscopic and light scattering 

techniques. 

 

Characterization of the Precursor Micelles (BVqMAA400 and BVqMAA1350) 

The synthesis of the polybutadiene-block-poly(2-vinylpyridine)-block-poly(tert-butyl 

methacrylate) (BVT) triblock terpolymers has been described previously and was 

achieved through sequential living anionic polymerization in THF at low temperatures 

(see Scheme 6-S1).
16,32

 However, slight termination occurred upon addition of tBMA, 

shown in the SEC traces in Figure 6-S1. We expect traces of the BV diblock copolymer 

to be incorporated in the final micellar structures. The degrees of polymerization, DP, for 

each block and the characterization data of the two triblock terpolymers used for this 

study are given in Table 6-1. We describe materials with identical lengths of the first 

(PB) and second (P2VP) block, only differing in the length of the third segment, PtBMA. 
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Table 6-1. Molecular characterization of BVT and BVqMAA triblock terpolymers. 

Polymer
a)

 Mn [kg/mol] PDI
d)

 

Block weight fractions 

(PB; P2VP/P2VPq; 

PtBMA/PMAA) 

B830V180T400 121
b)

 1.04 0.37; 0.16; 0.47 

B830V180T1350 256
b)

 1.08 0.18;  0.07; 0.75 

B830Vq180MAA400 101
c)

 - 0.45; 0.21; 0.34 

B830Vq180MAA1350 183
c)

 - 0.24; 0.12; 0.64 

a) Subscripts denote the degrees of polymerization of the respective blocks; b) calculated from a 

combination of MALDI-ToF-MS and 
1
H NMR data; c) calculated from degrees of polymerization without 

taking the counterions of P2VPq into account; d) determined from SEC measurements with THF as eluent 

and linear polystyrene as calibration standard. 

 

The transformation of BVT to BVqMAA was carried out according to procedures 

reported earlier.
29,30

 Briefly, the P2VP segment was quaternized using dimethyl sulfate, 

followed by hydrolysis of the PtBMA block to yield PMAA. The respective weight 

fractions of the constituting blocks before and after this modification route are also shown 

in Table 6-1. For BVqMAA400, the PB has the largest weight fraction (45 %), followed 

by PMAA (34 %). On the other hand, for BVqMAA1350, the PMAA segment with 64 % 

has the largest weight fraction. Micelle formation was achieved through dialysis to 

aqueous buffer solution at pH 10 and the resulting MCMs were characterized with 

cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering 

(DLS) (Figure 6-1).  

Both BVqMAA400 and BVqMAA1350 feature a PB core, a P2VPq/PMAA im-IPEC 

shell, and a PMAA corona, the latter being distinctly longer in case of BVqMAA1350. 

From DLS measurements, BVqMAA400 micelles are slightly smaller with <Rh>z,app. = 164 

nm (dispersity index, DI = 0.14) as compared to BVqMAA1350 with <Rh>z,app. = 187 nm 

(DI = 0.15). In case of BVqMAA1350, a minute fraction of aggregates at higher 

hydrodynamic radii can be seen. The size of the micellar core and corona was separately 

determined from the cryo-TEM micrographs by counting of at least 30 micelles (Table 6-

2).  
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Figure 6-1. Cryo-TEM micrographs of BVqMAA400 (A, conc. = 1.2 g/L) and BVqMAA1350 (B, conc. = 

0.29 g/L) MCMs in pH 10 buffer with an ionic strength of ca. 0.05 M. Insets show enlargements of single 

micelles with the scalebar representing 50 nm. (C) Intensity weighted CONTIN plots of the same micellar 

solutions from DLS measurements, BVqMAA400, , <Rh>z,app. = 164 nm, DI = 0.14; BVqMAA1350,, 

<Rh>z,app. = 187 nm, DI = 0.15. (D) Schematic illustration of the proposed general MCM structure. The 

dimensions of individual compartments are not drawn according to scale. 

 

Table 6-2. Number-average compartment sizes with standard deviation of the BVqMAA micelles as 

determined from cryo-TEM micrographs. 

Compartment BVqMAA400 [nm] BVqMAA1350 [nm] 

Rmicelle 114 ± 9 128 ± 16 

Rcore 46 ± 6 31 ± 3 

Dcorona 55 ± 7 - 

Rmicelle - Rcore 68 97 

Nagg. 5,500 1,700 
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We have used the half-distance between two micellar cores in Figure 6-1 as an 

estimate of the micellar radius, Rmicelle, confirming the trends from DLS measurements, 

although the overall sizes are smaller in cryo-TEM as compared to DLS data. This can be 

explained as the value from DLS represents a harmonic z-average radius, while cryo-

TEM provides a number average. Furthermore, confinement of the micelles in the thin 

film during cryo-TEM measurements could lead to underestimation of the true micelle 

size in case of closely packed micelles. The core radii of BVqMAA400 and BVqMAA1350 

micelles differ significantly, even though the core-forming block is of the same length. 

BVqMAA1350 micelles have a core radius of 31 ± 3 nm, which is smaller than in case of 

BVqMAA400 (46 ± 6 nm). From the core radius we roughly estimated the aggregation 

number, Nagg., according to equation 6-1, where we assumed the core to consist of pure 

PB. This assumption probably leads to an overestimation of the true Nagg. since we did not 

take solvent molecules (e.g., dioxane) into account, which might be still trapped inside 

the core. Since we are mainly interested in the relative values of the two micelles the 

possible errors will cancel. 

 

    (6-1) 

 

The calculated Nagg. of BVqMAA400 is approximately more than three times larger 

than that of BVqMAA1350. This is in accordance with theoretical prediction and our 

previous studies, where Nagg. also decreased with increasing corona length.
30,34

 Due to the 

rather weak contrast, it was only possible to roughly determine the corona size of 

BVqMAA400, but not that of BVqMAA1350. However, when subtracting Rcore from the 

overall micelle radius, Rmicelle, one can obtain an estimate of the corona size. Not 

surprisingly, this is considerably larger for BVqMAA1350 than for BVqMAA400, by about 

30 nm, highlighting the difference in hydrophilicity between the two triblock terpolymers 

presented here.  

 

Synthesis of PDAMA 

In comparison to our previous work using PDMAEMAq for further IPEC formation, here 

we were interested in polycations of similar structure, but with higher charge density. 

Poly(2-((2-(dimethylamino)ethyl)methylamino)-ethyl methacrylate) (PDAMA, Scheme 
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6-1) carries two amino groups per monomer unit. We were particularly interested in 

structural characteristics of micellar IPEC layers formed between PDAMAq and PMAA 

where we would expect a change in the IPEC compartment to a more dense structure due 

to the higher charge density in PDAMAq. The synthesis of PDAMA was first described 

by Sherrington et. al. by free radical polymerization and used as a chelating agent and 

polymeric support for copper complexes in the catalytic decomposition of the nerve agent 

Sarin.
35

 Homo- and copolymers of PDAMA have already been used as non-viral gene 

transfection agents.
36-38

  

 

 
Scheme 6-1. RAFT polymerization of DAMA and quaternization of PDAMA. 

 

 
Figure 6-2. 

1
H NMR spectra of PDAMA before (top) and after quaternization (bottom) in DHO. 

 

We used RAFT polymerization to synthesize PDAMA of desired molecular weight. 

2-(2-Cyanopropyl) dithiobenzoate (CPDB) was used as chain transfer agent (CTA) with 

AIBN as initiator in anisole as solvent, shown in Scheme 6-1. The DAMA/CTA/AIBN 

ratio was 200/1/0.25 the polymerization was conducted at 70 °C. After an induction 

period of about 50 min the polymerization started and the linearity of the first-order time-
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conversion plot (Figure 6-S3) indicates a controlled polymerization. The reaction was 

quenched after 5.5 h, and a conversion of 42 % was determined from NMR measurements 

corresponding to a theoretical DP of 83 for PDAMA (Mn, theor. = 17,900 g/mol). SEC 

measurements of the resulting material proved to be rather difficult, presumably due to 

strong interaction of PDAMA with the column material in THF, DMF and DMAc as 

solvents. Even with a water/methanol mixture as eluent the interaction between column 

material and analyte was probably not fully suppressed and when using a PDMAEMA 

calibration a large deviation between theoretical and apparent molecular weight (Mn, app. = 

65,500 g/mol; Mw, app. = 97,400 g/mol; PDI = 1.48) was observed. We therefore used the 

molecular weight of 17,900 g/mol calculated from conversion for the further description 

of PDAMA. Quaternization to PDAMAq was carried out by methylation of both tertiary 

nitrogens with methyl iodide. The 
1
H NMR spectra before and after quaternization are 

given in Figure 6-2. Full quaternization was achieved, as can be seen from the complete 

shift of the -CH3 signals e and h (9 protons at 2.0-2.3 ppm to 15 protons at 3.1-3.6 ppm) 

and -CH2- signals g, f and d (6 protons at 2.3-2.8 ppm to 6 protons at 3.8-4.3 ppm).  

 

Micellar IPECs of BVqMAA1350 with PDAMAq 

We first mixed PDAMAq with BVqMAA1350 micelles in pH 10 buffer solution, where 

PMAA is completely dissociated. The mixing ratio Z+/- is defined as the number of 

positive charges from the added polycation divided by the number of residual negative 

charges in the BVqMAA micelles (equation 6-2). The total amount of MAA units in the 

corona of the BVqMAA1350 micelles is reduced to 1170 by the im-IPEC formation with 

the 180 P2VPq units of the middle block. Therefore, Z+/- = 0 refers to the pure 

BVqMAA1350 precursor micelles, while a ratio of 1 assumes that all MAA units are 

complexed. 

 

    (6-2) 

 

In the past, we observed remarkably slow kinetics for the IPEC formation when 

poly(1-methyl-2-vinylpyridinium methylsulfate)-block-poly(ethyle oxide) (VqEO) was 

used for complexation.
28

 To ensure that complex formation was complete, here, the 
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micellar IPECs were stirred for at least one week after the addition of PDAMAq. 

Subsequently, the structures were analyzed using a combination of cryo-TEM and DLS 

(Figure 6-3). Stable micellar solutions were obtained for Z+/- ≤ 0.75, while macroscopic 

precipitation occurred at Z+/- = 0.9, probably due to insufficient stabilization of the 

particles by PMAA. Zeta potential measurements of the micellar solutions in pH 10 

buffer solution gave strongly negative values below -30 mV for all Z+/- values, ranging 

from 0 to 0.75 (see Table 6-S1) indicating that sufficient uncomplexed PMAA remains in 

the corona to stabilize the micelles. According to the cryo-TEM micrographs, low charge 

ratios (Z+/-= 0.1) lead to a slight increase in the overall contrast within the corona, and the 

occurrence of small protrusions, attributed to IPEC compartments (Figure 6-3A, the inset 

shows a single object). More drastic structural changes can be seen at Z+/- = 0.25, where 

newly formed IPEC patches can be clearly distinguished (Figure 6-3B). We expect these 

patches to consist of IPECs of PMAA and PDAMAq, collapsed due to charge 

neutralization, in analogy to earlier observations using PDMAEMAq.
30

 However, instead 

of observing a rather homogeneous IPEC shell as before, distinct patches of a certain size 

are found. The proposed structure of such micellar IPECs with a patchy second IPEC 

shell is schematically illustrated in Figure 6-3E. With increasing Z+/-, the patch size 

increases, as is expected for a further incorporation of PDAMAq chains. However, 

growth of the patches seems to proceed anisotropically along the im-IPEC/corona 

interface rather than radially outwards from the original patch. This is most prominent at 

Z+/- = 0.5 (Figure 6-3C), where up to 3 patches per particle can be observed.  

To better illustrate the growth of the patchy compartments with increasing Z+/- 

values, we counted the micelles from the available cryo-TEM images and sorted them 

into four categories (Table 6-S2) according to their compartment size. The four 

categories used are: no visible compartment, small compartment(s) enclosing less than 

half of the core, large compartment(s) enclosing more than half of the core and a 

complete shell. At low Z+/- values, only small compartments are formed, which grow in 

size with increasing amounts of added PDAMAq. When even more PDAMAq was added 

(Z+/- = 0.75, Figure 6-3D), the majority of the structures features a complete second IPEC 

shell. In DLS experiments,  versus q
2
 plots gave a linear relationship for all tested Z+/- 

values (Figure 6-S4) and the autocorrelation functions decreased monotonously (Figure 

6-S5). The <Rh>z,app. at a scattering angle of 90° first decreases from 187 nm for Z+/- = 0 

(Figure 6-1) to 116 nm at Z+/- = 0.5, while it again increases to 182 nm at Z+/- = 0.75 
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(Figure 6-3F). The initial decrease is probably a result of corona contraction, while the 

increase of <Rh>z,app. and the dispersity index, DI, at higher Z+/--ratios hints towards some 

aggregation. 

 

 
Figure 6-3. (A-D) Cryo-TEM micrographs of micellar IPECs of BVqMAA1350/PDAMAq with increasing 

charge ratios, Z+/- = 0.1, 0.25, 0.5 and 0.75 in pH 10 buffer and an ionic strength of ca. 0.05 M; the scale 

bars represent 200 nm. The insets show single objects at higher magnification, the scale bars representing 

50 nm. (E) Schematic representation of the proposed general structure of the micellar IPECs with two 

patches. (F) DLS CONTIN plots of micellar IPECs at different Z+/- (black : Z+/- = 0.1, <Rh>z,app. = 166 

nm, DI = 0.07; red : Z+/- = 0.25, <Rh>z,app. = 145 nm, DI = 0.05; blue : Z+/- = 0.5, <Rh>z,app. = 116 nm, 

DI = 0.06; green : Z+/- = 0.75, <Rh>z,app. = 182 nm, DI = 0.18) (F).  

 

The spontaneous formation of anisotropic structures from a centrosymmetric 

precursor MCM through ionic interactions is rather unexpected. One possible explanation 

could be that the structures are kinetically trapped due to rapid initial IPEC formation as 

has been observed for BVqMAA micelles after the complexation with VqEO diblock 

copolymers.
28

 As a result, insufficient chain mobility would prevent the relaxation to 

more energetically favorable structures, i.e. a homogeneous distribution of the IPEC 

around the core. To increase chain mobility, we increased the ionic strength of micellar 

IPECs from BVqMAA1350/PDAMAq with Z+/- = 0.5 to approximately 0.55 M through the 
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addition of NaCl (pH 10 buffer with additional 500 mM NaCl). Under these conditions, 

the charges of the polyelectrolytes are screened and the IPEC shell is dissolved, resulting 

in a coexistence of BVqMAA1350 micelles and free PDAMAq chains. This is shown in 

Figure 6-4A, where the former patchy IPEC (PMAA/PDAMAq) has vanished and 

BVqMAA1350 micelles can be found. From these micrographs it is impossible to 

determine whether all PDAMAq chains are free in solution or if some PDAMAq still 

remains within the micellar corona. Even bare BVqMAA1350 micelles (Z+/- = 0) show a 

certain corona contraction due to charge screening under these conditions (data not 

shown), resulting in similar structures in cryo-TEM. Subsequently, the same sample was 

dialyzed against pH 10 buffer without additional salt, allowing the IPEC shell to be 

slowly formed again. After dialysis we again observed micellar IPECs with a patchy 

IPEC shell (Figure 6-4B) similar to the structures observed before. Consequently, the 

patchy IPEC structure seems to be energetically favored and is not a result of kinetic 

trapping effects. 
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Figure 6-4. (A) Cryo-TEM micrographs of micellar IPECs of BVqMAA1350/PDAMAq in pH 10 buffer at 

Z+/- = 0.5 with 500 mM NaCl and an ionic strength of ca. 0.55 M; (B) the same sample after dialysis to pH 

10 buffer solution without additional salt (ionic strength = 0.05 M); (C) micrographs of 

BVqMAA1350/PDMAEMAq micelles in pH 10 buffer solution (ionic strength = 0.05 M) at Z+/- = 0.5; (D) 

micrographs of BVqMAA400/PDAMAq micelles in pH 10 buffer solution (ionic strength = 0.05 M) at Z+/- = 

0.25. The insets show single objects at higher magnification, the scale bars representing 50 nm. Schematic 

representation of the micellar IPECs of BVqMAA1350/PDMAEMAq (E) and BVqMAA400/PDAMAq (F). 
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To check whether the patches originate from the increased charge density offered by 

PDAMAq, we also used PDMAEMAq162
30

 as a polycation. As can be seen in Figure 6-

4C, comparable micellar IPECs were obtained, exhibiting several localized IPEC patches 

instead of a homogeneous IPEC shell.  

Since neither kinetic trapping of the IPEC, nor the increased charge density of 

PDAMAq are responsible for the peculiar morphology of the micellar IPECs, we also 

investigated the influence of the PMAA corona length. The BVqMAA1350 used here has 

an exceptionally long corona compared to any of the previously used BVqMAA 

polymers. As compared to BVqMAA1350 with 1170 net negative charges BVqMAA400 has 

only 400 - 180 = 220 net negative charges per PMAA chain. When mixed with PDAMAq 

at Z+/- = 0.25, stable micellar solutions were obtained and subsequently analyzed by cryo-

TEM (Figure 6-4D). In this case, well-defined structures adopting a core-shell-shell-

corona morphology with a continuous IPEC shell of PMAA/PDAMAq and a corona of 

excess PMAA were observed.  

These structures are indeed very similar to those observed previously, where 

continuous IPEC layers were found for B800Vq190MAA345, B800Vq190MAA465 and 

B800Vq190MAA550 MCMs upon complexation with PDMAEMAq.
30

 Thus, the corona 

length seems to be the critical factor for the formation of the observed patchy IPEC shell. 

For an estimation of the hydrophilic-to-hydrophobic balance of the terpolymer micelles 

the weight fractions of the corona- and core-forming blocks are compared. Consequently, 

the im-IPEC of P2VPq/PMAA is included within the hydrophobic part while counterions 

are not taken into account for the calculation. According to this rough estimation, the 

materials used in our previous study (BVqMAA345, BVqMAA465, and BVqMAA550) 

exhibit rather large hydrophobic weight fractions, wh, between 0.73 and 0.86. In the case 

reported here, BVqMAA400 is in the same range with wh = 0.81, whereas BVqMAA1350 

has a predominant hydrophilic weight fraction with wh = 0.45. This seems to affect 

further IPEC formation, i.e. the formation of a patchy second IPEC shell. Since we 

already excluded that the structures are kinetically trapped or influenced by the nature of 

the polycation, it seems to be energetically favorable for the system to form isolated IPEC 

patches rather than a thin continuous layer. This effect is also supposed to play a role 

during the formation of localized IPEC patches within the im-IPEC shell of different 

BVqMAA MCMs.
29

 A more detailed explanation can be given considering the respective 

interfaces: the newly formed IPEC shell has an interface with the micellar core consisting 
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of PB and the im-IPEC (IF-1, Figure 6-5, dashed yellow line), another one with the 

PMAA corona (IF-2, dashed red line), and at high Z+/--ratios an additional interface with 

the surrounding medium (water) would be formed (IF-3, Figure 6-5B, dashed purple 

line).  

 

 
Figure 6-5. Schematic illustration of the potentially relevant interfaces in the formation of an additional 

IPEC shell in BVqMAA micelles with a short (A, B) or long (C, D) corona, leading to either continuous (A, 

C) or patchy (B, D) IPECs. The relevant interfaces of the newly formed IPEC are highlighted as dashed 

lines and are between the IPEC and the core (yellow), the corona (red), or water as the selective solvent 

(purple). 

 

Four different cases of IPEC formation involving BVqMAA400 (Figure 6-5A and 6-

5B) and BVqMAA1350 (Figure 6-5C and 6-5D) micelles can now be considered. When 

micellar IPECs with a continuous shell are formed, the interfaces IF-1 and IF-2 are 

maximized, while IF-3 is absent (Figure 6-5A, C). On the other hand, when patches are 

formed, IF-1 is minimized. However, in case of a short PMAA segment this leads to the 

generation of a significant interface IF-3 (Figure 6-5B) and, potentially, a loss of 

colloidal stability, whereas long-corona micelles can minimize IF-1 without creating an 

additional IF-3 (Figure 6-5D). It therefore seems that micelles with a very long ionic 
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corona, as demonstrated for BVqMAA1350, preferentially form patchy IPEC 

compartments when complexed with oppositely charged polycations at low to 

intermediate Z+/--ratios. We are aware that this explanation is solely based on simple 

considerations of the respective interfaces and does not include other effects like chain 

entropy or partial dissociation of the IPEC domains. However, our tentative model is 

supported by the results obtained for the systems BVqMAA1350/PDAMAq and 

BVqMAA1350/PDMAEMAq. 

Conclusions 

The formation of micellar IPECs between negatively charged BVqMAA precursor 

micelles and either PDAMAq or PDMAEMAq polycations leads to well-defined core-

shell-shell-corona structures. We demonstrate that the formation of a compartmentalized 

additional IPEC shell in micellar IPECs can be favorable at low to intermediate Z+/- ratios 

when MCMs with a long corona-forming PMAA block are used. We propose an 

explanation for the structure formation based on the generated interfaces for different 

corona lengths of the underlying BVqMAA precursor micelles. In more general terms, 

this work represents a facile route for the formation of well-defined particles where the 

size can be adjusted by the underlying MCM system (e.g., molecular weight of 

BVqMAA) and compartmentalization of the shell is controlled by charge stoichiometry 

and corona length. Such structures represent very interesting models for pH-responsive 

soft and patchy colloids or multifunctional delivery vehicles. We are currently 

investigating the drug delivery properties of BVqMAA micelles. Furthermore, the 

presence of surface patches of unlike charge stoichiometry and hydrophilicity might turn 

out to be advantageous for the pH-dependent interaction with living matter, e.g. cell 

cultures when performing transfection or uptake studies. 

 

Supporting Information 

Molecular characterization data on BVT polymers and DAMA monomer, the kinetic plot 

of the DAMA polymerization, zeta potential and dynamic light scattering measurements 

of BVqMAA/PDAMAq micelles. These data are available free of charge via the Internet 

at http://pubs.acs.org. 
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Supporting Information 

Scheme 6-S1. Synthesis of BVT triblock terpolymers by sequential living anionic polymerization in THF at 

low temperatures and their conversion to BVqMAA triblock terpolymers through quaternization and 

subsequent acidic hydrolysis in dioxane. 

 

 

Table 6-S1. Zeta potential of BVqMAA1350/PDAMAq micelle solutions. Values represent mean ± s. d. 

 
BVqMAA1350/PDAMAq 

Z+/- value 0 0.1 0.25 0.5 0.75 

Zeta Potential [mV] -34.0 ± 1.2 -33.2 ± 2.6 -33.9 ± 0.6 -31.8 ± 1.5 -31.8 ± 2.3 

 

Table 6-S2: Distribution of micelle types (no compartment, small compartment(s), large compartment(s) 

and complete shell) in BVqMAA1350/PDAMAq samples at different Z+/- values counted from cryo-TEM 

micrographs. At least 70 micelles were counted per sample. 

BVqMAA1350 / 

PDAMAq 

 

 

 

 

 

 

 

 

 

 

 

 

Z+/- = 0 100 % 0 % 0 % 0 % 

Z+/- = 0.1 82 % 18 % 0 % 0 % 

Z+/- = 0.25 15 % 76 % 9 % 0 % 

Z+/- = 0.5 2 % 6 % 79 % 13 % 

Z+/- = 0.75 0 % 0 % 18 % 82 % 
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Figure 6-S1. SEC elution curves of B830V180T400 (solid line) and B830V180T1350 (dotted line) triblock 

terpolymers in SEC with THF as solvent (RI signal). 

 

 

Figure 6-S2. 
1
H NMR spectrum of DAMA in CDCl3 after purification by column chromatography. 
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Figure 6-S3: First order kinetic plot for the RAFT polymerization of DAMA. 

 

 

Figure 6-S4:  versus q
2
 plots for BVqMAA1350/PDAMAq micelles at various Z+/- values. 
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Figure 6-S5: Autocorrelation functions of BVqMAA1350/PDAMAq micelles at various Z+/- values from 

DLS measurements at a scattering angle of 90°. 
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Chapter 7 

 

Multicompartment Micelles with Adjustable Poly(ethylene 

glycol) Shell for Efficient in Vivo Photodynamic Therapy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The work presented in this chapter has been published in ACS Nano as: 

“Multicompartment Micelles with Adjustable Poly(ethylene glycol) Shell for Efficient in 

Vivo Photodynamic Therapy” 

by Christopher V. Synatschke, Takahiro Nomoto, Horacio Cabral, Melanie Förtsch, 

Kazuko Toh, Yu Matsumoto, Kozo Miyazaki, Andreas Hanisch, Felix H. Schacher, 

Akihiro Kishimura, Nobuhiro Nishiyama, Axel H. E. Müller,
*
 and Kazunori Kataoka

*
. 



Chapter 7 – MCMs for Efficient in Vivo Photodynamic Therapy 

206 

 

  



Chapter 7 – MCMs for Efficient in Vivo Photodynamic Therapy 

207 

Abstract 

We describe the preparation of well-defined multicompartment micelles from 

polybutadiene-block-poly(1-methyl-2-vinyl pyridinium methyl sulfate)-block-

poly(methacrylic acid) (BVqMAA) triblock terpolymers and their use as advanced drug 

delivery systems for photodynamic therapy (PDT). A porphyrazine derivative was 

incorporated into the hydrophobic core during self-assembly and served as a model drug 

and fluorescent probe at the same time. The initial micellar corona is formed by 

negatively charged PMAA and could be gradually changed to poly(ethylene glycol) 

(PEG) in a controlled fashion through interpolyelectrolyte complex formation of PMAA 

with positively charged poly(ethylene glycol)-block-poly(L-lysine) (PLL-b-PEG) diblock 

copolymers. At high degrees of PEGylation, a compartmentalized micellar corona was 

observed, with a stable bottlebrush-on-sphere morphology as demonstrated by cryo-TEM 

measurements. By in vitro cellular experiments, we confirmed that the porphyrazine-

loaded micelles were PDT-active against A549 cells. The corona composition strongly 

influenced their in vitro PDT activity, which decreased with increasing PEGylation, 

correlating with the cellular uptake of the micelles. Also, a PEGylation-dependent 

influence on the in vivo blood circulation and tumor accumulation was found. Fully 

PEGylated micelles were detected for up to 24 h in the bloodstream and accumulated in 

solid subcutaneous A549 tumors, while non- or only partially PEGylated micelles were 

rapidly cleared and did not accumulate in tumor tissue. Efficient tumor growth 

suppression was shown for fully PEGylated micelles up to 20 days, demonstrating PDT 

efficacy in vivo. 
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Introduction 

Nanostructured materials are gaining increasing interest for delivering bioactive 

agents.
1-5

 Block copolymers are a highly versatile class of such materials and 

consequently have been explored for constructing efficient drug delivery systems (DDS) 

with increasing complexity.
6
 Thus, polymeric micelles, which self-assemble from 

amphiphilic block copolymers are being used for encapsulating drugs and genes in their 

core, thereby enhancing the availability of the drug in the organism and delivering the 

incorporated therapeutic molecules to specific tissues.
7-9

 Higher degree of sophistication 

can be provided to block copolymer-based DDS by supplying responsiveness to stimuli, 

such as pH, salt concentration, magnetic fields or light irradiation, and introducing ligand 

molecules for specific targeting of disease-related epitopes. Moreover, by combining 

imaging reporters with block copolymer systems, DDS can be made visible in biological 

conditions, facilitating the validation of their design. The dual therapeutic and diagnostic 

function within a single DDS platform, so called “theranostics”, also permits following 

the therapeutic response and the disease progression.
10-12

 Accordingly, smart DDS 

capable of precisely engineering the loading of agents within their nanostructures may 

allow the optimization of both imaging sensitivity and therapeutic efficacy.
13

  

In this regard, multicompartment micelles (MCMs) grant the delivery of various 

active substances simultaneously, by chemically or physically incorporating them in 

different nanocompartments within the same particle. An elegant approach for the 

preparation of MCMs is the use of triblock terpolymers, i.e., materials with at least 3 

different polymer blocks. Proper choice of a selective solvent for one of the segments 

allows for the preparation of structures, which are further subdivided in the core or the 

shell.
14, 15

 Post-polymerization modification of active groups in MCMs further allows 

tailoring their properties, such as surface charge or targeting ligands, according to the 

desired application. For example, the negatively charged corona of core-shell-corona 

MCMs, prepared from triblock terpolymer polybutadiene-block-poly(1-methyl-2-vinyl 

pyridinium methyl sulfate)-block-poly(methacrylic acid) (PB-b-P2VPq-b-PMAA; 

BVqMAA), was modified through complexation with the positively charged block of 

poly(ethylene glycol)-block-poly(2-(dimethylamino)ethyl methacrylate) (PEG-b-

PDMAEMAq), stabilizing the resulting complex MCMs in water.
16

 Despite the clear 

advantages of MCMs for delivering diagnostic and therapeutic molecules, few examples 

examining their biological applications can be found in the literature.
17
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 In this contribution, we investigated the capability of MCMs prepared from 

BVqMAA triblock terpolymers as a novel drug delivery platform. BVqMAA micelles 

present three compartments, i.e. core, shell and corona, which can serve different 

functions in the drug delivery process. Thus, as efficient DDS should stably circulate in 

the bloodstream,
18, 19

 the properties of the corona of BVqMAA micelles will be important 

for stabilizing the micelles and avoiding aggregation in biological environments. Two 

BVqMAA triblock terpolymers, with a long and a short PMAA block, were used as 

starting material to evaluate the biological properties of the corresponding MCMs 

(Scheme 7-1A). Moreover, the effect of the corona composition was investigated by 

introducing increasing amounts of positively charged poly(ethylene glycol)-block-poly(L-

lysine) (PLL-b-PEG) diblock copolymer to the PMAA corona, which lead to a gradual 

transition from the negatively charged corona of pure PMAA to the neutral corona of 

PEG from the same starting MCMs (Scheme 7-1B). In addition, the ability of BVqMAA 

micelles for delivering therapeutic molecules to tumor tissues was also considered. Thus, 

as the core of MCMs serves as a drug reservoir, we incorporated a hydrophobic 

porphyrazine derivative, which can serve both as a fluorescent probe and a 

photosensitizer (PS), i.e., a drug that generates reactive oxygen species (ROS) upon light 

irradiation, for photodynamic therapy (PDT).
20-23

 Since the production of ROS in PDT is 

limited to the site of illumination, the light-induced cytotoxicity can be spatially 

controlled to the illuminated area. Nevertheless, because PS distributed to normal tissues, 

such as skin, causes photosensitivity, patients often have to avoid exposure to sunlight for 

several weeks. Therefore, promising MCM formulations for PDT treatment of cancer 

should successfully control the PS bioavailability and enhance the accumulation of the 

incorporated PS to tumor tissues. Accordingly, detailed studies on the biological 

properties of these particular MCMs were conducted both in vitro and in vivo with regard 

to their ability to function as DDS for PDT. 
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Results and Discussion 

We prepared photosensitizer-carrying polymer micelles from polybutadiene-

block-poly(2-vinylpyridine)-block-poly(tert-butyl methacrylate) (PB-b-P2VP-b-PtBMA; 

BVT, Scheme 7-1a, Table 7-S1) analogue to previously published procedures.
16

 After 

quaternization and hydrolysis to polybutadiene-block-poly(1-methyl-2-vinyl pyridinium 

methyl sulfate)-block-poly(methacrylic acid) (PB-b-P2VPq-b-PMAA; BVqMAA), 

MCMs of well-defined size and structure form spontaneously when the solvent is 

exchanged to water by dialysis.
24

 The hydrophobic porphyrazine derivative, serving as 

photosensitizer (PS), is encapsulated in the PB core of the micelles, while the negatively 

charged corona from PMAA stabilizes the structures in solution. Two different examples 

of such micelles, differing in the length of the PMAA block, BVqMAA-1 with a short- 

(DPPMAA = 400) and BVqMAA-2 with a long corona (DPPMAA = 1350), were prepared in 

salt containing PBS buffer (10 mM + 140 mM NaCl at pH 7.4) to allow for in vitro and in 

vivo experiments. We used two different lengths of PMAA blocks for evaluating the 

effect of the length of the shell-forming block on the physicochemical and biological 

properties of the micelles. From potentiometric titration measurements, we determined 

more than 80 % of the MAA groups to be deprotonated at pH 7.4, rendering the 

BVqMAA micelles strongly negatively charged and thus highly stable under these 

conditions.  
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Scheme 7-1. (A) Preparative procedure to obtain PS carrying BVqMAA micelles in water. A BVT triblock 

terpolymer is quaternized and hydrolyzed in dioxane to give amphiphilic BVqMAA. After PS addition, 

self-assembly to micelles takes place through the exchange of solvent from dioxane to PBS buffer. (B) 

Complexation with PLL-b-PEG diblock copolymers and subsequent crosslinking of PMAA with PLL 

yields PEGylated micelles (BVqMAA/PLL-b-PEG). 

 

Corona Modification of MCMs 

Besides offering the possibility to conjugate functional molecules through 

esterification, the negatively charged carboxylic acid groups of the PMAA corona can be 

used for further functionalization through an interpolyelectrolyte complex (IPEC) 

formation with polycations.
16, 25

 Here, we integrated a poly(L-lysine)-block-poly(ethylene 

glycol) (PLL-b-PEG; Table 7-S1) diblock copolymer, as illustrated in Scheme 7-1b, 

simply by complexing PLL-b-PEG with long- and short corona BVqMAA micelles. The 

complexation ratio is given as Z+/--value, which is defined as the ratio between cationic 
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lysine monomer units divided by the residual number of anionic MAA monomer units 

after taking the intra-micellar IPEC with Vq into account (see equation 7-1).  

 

        (7-1) 

 

This allows us to gradually change the corona composition from a pure PMAA 

corona for non-complexed micelles (Z+/- = 0) to a complete PEG corona for micelles 

where all PMAA has been complexed with PLL to form an IPEC (Z+/- = 1). 

Complexation ratios in between these two cases give partially PEGylated micelles. For 

each corona-length of the BVqMAA micelles, four ratios with PLL-b-PEG were prepared 

(Z+/- = 0; 0.25; 0.5 and 1). To prevent any dissociation of the IPEC in biological 

surroundings, the lysine and MAA units were cross-linked with 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC-coupling). The characterization 

of the resulting micelles by –potential measurements and dynamic light scattering (DLS) 

as well as the determination of the corresponding mass and PS concentration is 

summarized in Table 7-1.  

The mass loading of BVqMAA/PLL-b-PEG micelles with PS is between 6 and 12 

%. The -potential values of the non-PEGylated micelles were strongly negative, as was 

expected for the deprotonated PMAA corona at pH 7.4. With increasing complexation 

ratio, these values (after crosslinking) increased and reached almost zero at Z+/- = 1, 

suggesting successful complex formation and surface coverage by PEG. The cumulant 

hydrodynamic diameter, Dh, of the micelles varied between 260 and 290 nm, but no 

significant correlation between complexation ratio and micellar size was observed. 

During IPEC formation, two opposing effects might simultaneously influence the size of 

the micelles. That is, through binding of the PMAA corona and its subsequent collapse to 

form the IPEC, the size of the micelles decreases, while the introduction of uncharged 

PEG into the corona increases micelle size. All the micelles show narrow Dh distributions 

with dispersities, D.I., between 0.026 and 0.073 and the core size of BVqMAA-1 and 

BVqMAA-2 remains essentially unchanged by PEGylation (Table 7-S2). 
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Table 7-1. Characterization of BVqMAA-1 and BVqMAA-2 micelles with increasing degree of 

PEGylation with regard to polymer and photosensitizer (PS) concentration, -potential and cumulant 

hydrodynamic diameter with corresponding dispersity index (D.I.). All micelle solutions were in in 10 mM 

PBS buffer solution at pH 7.4 with additional 140 mM NaCl. 

Polymer Z+/--value 
Mass Conc. 

[g/L]
a
 

PS Conc. 

[µM]
b
 

-Potential 

[mV] 
Dh [nm] D.I. 

BVqMAA-1 

0 0.47 106 -28 259 0.043 

0.25 0.60 105 -7.5 262 0.043 

0.5 0.52 97 -4.0 264 0.049 

1 0.91 117 -0.2 286 0.059 

BVqMAA-2 

0 0.88 130 -31 287 0.052 

0.25 0.62 140 -13 280 0.073 

0.5 1.10 140 -6 255 0.026 

1 1.52 165 -2 280 0.028 

a) Concentration of drug carrying polymer micelles determined by weight after freeze drying of aliquot 

dialyzed to MilliQ water to remove buffer salts; b) determined from absorbance at 552 nm and 620 nm of 

freeze-dried aliquot re-dissolved in DMAc.  

 

The structure of BVqMAA/PLL-b-PEG micelles was investigated by cryogenic 

transmission electron microscopy (cryo-TEM) measurements, where the micellar 

structure can be imaged close to its native state in aqueous solution. The top row of 

Figure 7-1 shows representative images from the BVqMAA-1/PLL-b-PEG micelles in 

PBS buffer solution with increasing amount of PLL-b-PEG used for complexation from 

left to right. In the bottom row, the corresponding structures from BVqMAA-2 are 

depicted. An overview of the sample is provided in each image, including the average Dh 

from light scattering measurements represented as a circle, while a single enlarged 

micelle is shown in the inset. 
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Figure 7-1. Cryo-TEM micrographs of BVqMAA micelles after complex formation with increasing 

amounts of PLL-b-PEG and subsequent crosslinking by EDC-coupling (scale bar = 100 nm). Top row: 

BVqMAA-1; bottom row: BVqMAA-2 micelles. The circle represents the average Dh of the respective 

sample determined by light scattering. The inset in each micrograph shows a single enlarged micelle from 

each batch with the scale bar representing 50 nm. 

 

For the non-complexed BVqMAA-1 (Z+/- = 0) micelles, a core-shell-corona 

structure was evident from the dark grey ring (intra-micellar IPEC between P2VPq and 

PMAA) surrounding the grey PB core. Water swells the PMAA corona of the micelles 

and consequently reduces the electron contrast, making it hard to distinguish from the 

surrounding water phase. As expected from theory,
26

 the core-size of the BVqMAA-

1/PLL-b-PEG micelles was larger than that of the corresponding BVqMAA-2/PLL-b-

PEG micelles (Table 7-S2), due to a decreased aggregation number for longer PMAA 

chains in BVqMAA-2. Upon addition of PLL-b-PEG, the structure of the micelles 

gradually changed. At a low Z+/--value of 0.25, the density of the corona increased and an 

enhanced contrast was observed in the cryo-TEM images, indicating a successful 

complex formation. However, when further PLL-b-PEG was added (Z+/- = 0.5), the 

formation of a distinct IPEC structure occurred within the corona. Ray-like structures of 

high electron density appeared perpendicular to the micellar core, alternating with areas 

of lower electron density. At a Z+/--value of 1, the segregation of the corona was most 

prominent for both micelles and the length of the individual rays slightly increased as 

compared to Z+/- = 0.5. Interestingly, the length of the ray-like structures is considerably 

longer for BVqMAA-2, which is probably a result of its longer PMAA block as compared 

to BVqMAA-1. Generally, the cumulant hydrodynamic diameters measured for each 
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sample by DLS agree well with the size of the micelles found in cryo-TEM. Only for 

BVqMAA-2 samples at low complexation ratio, the micelles seem to pack closer than 

would be expected according to their size observed in light scattering experiments. 

However, this might originate from confinement effects during cryo-TEM sample 

preparation. Presumably, the dark rays consist of newly formed IPEC between PMAA 

and PLL, while the areas of low electron contrast can be attributed to water swollen PEG 

surrounding these IPEC domains  thus, this might be regarded as a “bottlebrush-on-sphere 

morphology”. Similar structures were previously observed exclusively as a transitional 

state within the first hours after mixing BVqMAA micelles with PEG-b-P2VPq diblock 

copolymers,
25

 finally settling for a layered arrangement of the additional IPEC in an 

onion-type structure as was also found for PEG-b-PDMAEMAq as cationic block 

copolymer.
16

 However, in the current case, the observed structures remained unchanged 

for months. One possible reason for the peculiar morphology may be the secondary 

structure of PLL. Homopolymers of PLL are known to form intramolecular hydrogen 

bonds in their uncharged state, leading to the formation of -helical secondary 

structures.
27

 Indeed, CD-spectroscopy measurements as depicted in Figure 7-S1 of the 

complex micelles confirmed the existence of -helical structures, even after crosslinking, 

which were absent in solutions of non-complexed BVqMAA micelles in the same buffer, 

respectively. To clarify whether the secondary structure of PLL is indeed responsible for 

the peculiar morphology of the micellar corona, we synthesized a poly(D,L-lysine)-block-

poly(ethylene glycol) (PDLL-b-PEG) diblock copolymer with similar block lengths, 

which cannot form -helices (Table 7-S1). As expected, the CD-spectra indicated the 

absence of secondary structures (Figure 7-S1) for BVqMAA micelles after complex 

formation with PDLL-b-PEG. Nevertheless, comparable morphologies were found for 

BVqMAA/PDLL-b-PEG complexes (Figure 7-S2), leading to the assumption that the 

secondary structure formation of PLL is not responsible for the observed micellar 

morphology. 

Another possible reason for the formation of the bottlebrush-on-sphere morphology is the 

block length ratio between PMAA and PLL. The positively charged lysine block has a 

rather short DP of 40 units (due to synthetic constraints on controlled block lengths of 

PLL), while the PMAA chain of the BVqMAA polymers even after intramolecular IPEC 

formation with P2VPq retains a length of 220 and 1170 theoretically accessible units for 

BVqMAA-1 and BVqMAA-2, respectively. Consequently, for full compensation of the 
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negative charges of a single PMAA chain 5.5 and 29 PLL-b-PEG chains are necessary on 

average for the short and long MAA blocks, respectively. To accommodate these large 

amounts of PLL-b-PEG diblock copolymer within the micelle corona, the system may 

adopt the observed bottlebrush morphology. With such a conformation, the PLL segments 

of PLL-b-PEG copolymers can reach the MAA units of the corona chains, forming 

interpolyelectrolyte complexes in the core of the bottlebrushes and segregating the PEG 

chains. In previous complexation experiments with polycation-block-PEG diblock 

copolymers,
16, 25

 the polycations were longer than in the current case and consequently a 

smaller amount of complexing polymer needed to be incorporated into the micelle corona 

eliminating the need for corona phase separation. The secondary structure and reduced 

chain flexibility of the PLL might further promote the formation of the observed 

structures. 

 

Stability of Complex Micelles 

IPEC formation is a reversible process and is driven by the gain in translational 

entropy upon release of low molecular weight counter-ions as well as electrostatic 

attraction between oppositely charged monomer units within the polyelectrolyte chains.
28

 

Therefore, an exchange of polyelectrolytes bound in the IPEC with competing polyions 

from the surrounding solution can occur under certain conditions, i.e., when the 

polyelectrolyte chains within the complex are mobile. At high salt concentrations 

(typically 0.5 to 1 M) in the media, the charge attraction between polyelectrolytes is 

weakened and the IPEC is prone to even complete dissolution. Although such extreme 

salt concentrations do not occur in cell-culture medium or the blood, the presence of 

serum proteins combined with an increasing dilution of the BVqMAA/PLL-b-PEG 

micelles may lead to polyion exchange reactions, thereby changing the corona 

composition. To prevent any significant change after complex formation, lysine and 

methacrylic acid units were covalently crosslinked via amide bonds by EDC-coupling. 

The high stability of the resulting crosslinked micelles is shown in Figure 7-2, where the 

structures at original buffer conditions (10 mM PBS buffer at pH 7.4 with 140 mM NaCl) 

are compared to those at high ionic strength (10 mM PBS buffer at pH 7.4 with 990 mM 

NaCl), simulating highly challenging conditions in biological media.  
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Figure 7-2. Micelle stability against challenging solvent conditions. Representative cryo-TEM micrographs 

of BVqMAA-2/PLL-b-PEG complex micelles in buffer solution at low (top row) and high (bottom row) 

ionic strength. Left column images show pure BVqMAA-2 micelles, while middle and right column images 

depict the complexes with PLL-b-PEG (Z+/- = 1) before and after crosslinking, respectively. Scale bars in 

each micrograph represent 200 nm. The inset in each micrograph shows a single enlarged micelle in more 

detail with the scale bar representing 50 nm.  

 

As can be seen from the top row images in Figure 7-2, at low salt concentration 

there is no significant structural difference between the BVqMAA-2/PLL-b-PEG micelles 

at a Z+/--value of 1, before and after crosslinking, since both samples exhibit the 

previously discussed bottlebrush-on-sphere morphology. Upon increasing the salt 

concentration of the buffer from 140 mM to 990 mM NaCl, the corona of the original, 

non-complexed BVqMAA-2 micelles (bottom left image, Figure 7-2) collapsed due to 

charge screening. Also, the non-crosslinked and complexed micelles showed a collapse of 

the corona accompanied by a loss of the bottlebrush morphology, suggesting a partial 

dissolution of the IPEC domains. In contrast, the bottlebrush morphology is retained for 

crosslinked BVqMAA-2/PLL-b-PEG, even at high ionic strength of the solution. Since 

the crosslinked micelles showed a high tolerance against challenging solvent conditions, 

we expect the micelles to remain structurally intact and prevent polyion exchange 

reactions in biological surroundings. 
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Biological Characterization  

Next, the biological properties of the BVqMAA micelles and their complexes with 

PLL-b-PEG were investigated. As a model drug, a hydrophobic porphyrazine derivative 

was incorporated into the micellar core during micelle formation. This general class of 

molecules has previously been used as photosensitizer (PS), creating reactive oxygen 

species (ROS) upon photoirradiation.
29

 To test the capacity of the micelles for drug 

delivery, we evaluated the in vitro cytotoxicity and cellular uptake of the PS-loaded 

MCMs. Cellular toxicity was tested against A549 human lung cancer cells, which were 

treated with increasing concentrations of PS-carrying micelles followed by 

photoirradiation. From the relative viability data, we determined an inhibitory 

concentration for 50 % of the cells (IC50), which is summarized in Table 7-2 for different 

photoirradiation times, Z+/--values and both micelle types.  

 

Table 7-2. In vitro PDT efficacy. IC50 values (µg PS/mL medium) of BVqMAA/PLL-b-PEG micelles 

carrying PS against A549 cells in dependence of the degree of PEGylation and illumination time (0, 15 and 

30 min) as determined by MTT assay. 

Z+/--value BVqMAA-1/PLL-b-PEG BVqMAA-2/PLL-b-PEG 

 
0min 15min 30min 0min 15min 30min 

0 9.3 0.07 0.04 8 < 0.02 < 0.02 

0.25 > 10 0.13 0.05 > 10 0.12 0.07 

0.5 > 10 0.21 0.08 > 10 0.22 0.26 

1 > 10 0.77 0.28 > 10 0.13 0.54 

 

In the control samples without a photoirradiation step (0min), all the micelles had 

IC50-values above or close to the maximum tested PS concentration of 10 µg/mL; IC50-

values drastically decreased upon illumination. Generally, a prolonged illumination 

resulted in an increased cytotoxicity (lower IC50 values), as would be expected for a 

continuous ROS production leading to increasing cellular damage. Since PS-unloaded 

micelles (Table 7-S3) were not cytotoxic against these cells (Table 7-S4), the 

cytotoxicity observed for PS-carrying micelles upon irradiation should be a result of the 

ROS production from the PS. Interestingly, we found a strong influence of the 

PEGylation degree of the micelles on cytotoxicity, with illuminated non-PEGylated 

micelles exhibiting the lowest IC50-values of all samples. The cytotoxicity of both micelle 

types (BVqMAA-1 and 2) decreased with increasing Z+/--value. The uptake behavior of 

the micelles could explain this observation (Figure 7-3). There, a strong dependence of 

the cellular uptake with the micelle corona composition was also found. Interestingly, 
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even though BVqMAA-1/PLL-b-PEG micelles exhibited high cell uptake of PS 

(especially for low Z+/- values), they failed to show strong photo-induced cytotoxicity, 

probably because ROS production from PS-loaded BVqMAA-1/PLL-b-PEG micelles was 

not as efficient as from PS-loaded BVqMAA-2/PLL-b-PEG micelles. The difference in 

the corona composition of the micelles may affect their interaction with both the surface 

of cells and the serum molecules in the medium. Thus, strongly charged colloidal objects, 

such as the micelles with a low degree of PEGylation, should strongly interact with 

proteins in the serum as well as the cell surface, resulting in enhanced cellular uptake. At 

the same time, micelles with near complete PEGylation have a nearly neutral -potential 

in combination with a steric shielding effect from the PEG chains in the corona. Both 

effects should consequently decrease the interaction of the micelles with the cellular 

membrane, thereby decreasing cellular uptake.
30

 In in vitro stability experiments, we 

found that the micelles remain stable in serum-containing cell culture media for at least 

24 h, as only minor changes in the hydrodynamic radius of the micelles and the absence 

of large aggregates were observed (Figure 7-S3). In the measurement, protein adsorption 

could be masked to a certain extent through a simultaneous collapse of the corona. 

However, since most proteins in the cell culturing medium are also negatively charged we 

assume protein adsorption to occur only to a minor extent, at least in vitro. 

 

Figure 7-3. In vitro cellular uptake. Amount of PS per 10
6
 A549 cells in dependence of the Z+/--value of 

BVqMAA/PLL-b-PEG micelles after an incubation time of 24 h (n = 3). 
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Since an increased blood circulation leads to an improved accumulation of nano-

sized carriers in tumors due to highly permeable blood vessels and immature lymphatic 

systems, which is the so-called enhanced permeation and retention (EPR) effect,
31

 the 

surface modification of the micelles is expected to affect the blood circulation time and 

eventual accumulation in tumor tissue. We therefore evaluated the blood circulation of 

different BVqMAA/PLL-b-PEG micelles using intravital real-time confocal laser 

scanning microscopy (IVRTCLSM), which permits in situ monitoring and semi-

quantitative analysis of fluorescence-labelled DDS.
32

 We intravenously injected both 

types of micelles (BVqMAA-1 and BVqMAA-2) with varying degrees of PEGylation to 

female Balb/c nu/nu mice, and observed the fluorescence of the PS in the earlobe vein to 

quantify the blood circulation (Figure 7-4a and 7-4b). Original fluorescence images 

shortly after injection and at 60 min circulation time are depicted in Figure 7-S4. As with 

the in vitro cellular uptake study, we found a strong dependence of the blood circulation 

time on the degree of PEGylation. Only fully PEGylated micelles had a prolonged plasma 

circulation of several hours: >20% for BVqMAA-1/PLL-b-PEG and >30% for 

BVqMAA-2/PLL-b-PEG at 2 h. All other micelles, which were partially or non-

PEGylated, reached less than 10% in 15 min, indicating a fast clearance from the 

bloodstream. These results indicate an improvement of the circulation properties with 

increasing degree of PEGylation, as would be expected from the increased shielding 

effect of PEG and simultaneous reduction of charge density. Accordingly, long PEG 

chains and a high packing density are necessary to reduce protein adsorption on the 

surface of nanoparticles and extend their blood circulation, with the density being more 

significant than the length of the polymer. However, increasing density of PEG chains in 

the corona reduces chain mobility and flexibility, which in turn leads to less protein 

adsorption due to steric hindrance.
30, 33

 A correlation between better blood circulation and 

increased PEG density was recently shown for rod-like polymeric micelles from plasmid 

DNA complexed with different PLL-b-PEG diblock copolymers.
34

 There, micelles with 

improved blood circulation properties had a “squeezed” PEG conformation, which 

impedes opsonization and subsequent clearance. Thus, when comparing the circulation 

times of the two fully PEGylated micelles, BVqMAA-2/PLL-b-PEG showed higher 

amounts in the plasma, with roughly 10 % of relative fluorescence intensity after 2 h, 

probably due to the larger amount of PLL-b-PEG necessary to reach complete 

compensation of the long MAA corona, i.e., high PEG-density. Moreover, the circulation 

time observed for BVqMAA/PLL-b-PEG micelles is in between that reported for 
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different PEGylated polymersomes of similar size. While PICsomes with a size of 256 

nm had a much longer circulation time (T1/2 = 9.7 h),
35

 polymersomes from a PB-b-PEG 

diblock copolymer
36

 were cleared more rapidly than BVqMAA/PLL-b-PEG micelles. 

Apart from the circulation time it is rather difficult to compare the herein demonstrated 

BVqMAA/PLL-b-PEG micelles with other systems as they are larger than most 

polymeric micelles and, while similar in size, the mechanical properties compared to 

polymersomes might differ significantly. Additionally, the surface topology resulting 

from the “bottlebrush-on-sphere” morphology might have an influence on the interaction 

with biological media. 

To get more insight about the in vivo activity of the micelles, we evaluated the 

biodistribution of the micelles in mice bearing subcutaneous A549 tumors (Figure 7-4c 

and supporting Figure 7-S5). As can be seen in Figure 7-4c, the partially or non-

PEGylated micelles could not deliver the PS to the tumor site and only fully PEGylated 

micelles showed high accumulation of the drug at approximately 4% of the injected dose 

in the tumors. These findings correlate with the prolonged circulation times of PEGylated 

micelles and indicate the tumor targeting of these micelles by EPR effect. Also, it is well 

known that nanoparticles larger than 200 nm are likely to be entrapped in liver and 

spleen.
35-38

 Indeed, the BVqMAA/PLL-b-PEG micelles were mainly cleared by spleen 

and liver (Figure 7-S5). The tumor targeting with the micelles might be further improved 

by decreasing their size below 200 nm. 
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Figure 7-4. In vivo circulation time of PS-carrying BVqMAA-1 (A) and BVqMAA-2 (B) micelles with 

increasing degree of PEGylation in female Balb/c nu/nu mice. (C) Accumulation of PS in subcutaneous 

A549 tumor model 24 h after injection of BVqMAA/PLL-b-PEG Z+/- = 1 micelles (n = 4). In vivo PDT 

efficacy study (n = 5). Evolution of the tumor volume (D) and body weight (E) with time. : 1/5 tumor 

regression. *p > 0.05; **p < 0.001. (F) Comparison of tumor sizes resected 21 days after BVqMAA-2/PLL-

b-PEG injection and laser treatment. 

 

The prolonged blood circulation and eventual enhanced tumor accumulation of 

fully PEGylated micelles led to efficient PDT treatment. We evaluated the PDT efficacy 

of BVqMAA-2/PLL-b-PEG micelles with Z+/- = 1 against subcutaneous A549 tumors. 

Non-PEGylated BVqMAA-2 micelles and non-treated mice served as control. 24 h after 
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the injection, the mice were illuminated at the tumor site with a xenon lamp equipped 

with a 630 nm long-path filter to induce ROS production. The evolution of the tumor 

volume was monitored for 20 days as shown in Figure 7-4d. Only fully PEGylated 

micelles combined with photoirradiation significantly inhibited the tumor growth, even 

leading to complete tumor regression in one mouse, while the non-PEGylated micelles 

after irradiation exhibited a negligible antitumor activity (Figure 7-4d and Figure 7-4f). 

Also, we found no significant change in the body weight (Figure 7-4e) throughout the 

whole study, suggesting a negligible toxicity of the micelles. Intense necrosis was 

observed at the tumor site (Figure 7-S6) for fully PEGylated micelles after 

photoirradiation, indicating successful ROS production. The necrosis might have induced 

an activation of the immune system, further aiding in tumor regression in addition to 

cellular damage from ROS. These findings clearly demonstrate the effective treatment of 

A549 tumors by modifying the corona of the micelles and the overall capacity of the 

BVqMAA/PLL-b-PEG micelles to successfully act as DDS.  

 

Conclusions 

BVqMAA triblock terpolymer micelles were shown to be effective delivery 

vehicles for a hydrophobic model drug, which proved to be efficient in PDT treatment of 

A549 lung-cancer cells both in vitro and in vivo. By changing the corona composition 

from a highly negatively charged PMAA to neutral PEG in a simple and controlled 

manner, we demonstrated the strong influence of the micellar corona on the interaction 

with biological systems, as is evident by differences in cellular uptake, blood circulation 

properties and PDT efficacy. The PMAA length of the underlying BVqMAA micelles 

was of minor importance for the biological properties of the micelles. In principle, any 

water soluble block copolymer with a positively charged segment can be used for the 

corona modification, thereby offering a simple tool to produce micelles with versatile 

corona functionalities. Specific targeting molecules could be easily introduced through 

this mechanism. It remains to be seen whether the observed “bottlebrush-on-sphere” 

morphology can have a beneficial influence, for example in cellular recognition. Future 

work is being directed at exploring the full potential of the different compartments of this 

advanced carrier system.  
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Experimental Section 

Materials 

For anionic polymerization THF (Sigma-Aldrich, p.a. quality) was first distilled over 

CaH2 followed by a distillation over potassium and stored under N2 before use. Butadiene 

(Rießner-Gase, 2.5) was purified by passing through columns filled with molecular sieves 

(4 Å) and basic aluminum oxide, before condensation into a glass reactor and storage 

over dibutylmagnesium. 2-Vinylpyridine (97%, Aldrich) was de-inhibited by passing 

through a basic aluminium oxide column, subsequently stirred for 30 min with 2 mL of 

trioctylaluminium per 10 mL of 2-vinylpyridine and finally condensed to a sealable glass 

ampule under reduced pressure. tert-Butyl methacrylate (tBMA, 98%, Aldrich) was 

stirred with 0.5 mL of trioctylaluminium per 10 mL of tBMA for 30 min and then 

condensed to a sealable ampule under reduced pressure. 1,1-Diphenylethylene (DPE, 

Aldrich, 97%) was stirred with sec-butyllithium (sec-BuLi) under N2 and then distilled. 

sec-BuLi (Aldrich, 1.4 M in cyclohexane), dibutylmagnesium (Aldrich, 1M in heptane) 

and trioctylaluminum (Aldrich, 25 wt.% in hexane) were used as received. Quaternization 

of 2-vinylpyridine was performed with dimethyl sulfate (Me2SO4, >99%, Aldrich) and 

used without further purification. For hydrolysis of PtBMA to PMAA conc. HCl (32 %, 

1.2 g/L, Sigma-Aldrich) was used as received. NCA-L-Lys(TFA) and NCA-DLys(TFA) 

monomers were prepared by the Fuchs-Farthing method using triphosgene.
39

 -Methoxy-

-amino-PEG (PEG-NH2, Mn = 12,000 g/mol, PDI = 1.03) was purchased from NOF 

Corporation (Tokyo, Japan). DMF (p.a. quality, TCI) was stored over molecular sieves (4 

Å) and subsequently distilled under vacuum and was stored under argon atmosphere 

before use. Methanol, dioxane (p.a. quality, TCI), N,N-dimethylacetamide (DMAc, p.a. 

quality, TCI) DMSO-d6 and D2O (both Sigma-Aldrich) were used without further 

purification. The porphyrazine derivate 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-

21H,23H-porphine (dye content 85 %, Sigma-Aldrich) and N-(3-Dimethylaminopropyl)-

N′-ethylcarbodiimide hydrochloride (EDC, Sigma-Aldrich) were used as received. Sterile 

Millex AA syringe filters (0.8 µm, mixed cellulose esters) were delivered from Millipore. 

Milli-Q water purified with a Millipore filtering system was used in all cases. For 

dialysis, membranes made from regenerated cellulose (Spectrum Laboratories, 

Spectra/Por MWCO 1 kDa, 3.5 kDa, 6-8 kDa and 12-14 kDa) were used.  
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Synthesis of Polybutadiene-block-poly(2-vinylpyridine)-block-poly(tert-butyl 

methacrylate) (BVT) Triblock Terpolymers  

Sequential living anionic polymerization with sec-BuLi as initiator and THF as 

solvent in a laboratory autoclave (2.5 L) at low temperatures was used for the synthesis of 

BVT triblock terpolymers. The procedure was carried out analogue to our previously 

published procedures.
40, 41

 During the polymerization of the tert-butyl methacrylate 

(tBMA) block, samples were withdrawn at different conversions, thereby creating 

triblock terpolymers varying only in the block length of their final block, while both 

previous blocks are of the same length. In detail, 1.6 L of dry THF were placed in a 2.5 L 

laboratory autoclave (Büchi) and titrated at -20 °C with 16 mL of sec-BuLi solution (1.4 

M in hexane) to remove any protic species that may terminate the polymerization and left 

to warm to room temperature overnight. The so-formed alkoxides exhibit stabilizing 

effects on the living chain end and in the case of tBMA well-defined polymers are 

accessible without addition of LiCl.
42

 After cooling the reaction solution to -70 °C, 0.69 

mL of sec-BuLi (1 eq., 9.66 × 10
-4

 mol) were added, followed by the addition of 63.5 mL 

of butadiene (41.91 g, 800 eq., 0.7748 mol) and polymerization for 8 h at -25 °C and 

further 2 h at -10 °C. 2-Vinylpyridine (21.68 g, 210 eq., 0.2062 mol) was added at -70 °C 

and stirred for 2 h, before 0.85 mL of DPE (5 eq., 4.815 × 10
-3

 mol) was injected and the 

solution stirred for 2.5 h at -50 °C. Then, at -70 °C, 167.9 g of tBMA (1200 eq., 1.181 

mol) were added to the solution, which led to an immediate rise in the temperature to -60 

°C. The reaction temperature was increased to -50 °C and approximately 1/3 of the 

reaction solution was withdrawn and quenched in degassed isopropanol (200 mL) after 40 

min, 2 h and 8 h of reaction time, respectively. The final polymer was obtained after 

precipitation from THF solution containing butylated hydroxytoluene (BHT) as stabilizer 

into a 1/1 mixture of methanol and H2O. The degrees of polymerization of each block 

were calculated from a combination of MALDI-ToF-MS of the polybutadiene block and 

1
H-NMR of the final triblock terpolymer and determined to be B830V180T400 and 

B830V180T1350 for the two polymers used in this work, respectively. Size exclusion 

chromatography of the two polymers showed bimodal distributions in the elution curves 

of both polymers, which come from a small amount of terminated PB-b-P2VP diblock 

copolymer during the injection of tBMA monomer. The polydispersity indices (PDI) of 

the full sample were determined to be 1.04 and 1.08 for B830V180T400 and B830V180T1350, 

respectively. 
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Synthesis of Polylysine-block-poly(ethylene glycol) (PLL-b-PEG and PDLL-b-PEG) 

For the synthesis of PLL-b-PEG 1.059 g of N-carboxy anhydride of the 

trifluoroacetyl protected L-lysine (NCA-L-Lys(TFA), 3.949 mmol, 45 eq.) were placed 

under argon atmosphere in a 50 mL round-bottom-flask equipped with a magnetic stirrer 

bar, which had previously been evacuated overnight and were dissolved in 7 mL of dry 

DMF (containing 1 M thiourea). To this solution, 1.053 g of -methoxy--amino PEG 

(PEG-NH2, 8.775×10
-2

 mmol, 1 eq.) with a number average molecular weight of 12,000 

g/mol (PDI = 1.03) and dissolved in 1 mL of dry DMF (1 M thiourea) were added under 

argon atmosphere to serve as macroinitiator. The mixture was allowed to polymerize at 

25 °C for 72 h until all monomer had been consumed as observed by IR spectroscopy 

(signals at 1850, 1760 and 915 cm
-1

 disappear). The block copolymer was purified by 

dialysis against methanol (Spectra/Por membrane from regenerated cellulose with 

MWCO = 3,500 Da) for 2 d with repeated exchange of dialysis solution. Methanol was 

evaporated and the pure polymer (1.84 g, 95 % yield) was obtained after freeze-drying 

from dioxane. 
1
H-NMR gave a degree of polymerization of 40 for the TFA-protected L-

Lysine and SEC with DMF as eluent and PEG as calibration standard an apparent 

molecular weight of Mn, app. = 22,100 g/mol with a PDI of 1.05. Deprotection was 

achieved by dissolving 1 g of PLL(TFA)-b-PEG in 100 mL of methanol mixed with 10 

mL of 5 M NaOH solution and stirring in an open flask at 35 °C for 10 h. The deprotected 

PLL-b-PEG diblock copolymer was purified by dialysis against pH 4 aqueous solution 

(Spectra/Por membrane from regenerated cellulose with MWCO = 1,000 Da) and 

obtained as a white powder after freeze-drying (800 mg, 86 % yield). 
1
H-NMR (Figure 7-

S7) showed full deprotection and unchanged degree of polymerization for the lysine 

block, giving PLL40-b-PEG270, where the subscripts denote the respective degrees of 

polymerization.  

The synthesis of PDLL-b-PEG was achieved analogue to the procedure for PLL-

b-PEG, except for using a 1/1 mixture between NCA-D-Lys(TFA) and NCA-L-Lys(TFA) 

as monomers. 96 % yield was obtained for the trifluoroacetyl-protected diblock 

copolymer PDLL(TFA)-b-PEG after purification, where 
1
H-NMR showed a DP of 38 for 

the PDLL(TFA) block and SEC measurements with DMF as eluent gave Mn, app. = 24,800 

g/mol with the PDI = 1.03. The yield of PDLL38-b-PEG270 after complete deprotection 

and purification was 58 %. 
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Synthesis of Polybutadiene-block-poly(1-methyl-2-vinyl pyridinium methyl sulfate)-

block-poly(methacrylic acid) (BVqMAA) Triblock Terpolymer Micelles 

In a typical reaction, 50 mg of B830V180T400 (4.14 × 10
-7

 mol) were dissolved in 15 

mL of dioxane (p.a. quality) in a round-bottom-flask equipped with a magnetic stirrer bar. 

After adding 0.94 g Me2SO4 (0.71 mL, 7.45 × 10
-3

 mol, 100 eq. compared to 2-

vinylpyridine units), the flask was sealed and stirred for 5 d at 40 °C. Subsequently, 1.89 

g of conc. HCl solution (1.57 mL, 1.65 × 10
-2

 mol, 100 eq. compared to tBMA units) 

were added and the mixture was refluxed at 110 °C for 24 h. For the preparation of PS-

containing micelles 5.39 mg of porphyrazine derivate (1 × 10
-5

 mol) were dissolved in the 

mixture at ambient temperature. Self-assembly to B830Vq180MAA400 micelles was 

achieved through dialysis of the mixture first to 0.1 N NaOH solution (3 d with regular 

exchange of the dialysis solution, MWCO = 6-8 kDa) and finally dialysis to 10 mM PBS 

solution at pH 7.4 containing 140 mM NaCl for another 3 d. After dialysis was 

completed, part of the micelle solution was directly used for complex formation with 

PLL-b-PEG as described below. In the case of B830Vq180MAA1350 micelles the 

preparation procedure was analogue to the one described above, but with adjusted 

amounts of material (31.45 mg B830V180T1350 triblock terpolymer, 8 mL dioxane, 0.28 g 

Me2SO4, 1.89 g conc. HCl and 5.48 mg porphyrazine derivate). The micelle solutions 

which were not used for complex formation with PLL-b-PEG were filtered with 0.8 µm 

syringe filters and the polymer concentration was determined by weight from aliquots 

after dialysis to Milli-Q water and freeze-drying. PS concentration was determined from 

freeze-dried aliquots by re-dissolving the PS in DMAc and measuring the absorbance at 

552 nm and 620 nm.  

 

Preparation and Crosslinking of BVqMAA/PLL-b-PEG 

To BVqMAA micellar solutions in PBS buffer, PLL-b-PEG (or PDLL-b-PEG) 

was added from a stock solution (10 g/L in 10 mM PBS adjusted to pH 7.4 with 

additional 140 mM NaCl) and the complexes were allowed to form by shaking at room 

temperature for 7 d. The amount of added diblock copolymer was adjusted, so that Z+/--

values of 0.25; 0.50 and 1 (see equation 7-1) compared to the residual MAA units after 

intramicellar complex formation (MAA – Vq units) were reached, thereby creating 

complex micelles with increasing degree of PEGylation. Subsequently, a four-fold excess 

of EDC compared to the COOH groups of PMAA was directly dissolved in the mixture 
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and was stirred for 12 h at room temperature, before dialysis against PBS buffer (10 mM 

at pH 7.4 with 140 mM NaCl) with a 6-8 kDa MWCO dialysis membrane for several 

days. PEGylated micelle solutions were then filtered with a 0.8 µm syringe filter and 

polymer and PS concentration was determined as described for the non-PEGylated 

BVqMAA micelles. 

 

Characterization 

MALDI-ToF-MS. Measurements were performed on a Bruker Daltonics Reflex III 

instrument equipped with an N2 Laser (337 nm) and an acceleration voltage of 20 kV in 

positive ion mode. Sample preparation was done according to the “dried-droplet” method. 

In detail, matrix (DCTB, conc. 20 mg/mL), analyte (conc. 10 mg/mL) and salt (AgTFA, 

conc. 10 mg/mL) were separately dissolved in THF, subsequently mixed in a ratio of 

20/5/1 µL. Approximately 1 µL of the final mixture was applied to the target spot and left 

to dry under air. 

1
H-NMR. Spectra of PB, PB-b-P2VP and PB-b-P2VP-b-PtBMA were recorded on 

a Bruker Ultrashield 300 machine with a 300 MHz operating frequency using deuterated 

as solvent. PLL(TFA)-b-PEG and PLL-b-PEG were measured using a 300 MHz 

spectrometer (EX 300, JEOL, Tokyo, Japan) with DMSO-d8 and D2O as solvents, 

respectively. 

Potentiometric Titration. Micelle solutions (1 mL of 1 g/L in water containing 140 

mM NaCl) were adjusted to low pH through addition of 0.5 M HCl before being titrated 

at ambient temperature and under stirring with 0.01 N NaOH solution, while monitoring 

the solution pH with a pH electrode. 

Dynamic Light Scattering (DLS). The z-average hydrodynamic diameter, Dh, of 

the micelles was determined by cumulant analysis at ambient temperature using a 

Zetasizer Nano-ZS instrument (Malvern Instruments, Malvern, UK) equipped with a He-

Ne ion laser  = 633 nm and at a scattering angle of 173°. A low volume quartz cuvette 

(ZEN2112) was used for each measurement. For serum stability experiments an ALV 

DLS/SLS-SP 5022F compact goniometer system with an ALV 5000/E cross correlator 

and a He–Ne laser ( = 632.8 nm). The measurements were carried out in cylindrical 

scattering cells (d = 10 mm) at an angle of 90° and 37 °C in triplicate on the same sample. 

The CONTIN algorithm was applied to analyze the obtained correlation functions. 

Apparent hydrodynamic radii were calculated according to the Stokes–Einstein equation. 
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-potential Measurements. Measurements were performed in triplicate on the 

same instrument used for DLS with disposable capillary cells (DTS1061), where appr. 

800 µL of the micelle solution in PBS (10 mM PBS at pH 7.4 with additional 140 mM 

NaCl) were used per sample. The -potential was calculated from the obtained 

electrophoretic mobility by applying the Smoluchowski equation. 

Cryogenic Transmission Electron Microscopy (cryo-TEM). For cryo-TEM studies, 

a drop (~2 μL) of the aqueous micellar solution (c ~ 0.5 g×L
-1

) was placed on a lacey 

carbon-coated copper TEM grid (200 mesh, Science Services), where most of the liquid 

was removed with filter paper, leaving a thin film spread between the carbon coating. The 

specimens were shock vitrified by rapid immersion into liquid ethane in a temperature-

controlled freezing unit (Zeiss Cryobox, Zeiss NTS GmbH) and cooled to approximately 

90 K. The temperature was monitored and kept constant in the chamber during all of the 

preparation steps. After freezing the specimens they were inserted into a cryo-transfer 

holder (CT3500, Gatan) and transferred to a Zeiss EM922 OMEGA EFTEM instrument. 

Measurements were carried out at temperatures around 90 K. The microscope was 

operated at an acceleration voltage of 200 kV. Zero-loss filtered images (ΔE = 0 eV) were 

taken under reduced dose conditions. All images were recorded digitally by a bottom 

mounted CCD camera system (Ultrascan 1000, Gatan), and processed with a digital 

imaging processing system (Gatan Digital Micrograph 3.9 for GMS 1.4). 

Size Exclusion Chromatography (SEC). For the PB and PB-b-P2VP precursor 

polymers and BVT triblock terpolymers, a Waters instrument calibrated with narrowly 

distributed 1,4-PB standards at 40 °C and equipped with four PSS-SDV gel columns (5 

µm particle size) with a porosity range from 10
2
 to 10

5
 Å (PSS, Mainz, Germany) was 

used together with a differential refractometer and a UV detector at 260 nm. 

Measurements were performed in THF with a flow rate of 1 mL/min using toluene as 

internal standard. For PEG-NH2, PLL(TFA)-b-PEG and PDLL(TFA)-b-PEG polymers a 

Tosoh instrument (Yamaguchi, Japan) calibrated with PEG standards and equipped with 

three TSK columns (TSKguardcolumn HHR-L; TSKgel G4000HHR; TSKgel 

G3000HHR) and a refractive index detector (RI) at 40 °C was used. DMF with 10 mM 

LiCl was used as eluent at a flow rate of 0.8 mL/min. Sample concentration was 1 mg/mL 

and 100 µL were injected per measurement. 

Serum Stability Experiments. Micellar solutions (non-drug-carrying micelles 

Table 7-S3) were prepared in Dulbecco’s modified eagle medium (GIBC ) containing 
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10 % fetal bovine serum (GIBCO) at a concentration of 0.2 mg/mL and incubated at 37 

°C in a water bath. At the appropriate times an aliquot (1 mL) was removed from the 

respective solution for light scattering measurement. 

 

In Vitro Study 

Cell Culturing Conditions. A549 human lung adenocarcinoma cells were 

purchased from Riken cell bank (Tsukuba, Japan). A549 cells were cultured with 

Dulbecco’s modified eagle medium (Sigma,  apan) containing 10% fetal bovine serum 

(GIBCO, Japan) and Penicillin/Streptomycin (Sigma, Japan) in a humidified atmosphere 

containing 5% CO2 at 37 °C. The passage of the cells was trypsinazed with Trypsin-

EDTA solution (Sigma, Japan) after being washed with D-PBS (Wako, Japan). 

Cytotoxicity. A549 cells were seeded in 96-well plates at a density of 5,000 

cells/well in 50 µL of medium and incubated overnight. Then, 50 µL of medium 

containing the appropriate amount of polymer micelles were added to each well. The first 

row of 12 rows in each 96-well plate contained only medium but no cells and was used as 

a background, while the second row contained cells but was not treated with micelles to 

serve as reference for cell viability. Samples treated with micelles (n = 4) had a maximum 

concentration of 10 µg/mL with regard to the amount of PS, which decreased by a factor 

of 2 for each step in the concentration range. Non-PS-carrying-polymer micelles were 

tested at a maximum polymer concentration of 0.1 mg/mL. After incubating for 24 h, the 

plates were illuminated under a 300-W halogen lamp (fluence rate, 3.0 mW cm
−2

) 

equipped with a band-pass filter (400–700 nm) for 0, 15 and 30 min, while being placed 

on a frozen refrigerant-filled 6-well plate for cooling. The medium was replaced with 100 

µL of fresh medium per well after further incubating for 24 h. Then, 20 µL of MTT 

solution (5 mg/mL in PBS) was added to each well and the samples were incubated for 

further 3 h. Subsequently, 100 µL of SDS solution (20 %wt.) were added to each well and 

the plates were incubated overnight, before the absorption at 570 nm was determined with 

a plate-reader. The mean absorption value of the background row was subtracted before 

further evaluation. Cell viability was determined relative to the control row of each plate.  

Cellular Uptake. A549 cells were seeded in 6-well plates at a density of 1×10
6
 

cells/well in 2 mL of medium and incubated overnight before the medium was replaced 

by fresh DMEM containing micelles at 1µg PS/mL (2 mL/well total volume). After 24 h 

incubation, the PS-containing medium was removed and each well was washed twice 
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with cold PBS solution before 900µL of SDS solution (20 %wt.) were added. PS 

concentration was determined from the fluorescence signal at 627 nm (excitation at 400 

nm) with a fluorophotometer after incubation overnight directly from SDS solutions. 

From a control plate, which had not been treated with the micelles, the cell number per 

well was determined by detaching the cells with trypsin solution and subsequent cell 

counting with a NucleoCounter NC-100 (Eppendorf AG, Hamburg, Germany). 

Measurements were performed in triplicate for each sample.  

 

In Vivo Study 

Breeding Information. 5 weeks-old female nude mice (Balb/c nu/nu mice: 

CAnN.Cg-Foxn
1nu

 /CrlCrlj) were purchased from Charles River Laboratories (Yokohama, 

Japan) via Oriental Yeast Co. Ltd. (Tokyo, Japan) and maintained under the standard 

conditions (20 °C, relative humidity, light/dark cycles) at our animal facilities in the 

University of Tokyo. 

Blood Circulation Study. Blood circulation of the micelles was evaluated using 

intravital real-time confocal laser scanning microscopy (IVRTCLSM) in live mice. All 

images were acquired using a Nikon A1R confocal laser scanning microscope system 

attached to an upright ECLIPSE FN1 (Nikon Corp., Tokyo, Japan) equipped with a 20x 

objective (numerical aperture: 0.75), 561 nm laser, and a band-pass emission filter of 

570–620 nm. Balb/c nu/nu mice were anesthetized with 2.0–3.0% isoflurane (Abbott 

Japan Co., Ltd., Tokyo, Japan) using a Univenter 400 anaesthesia unit (Univentor Ltd., 

Zejtun, Malta). Mice were then subjected to lateral tail vein catheterization with a 30 

gauge needle (Dentronics Co., Ltd., Tokyo, Japan) connected to a nontoxic, medical 

grade polyethylene tube (Natsume Seisakusho Co., Ltd., Tokyo, Japan). Anesthetized 

mice were placed onto a temperature-controlled pad (Thermoplate; Tokai Hit Co., Ltd., 

Shizuoka, Japan) integrated into the microscope stage and maintained in a sedated state 

throughout the measurement. Ear-lobe dermis was observed following fixation beneath a 

coverslip with a single drop of immersion oil. Data were acquired at 12 frames/min for 3 

min, followed by snap-shots every 1 min thereafter. Micelles were injected (200 µL of the 

respective BVqMAA/PLL-b-PEG solution) via the tail vein 10 s after the start of video 

capture. Video data were analyzed by selecting regions of interest (ROIs) within blood 

vessels and the average fluorescence intensity per pixel for each time point was 

determined using the Nikon NIS-Elements C software (Nikon Corp.). Relative 
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fluorescence intensity shown in Figure 7-4a and Figure 7-4b was obtained with the 

following equation: 

relative fluorescence intensity = (fluorescence intensity at indicated time point – 

initial fluorescence intensity)/(maximum fluorescence intensity – initial fluorescence 

intensity) 

 

Biodistribution Study. Balb/c nu/nu mice (n = 24) were inoculated subcutaneously 

with A549 cells (100 µL of 1×10
8
 cells/mL). Tumors were allowed to grow for one week 

before the mice were separated into groups of 4. Then, polymer micelles with long- and 

short PMAA block and varying degree of PEGylation (Z+/- = 0; 0.25; 0.50 and 1) were 

injected into the tail vein at 10 µg/mouse based on the PS (maximum injection volume 

was 190 µL). 24 h post micelle injection, mice were sacrificed and kidneys, liver, spleen, 

lung and tumor were collected for the biodistribution study. The PS concentration of each 

sample was determined by fluorescence intensity at 627 nm in DCM (excitation at 400 

nm) in a fluorophotometer after being extracted as follows: 250 µL and 1 mL of SDS 

solution (20 %wt.) were added to 50 µL of the heavy blood components and for 200 mg 

of tissue, respectively, and the samples were sonicated until a homogeneous mixture was 

obtained. Then, the samples were shaken overnight at room temperature before 200 µL of 

DCM was added, followed by a short sonication step. Plasma samples of 40 µL were 

mixed with 200 µL DCM, shaken at room temperature overnight, before being shortly 

sonicated with a sonication finger. All samples were then centrifuged at 10,000 g for 30 

min to induce phase separation before measurement of the DCM phase.  

Tumor Suppression Study. Balb/c nu/nu mice (n = 25) were inoculated 

subcutaneously with A549 cells (100 µL of 1×10
8
 cells/mL). Tumors were allowed to 

grow for 10 days until they reach approximately 25 mm
3
. Mice were separated in groups 

of 5. Then, non PEGylated micelles and PEGylated micelles at 30 μg/kg based on PS 

were intravenously injected. Twenty-four hours later, mice were irradiated at the tumor 

position for 1000 seconds at 100 mW/cm
2
 by using a Xenon lamp with a 630 nm long-

path filter (Asahi Spectra, Tokyo, Japan). Mice in control groups were not irradiated. The 

antitumor activity was evaluated in terms of tumor size (V), as estimated by the following 

equation: 

     V = a × b
2
/2  

where a and b are the major and minor axes of the tumor measured by a caliper, 

respectively. The body weight was measured simultaneously and was taken as a 
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parameter of systemic toxicity. The statistical analysis of animal data was carried out by 

the unpaired student’s t-test. All animal experiments were performed following the 

guidelines of the ethical committee of the University of Tokyo. 
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Supporting Information 

 

Table 7-S1. Molecular characterization of BVT, BVqMAA, PLL(TFA)-b-PEG and PLys-b-PEG polymers. 

Name Polymer
a)

 Mn [g/mol] PDI 

BVT-1 B830V180T400 121,000
b)

 1.04
c)

 

BVT-2 B830V180T1350 256,000
b)

 1.08
c)

 

BVqMAA-1 B830Vq180MAA400 101,000
d)

 - 

BVqMAA-2 B830Vq180MAA1350 183,000
d)

 - 

 PLL(TFA)40-b-PEG270 21,400
b)

 1.05
e)

 

 PDLL(TFA)38-b-PEG270 20,900
b)

 1.03
e)

 

PLL-b-PEG PLL40-b-PEG270 17,500
b)

 - 

PDLL-b-PEG PDLL38-b-PEG270 17,300
b)

 - 

a) Subscripts denote the degree of polymerization of the respective blocks; b) calculated from a 

combination of MALDI-ToF-MS and 
1
H-NMR data; c) determined from SEC measurements with THF as 

eluent and linear polystyrene as calibration standard; d) calculated from the degrees of polymerization 

without taking the counterions of quaternized 2-vinylpyridine into account; e) determined from SEC 

measurements with DMF as eluent and linear poly(ethylene glycol) as calibration standard. 

 

Table 7-S2. Average core diameter of PS carrying BVqMAA/PLL-b-PEG complex micelles determined 

from cryo-TEM micrographs by measuring at least 50 micelles per sample with standard deviation. 

Polymer 
Z+/--value 

0 0.25 0.5 1 

BVqMAA-1 90 ± 12 nm 93 ± 11 nm 89 ± 9 nm 93 ± 9 nm 

BVqMAA-2 76 ± 12 nm 70 ± 14 nm 64 ± 12 nm 65 ± 14 nm 
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Table 7-S3. Characterization of BVqMAA-1 and BVqMAA-2 control micelles with increasing degree of 

PEGylation without drug in regard to polymer concentration and cumulant hydrodynamic diameter. All 

micelle solutions were in in 10 mM PBS buffer solution at pH 7.4 with additional 140 mM NaCl. 

Polymer Z+/--value 
Polymer 

Conc. [g/L]
a
 

Dh [nm] D.I. 

BVqMAA-

1 

0 0.80 250 0.094 

0.25 0.89 266 0.136 

0.5 1.00 244 0.111 

1 1.42 250 0.074 

BVqMAA-

2 

0 0.94 346 0.123 

0.25 0.91 361 0.050 

0.5 1.18 359 0.021 

1 1.65 359 0.068 

a) determined by weight after freeze drying of aliquot dialyzed to MilliQ water to remove buffer salts. 

 

Table 7-S4. In vitro PDT efficacy. IC50 values (mg polymer/mL medium) of BVqMAA/PLL-b-PEG 

control micelles without drug in A549 cells in dependence of the degree of PEGylation and illumination 

time as determined by MTT assay. 

Z+/--value BVqMAA-1/PLL-b-PEG BVqMAA-2/PLL-b-PEG 

Illumination time 0min 15min 30min 0min 15min 30min 

0 > 0.1 > 0.1 > 0.1 > 0.1 > 0.1 > 0.1 

0.25 > 0.1 > 0.1 > 0.1 > 0.1 > 0.1 > 0.1 

0.5 > 0.1 > 0.1 > 0.1 > 0.1 > 0.1 > 0.1 

1 > 0.1 > 0.1 > 0.1 > 0.1 > 0.1 > 0.1 

 

 

Figure 7-S1. CD-Spectra of BVqMAA-2 micelle solution (squares) and complexed micelles with PLL-b-

PEG (circles), PDLL-b-PEG (triangles) at Z+/- = 1.  



Chapter 7 – MCMs for Efficient in Vivo Photodynamic Therapy 

240 

 

Figure 7-S2. Cryo-TEM micrographs of BVqMAA-1 (A) and BVqMAA-2 (B) micelles complexed with 

PDLL-b-PEG at Z+/- = 1 in 10 mM PBS buffer at pH 7.4 with 140 mM NaCl after crosslinking. The insets 

show single enlarged micelles with the scale bar representing 50 nm. 

 

 

Figure 7-S3. Serum stability of BVqMAA/PLL-b-PEG micelles determined from light scattering 

measurements. Evolution of the relative hydrodynamic radius with incubation time. Measurements were 

performed at a micelle concentration of 0.2 mg/mL in DMEM medium containing 10 % fetal bovine serum 

and incubation temperature was 37 °C. 
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Figure 7-S4. Intravital real-time confocal laser scanning microscopy images of PS carrying 

BVqMAA/PLL-b-PEG micelles shortly after injection and 60 min post tail vein injection.  

 

 

Figure 7-S5. Accumulation of PS in organs of Balb/c nu/nu mice (n = 4) 24 h after tail-vein injection in 

dependence of the degree of PEGylation of BVqMAA/PLL-b-PEG micelles. Injected dose is 10 µg of PS 

per mouse. 
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Figure 7-S6. Comparative images of the tumor site in mice with (right images) and without (left images) 

photoirradiation 24 h after injection of PS carrying BVqMAA-2/PLL-b-PEG micelles with Z+/- = 0 (top) 

and Z+/- = 1 (bottom). 

 

 

Figure 7-S7. Synthetic procedure for the preparation of PLL-b-PEG (A); Elution curves of PEG-NH2 

macroinitiator and PLL(TFA)-b-PEG using DMF as eluent and PEG as calibration standard (B); 
1
H-NMR 

spectra of PLL(TFA)-b-PEG (C, recorded in DMSO-d8) and PLL-b-PEG (D, recorded in D2O). 
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“There is a theory which states that if ever anyone discovers 

exactly what the Universe is for and why it is here, it will 

instantly disappear and be replaced by something even more 

bizarre and inexplicable. 

 

There is another theory which states that this has already 

happened.” 

― Douglas Adams, The Restaurant at the End of the 

Universe 
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