Logo JG-Universität MainzProf. Dr. Axel Müller

    

463. Majewski, A.P.; Stahlschmidt, U.; Jérôme, V.; Freitag, R.; Müller, A.H.E.; Schmalz, H.: PDMAEMA-Grafted Core-Shell-Corona Particles for Non-Viral Gene Delivery and Magnetic Cell Separation, Biomacromolecules 14, 3081-3090 (2013) -- DOI: 10.1021/bm400703d
Abstract:

Monodisperse, magnetic nanoparticles as vectors for gene delivery were successfully synthesized via the grafting-from approach. First, oleic acid stabilized maghemite nanoparticles (γ-Fe2O3) were encapsulated with silica utilizing a reverse microemulsion process with simultaneous functionalization with initiating sites for atom transfer radical polymerization (ATRP). Polymerization of 2-(dimethylamino)-ethyl methacrylate (DMAEMA) from the core−shell nanoparticles led to core−shell−corona hybrid nanoparticles (γ-Fe2O3@silica@PDMAEMA) with an average grafting density of 91 polymer chains of DPn= 540(PDMAEMA540) per particle. The permanent attachment of the arms was verified by field-flow fractionation. The dual-responsive behavior (pH and temperature) was confirmed by dynamic light scattering (DLS) and turbidity measurements. The interaction of the hybrid nanoparticles with plasmid DNA at various N/P ratios (polymer nitrogen/DNA phosphorus) was investigated by DLS and zeta-potential measurements, indicating that for N/P≥ 7.5 the complexes bear a positive net charge and do not undergo secondary aggregation. The hybrids were tested as transfection agents under standard conditions in CHO-K1 and L929 cells, revealing transfection efficiencies >50% and low cytotoxicity at N/P ratios of 10 and 15, respectively. Due to the magnetic properties of the hybrid gene vector, it is possible to collect most of the cells that have incorporated a sufficient amount of magnetic material by using a magnetic activated cell sorting system (MACS). Afterward, cells were further cultivated and displayed a transfection efficiency of ca. 60% together with a high viability.

There are additional file downloads belonging to this publication

Password

powered by php + PostgreSQL - last modified 2014-02-13- Impressum