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Summary/Zusammenfassung 

Summary 
 

Various cylindrical polymer brushes were synthesized via a grafting-from strategy. 

Very long poly(2-hydroxylethyl methacrylate) backbones of the brushes were prepared 

by anionic polymerization (DPn=1500), esterified with an ATRP initiator, and 

subsequently the side-chains were grafted by atom transfer radical polymerizations 

(ATRP). Cylindrical brushes with different architectures, such as brushes of single 

component, double-grafted brushes and core-shell brushes, were built according to the 

need of applications. A number of functional monomers were involved in the 

preparations of the brushes, providing possibilities for further functionalizations and uses. 

Nano-hybrids comprising organic cylindrical brushes and inorganic nanoparticles such as 

magnetite and polyhedral oligomeric silsesquioxane (POSS) were fabricated through 

non-covalent inclusion and covalent attachment respectively.  

Double-grafted poly(lauryl methacrylate) brushes carry side-chains containing dodecyl 

short grafts. The long alkyl chains provided good solubility in hydro-carbon solvents like 

n-hexane and paraffin oil. DSC measurements revealed that they undergo side-chain 

crystallizations. 

Grafting of N,N-dimethylaminoethyl methacrylate (DMAEMA) to the macro-initiator 

by ATRP yielded weak polyelectrolyte cylindrical brushes. They showed responsiveness 

to pH and salinity in solution. Strong cationic polyelectrolyte brushes were obtained by 

further quaternization of the PDMAEMA brushes. Their responses to counterions of 

different valencies were investigated. The addition of a sufficient amount of mono-valent 

salt induced the collapse of these brushes. When di- and tri-valent counterions were 

added, helical transition morphologies were recorded before the brushes collapsed into 

sphere-like structures. Special trivalent counterions, which can change valency through 

photo-aquation reactions, allowed switching the morphologies of the cationic brushes 

from worms to globules and back to worms.  

The morphologies of the cationic brushes could also be tuned by forming ionic 

complexes with the anionic surfactant sodium dedecyl sulfonate (SDS) and 

supramolecular inclusion complexes between cyclodextrins (CDs) and SDS. The brushes 

underwent transitions from worms, over pearl-necklace structures to totally collapsed 
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spheres when SDS was added. Introducing α- or β-cyclodextrins could bring the 

collapsed spheres back to worms. Adamantyl ammonium chloride, a more competitive 

inclusion agent, deprived SDS of CDs, and re-induced the spherical collapse of the 

brushes. 

The morphologies of the cationic brushes could be regulated in a similar way by 

forming inter-polyelectrolyte complexes (IPECs) with anionic linear poly(sodium styrene 

sulfonate) (PSS) in highly diluted solutions. Worm-to-sphere switching with helix-like 

transition states was also observed. 

A new strategy for the direct preparation of strong anionic polyelectrolyte cylindrical 

brushes without protection was introduced by forming supramolecular complexes 

between the monomer potassium sulfopropyl methacrylate (SPMA) and crown ether 18-

crown-6 in DMSO using ATRP for the grafting-from processes. Well-defined worm-like 

morphologies were proven by atomic force microscopy (AFM) and cryogenic 

transmission microscopy (cryo-TEM). 

Water soluble double-hydrophilic core-shell cylindrical brushes were prepared and 

showed pH responsiveness. Magnetic hybrid cylinders were formed by introducing 

magnetite nanoparticles into the core. They could be aligned on a large scale on the 

substrates by applying magnetic fields. 

Finally, single-molecular hybrid cylinders were created by covalently attaching thiol-

functionalized polyhedral oligomeric silsequioxane (POSS) to poly(glycidyl methacrylate) 

brushes. Their pyrolysis in air resulted in porous silica materials. 
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Zusammenfassung 
 

Verschiedene zylindrische Polymerbürsten wurden mit der “grafting-from” Strategie 

synthetisiert. Zu diesem Zweck wurde ein sehr langes Poly(2-hydroxylethyl methacrylat) 

Polymerrückgrat (DPn = 1500), welches über anionische Polymerisation hergestellt 

wurde, mit einem ATRP (Atom Transfer Radical Polymerisation) Initiator verestert und 

anschließend wurden unterschiedliche Monomer mittels ATRP polymerisiert. 

Verschiedene Polymerbürstenarchitekturen, wie z.B. homogene  oder Kern-Schale 

Bürsten, wurden entsprechend dem Verwendungszweck hergestellt. Mehrere funktionelle 

Monomere wurden für die Synthese eingesetzt um die Möglichkeit für weiterführende 

Funktionalisierungen und Anwendungen zu ermöglichen. Nanoskopische 

Hybridmaterialien wurden aus organischen Bürsten und anorganischen Nanopartikeln, 

wie Magnetit oder polyhedralen Silsesquioxanen (POSS), über nicht-kovalente und 

kovalente Anknüpfungen dargestellt.   
Doppelt gepfropfte Poly(laurylmethacrylat)bürsten mit Seitenketten, die über 

zusätzliche kurze Alkylseitenketten verfügen, wurde synthetisiert. Die Alkylseitenketten 

sorgten für eine exzellente Löslichkeit in unpolaren Lösungsmitteln (n-Hexan, Paraffin) 

und die Kristallisierbarkeit der Seitenketten wurde mittels DSC gezeigt. 

Die ATRP vermittelte Pfropfung von N,N-Dimethylaminoethylmethacrylat 

(DMAEMA) führte zu zylindrischen, schwachen Polyelektrolytbürsten. Diese zeigten 

pH-Schaltbarkeit in wässriger Lösung. Starke Polyelektrolytbürsten konnten durch eine 

Quarternisierungsreaktion hergestellt werden. Deren Verhalten in Gegenwart verschieden 

geladener Gegenionen wurde untersucht. Bei ausreichender Zugabe monovalenten Salzes 

zeigte sich ein Kollaps der zylindrischen in eine globuläre Struktur. Bei Zugabe von 

zwei- und dreiwertigen Gegenionen konnten helikale Übergangszustände vor dem 

Kollaps gefunden werden. Spezielle photoschaltbare Gegenionen, welche Photoaquation 

zeigen, erlaubten ein Schalten der Struktur von wurmartigen Partikeln zu sphärischen und 

zurück zu wurmartigen Bürsten.   

Die Morphologien der kationischen Polymerbürsten konnten auch über eine ionische 

Komplexbildung mit anionischen Tensiden (Natriumdodecylsufat, SDS) und über 

supramolekulare Einschlussverbindungen von Cyclodextrinen und SDS verändert werden. 
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Die Bürsten zeigten einen Übergang von wurmartigen zu sphärischen Partikeln mit einer 

perlkettenartigen Übergangsstruktur bei Zugabe von SDS. Anschließendes Zugeben von 

α- oder β-Cyclodextrinen erlaubte eine Erholung der Struktur von kollabierten Sphären  

zu wurmartigen Molekülen. Adamantylammoniumchlorid, welches eine stärkere 

Einschlussverbindung mit SDS bildet, führte zur erneuten Freisetzung von SDS und zu 

einem wiederholten Kollaps der Struktur.  

Die Interpolyelektrolytkomplexbildung (IPEC) mit linearem 

Poly(Natriumstyrolsulfonat) (PSS) erlaubte eine Regulierung der Polymerbürstenstruktur 

in ähnlicher Weise. Übergänge von wurmartigen zu sphärischen Strukturen, mit 

helixartigen Zwischenzuständen, wurden ebenfalls gefunden. 

Eine neue Strategie zur direkten Herstellung von starken anionischen 

Polyelektrolytbürsten mittels ATRP von Kaliumsulfopropylmethacrylat in DMSO, in 

dem das Kaliumion durch Kronenether komplexiert ist, wurde entwickelt. Wohldefinierte 

wurmartige Morphologien wurden mittels Rasterkraftmikroskopie und kryogener 

Transmissionselektronenmikroskopie gezeigt. 

Zudem wurden bis-hydrophile Kern-Schale Polymerbürsten hergestellt, die pH-

Schaltbarkeit zeigten. Magnetische Hybridzylinder wurden durch Einlagerung von 

Magnetitnanopartikeln hergestellt. Diese konnten großflächig durch externe Magnetfelder 

orientiert werden. 

In einem letzten Teil wurden anorganisch-organisch Hybridzylinder über die kovalente 

Anbindung von thiolfunktionalisierten POSS Molekülen an Glycidylmethacrylatbürsten 

realisiert. Deren Pyrolyse an Luft resultierte in porösem Silica Material.  
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1. Introduction 
 

With the rapid development of nanotechnology, tremendous research works have been 

focused on the preparation of various nanostructures1, 2. For different purposes of 

applications, different nanostructures are required3, 4. Nanoparticles (NPs)5, nanowires 

(NWs)6, nanotubes (NTs)7 and other nanostructures have been successfully prepared. Due 

to their various architectures and functionalities, soft materials like polymers have been 

playing extremely important roles for the templated synthesis, surface protection, surface 

functionalizations of nanostructures8. Recent progress in living/controlled polymerization 

techniques has enabled the preparation of polymers with various well-defined topologies. 

Scheme 1-1 summarizes the general polymer architectures. 

 

Linear Ring Star

BrushBranchedNetworks

Linear Ring Star

BrushBranchedNetworks  
Scheme 1-1. General topologies of polymers. 

 

Polymer brushes 

When the grafting density of polymer chains tethered to other polymer chains, 

spherical, or planar substrates is high enough, polymer brushes are formed9. According to 

the substrates to which the polymers are grafted, polymer brushes can be classified as 

planar polymer brushes (PPBs)10, spherical polymer brushes (SPBs)11 and cylindrical 

polymer brushes (CPBs)12, 13. Scheme 1-2 shows these three different topologies. Due to 

the high grafting densities and the great steric repulsion, these grafted polymer chains 
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generally adopt quite stretched conformations, leading to special properties and related 

applications, either in solutions or on surfaces. 

 

Planar polymer Spherical polymer Cylindrical polymer brushes  

Scheme 1-2.  Possible architectures of polymer brushes. 

 

Cylindrical polymer brushes 

When a linear polymer is grafted with a large number of relatively short side-chains, 

cylindrical polymer brushes are formed9, 12, 13. Due to their anisotropic nature in topology, 

they have attracted more and more research interest in their synthesis, bulk, or solution 

properties, as well as the applications of such polymers. They are also denoted as “bottle 

brushes” or “molecular brushes”. 

Three main strategies have been successfully developed for the synthesis of CPBs: 

grafting through, grafting to, and grafting from. Scheme 1-3 shows the processes for each 

preparation strategy. In the following, the advantages and disadvantages of each strategy 

are described in detail. 

Grafting through. CPBs can be prepared by the polymerization of the preformed 

macromonomers14-16. This was the first pioneering method in the synthesis of CPBs. For 

the first time, Tsukahara et al successfully obtained CPBs by the radical polymerization 

of macromonomers14. Short polymeric macromonomers with polymerizable vinyl chain 

end were first made by anionic polymerization and sequential end-functionalizations. 

Further radical polymerizations of the pre-made macromonomers yielded CPBs with 

uniform side chains. This method was then further employed by Schmidt et al15, 16 and 

Ishizu et al17, 18 to prepare CPBs with different functionalities and architectures. The most 

obvious merit of this method lies in the high grafting density of the side-chains. 

Unfortunately, inevitable disadvantages are also associated with this method. Generally, 
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due to the great steric hindrance caused by the macromonomers, it is difficult to get very 

long CPBs. Conventional radical polymerizations can only afford CPBs with a rather 

broad distribution of the backbone length. More importantly, it is very difficult to obtain 

complete conversions of the macromonomers, which results in a more difficult 

purification process. In order to remove the residual macromonomers from the reaction 

mixtures, fractionations are generally required. These, in combination, have limited the 

use of this strategy for the preparation of CPBs with well-defined structures.  

 
Scheme 1-3.  Three different strategies for the preparation of CPBs13. 

Grafting to. CPBs can also be built by coupling reactions between the pre-formed 

monotelechelic polymers and preformed multi-functionalized long backbones19-21, as 

shown in Scheme 1-3. The advantage of this technique is that both backbone and side-

chain can be well-defined since they are prepared separately. For example, 

Matyjaszewski et al prepared both backbones and grafts by using atom transfer radical 

polymerizations (ATRP) and recently well-developed click chemistry for the coupling 

reactions21. Scheme 1-4 displays the process for the preparation. 
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Scheme 1-4. Preparation of CPBs by combination of ATRP and click chemistry21. 

However, low grafting densities are always associated with the grafting to method 

because of the high steric hindrance, which lead to the relative short brushes caused by 

the insufficient crowding of the side-chains. Unavoidably, incomplete coupling reactions 

between the side-chains and backbones cause more problems for the purification 

procedures, compared to the grafting through method. 

Grafting from. Created one decade ago by Matyjaszewski et al22, the grafting from 

method has been successful in the syntheses of different CPBs with both well-defined 

backbones and side-chains22-24. In this method, a narrowly distributed long backbone is 

first prepared via living polymerization techniques, followed by functionalization to 

attach initiating groups to the backbone for the further grafting polymerizations. 

The backbone polymers determine the length and distribution of the CPBs. In order to 

obtain very long functional backbones, different living polymerizations, such as anionic 

polymerizations25, ATRP22 and reversible addition-fragmentation chain transfer radical 

polymerizations (RAFT)26 have been employed. For example, in our group25, anionic 

polymerizations of protected 2-hydroxylethyl methacrylate and further esterification 
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reactions produced extremely long macroinitiators with DPn up to 3200, as shown in 

scheme 1-5. 
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Scheme 1-5. Preparation of macroinitiators by anionic polymerizations and further 

functionalizations25. 

For the grafting of side-chains, different controlled polymerization techniques were 

also applied. In addition to the rare cases of ring-opening polymerizations (ROP)27 and 

nitroxide mediated radical polymerizations (NMRP)28, ATRP has been the dominating 

technique for the preparation of most of the side-chains22-25. 

R-X   + Mt
n-Y/Ligand

kact

kdeact

R• +
kp

monomer termination

X-Mt
n+1-Y/Ligand

kt

 

Scheme 1-6. Mechanism of the ATRP technique29. 

As illustrated in scheme 1-6, activation and deactivation processes are involved in the 

ATRP process and very low concentrations of radicals are generated to give rise to the 
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controlled growth of the polymer chains29. Many aspects, such as monomer, initiator 

structure, catalyst, ligand, solvent, and temperature, have great impacts on this 

polymerization technique. When it comes to macroinitiators, the situation is more 

complicated. Due to the very high local concentration of radicals around the linear 

macroinitiators, the rate of polymerization is normally higher than that for the ATRP 

initiated by small initiators. The concentration of the catalyst/ligand complex should be 

kept low to avoid inter- or intra-molecular coupling reactions22. Although few CPBs 

made by ATRP showed high initiating efficiency24, low initiating efficiencies were 

commonly reported30-33, due to the steric hindrance and slower initiating process 

compared to the rate of propagation. To improve the initiating efficiency, a lot of 

measures can be taken. For example, Matyjaszewski et al reported on the improvement of 

the initiating efficiency by a lower monomer concentration, a higher concentration of the 

catalyst with adding Cu (II), and halogen exchange31. 

 So far, the grafting from strategy has proven to be the most successful one for the 

preparation of CPBs. Well-defined backbones and side-chains with relatively high 

grafting density can be prepared. 

 

Cylindrical polymer brushes of different topologies 

Based on the strategies described above, CPBs with various topologies have been 

prepared. Scheme 1-7 shows the possible CPBs of different topologies, as was 

summarized by Sheiko et al13. 

Some rare examples of CPBs with stiff backbones were also reported34, 35. In most 

cases, the CPBs were prepared from flexible backbones. For the homo-polymer CPBs, 

brushes with gradient grafting were reported by Matyjaszewski et al36, 37. Interesting 

block copolymer brushes, such as core-shell brushes23, 24, AB type block copolymer 

brushes38, 39 and hetero-grafted (or mixed) brushes40-44, have attracted people for their 

possible self-assembly behaviors in solutions or in the bulk. Grafting from the star-like 

macroinitiators resulted in the star-shaped brushes45. Double-grafted (graft-on-graft) 

CPBs have been successfully synthesized by growing oligomeric macromonomers from 

the macroinitiators32, 46. Matyjaszewski et al reported that the crosslinked CPBs showed 
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interesting super-soft elastomer properties47. Very lately, Deffieux et al even prepared 

more complicated ring-shaped brushes by grafting to methods48. By using suitable 

backbones, the rings could be opened afterwards to give rise to the common CPBs. In 

general, these CPBs with different topologies can be regarded as special soft building 

blocks, nano-templates and novel molecular materials.  

 

Scheme 1-7. Cylindrical polymer brushes of different topologies13. 
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Cylindrical polymer brushes of different functionalities 

Thanks to the progress in the living/controlled polymerization techniques, CPBs with 

diverse functionalities have been prepared. 

Müller et al successfully obtained well-defined sugar-containing CPBs by grafting 

sugar-carrying polymers from long macroinitiators49. Cylindrical polypeptide brushes 

were also reported by grafting through and grafting from methods by Schmidt et al50. 

These bio-compatible nano-cylinders may find their applications in the related fields. 

Weak or strong polyelectrolyte CPBs with special solution properties have been 

prepared by different methods51-54. Researches on their solution behavior and ionic 

complexes with surfactants, oppositely charged polyelectrolytes and nanoparticles are hot 

topics at present. 

Furthermore, a lot of attention has been paid to CPBs with response to external stimuli 

like pH, temperature, or light, since they might serve as single-molecular nano-actuators 

or nano-devices. For the first time, Schmidt et al prepared thermal sensitive CPBs with 

poly(N-isopropylacrylamide) (PNIPAAm) side-chains by grafting from using ATRP55. 

Interesting single-molecular morphology transitions from worm-like structures into 

spheres were observed when the temperature is higher than the lower critical soluble 

temperature (LCST). In a similar manner, CPBs with conducting poly(thiophene) 

backbones and PNIPAAm side-chains were also reported by McCarley et al56. 

Matyjaszewski et al. also successfully prepared photo-tunable temperature responsive 

core-shell type cylindrical brushes by the grafting from method via ATRP57. 

 

Properties of cylindrical polymer brushes 

So far, there have been intensive studies on the properties of CPBs concerning their 

properties in the bulk, in solution and on surfaces.  

A lot of investigations were carried out to understand the solution properties of the 

side-chains and the backbones. It is found that the persistence length of CPBs increases 

monotonously with increasing side chain length, and the contour length per monomer 

unit in the backbone approaches the limiting value, 0.25 nm, with long side-chains58-60. 

Thus the backbones adopt quite rigid and stretched conformations, while the side-chains 
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have limited flexibilities due to their tethering to the backbone and the repulsion 

occurring from the neighbouring side-chains. It was also found that the persistent lengths 

of the CPBs dramatically decrease in bad solvents61. 

Besides the investigations on the solution properties, interesting bulk properties were 

also found for the CPBs. If the grafting of the CPBs is dense enough, and the aspect ratio 

of the length to diameter exceeds a value of 10, so called lyotropic phases appear, 

resulting from the strong molecular anisotropy of the polymer brushes62, 63. 

More recently, people became interested in the single-molecular morphologies of the 

CPBs either in solution or on substrates. When the backbone of the CPBs is flexible, it 

provides another degree of freedom for the worm-like polymers. Responding to different 

internal or external forces and stimuli, flexible CPBs can undergo morphology transitions 

from worm-like structures to sphere-like objects. Even helical intermediate transition 

states have been observed. Scheme 1-8 shows the typical conformation transition 

processes. 

Worms Spheres

Helix

Worms Spheres

Helix

 
Scheme 1-7. Possible morphological transitions of CPBs. 

 

As pointed out above, CPBs with thermo-sensitive side-chains and flexible backbones 

showed worm-to-sphere transitions above the critical temperatures55. Lately, Schmidt et 

al showed interesting worm-to-helix and worm-to-sphere transitions of cationic 

polypeptide brushes by their interaction with the anionic surfactant SDS64. 
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Similar worm-to-sphere transitions were also found for the CPBs deposited on the 

substrates by responding to pressure65 and the vapor of poor solvents66-68.  

Sheiko et al even found that extremely long CPBs break into smaller pieces simply due 

to the adsorption on a substrate, which provided some cautions for the use of the brushes 

on the substrates, and also some opportunities to use this feature deliberately69. 

The single-molecular morphology transitions observed for CPBs give rise to their 

potential applications in nano-scale devices, such as nano-actuators and nano-sensors.  

 

Nanocomposites of cylindrical polymer brushes 

Through the combination of the outstanding mechanical, optical, electric and magnetic 

properties of inorganic materials with the excellent processability, functionality and 

biocompatibility of soft organic materials, nano-composites have demonstrated their 

advanced performances. These often exceed the simple addition of their every single 

component’s characteristics, due to the special surface and quantum effects on the nano-

scale70, 71. Polymer based nano-composites have been widely investigated and a large 

category of inorganic materials, such as carbon materials, ceramics, clays, metals, metal 

oxides and silica, have been incorporated into different polymeric materials72. 

Two general strategies for the preparation of polymer-based nano-composites have 

been applied. The easiest way is the non-covalent dispersing of the nanometer-sized 

inorganic materials into the polymer by mechanical blending, melting or solution 

treatments. The other method is to prepare the nano-composites via covalent linking, 

either by direct polymerization of functional monomers bearing inorganic groups, or by 

post-polymerization reactions. The strong covalent linking of the inorganic part to the 

organic polymer chains is supposed to result in better performances of these materials. 

Recent progress has been made for the preparation of nano-composite materials on the 

molecular level. Suitable nano-structured polymer matrices are greatly demanded for the 

building the molecular nano-composites. Spherically-shaped polymers like star polymers, 

dendrimer and hyperbranched polymers can meet the requirements to some extent. 

Demands on anisotropic polymer molecules are increasing, owing to their interesting 

properties and potential applications. One-dimensional nano-structured CPBs may play 
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the roles, owing to their various topologies, functionalities and special properties 

described previously. 

Based on the non-covalent and covalent strategies for the building of nano-composites, 

single-molecular hybrid materials have been prepared by incorporating inorganic 

nanoparticles into CPBs. 

In most cases, non-covalent hybrid materials from CPBs and inorganic nanoparticles 

were generated in situ in the cavities of core-shell CPBs. Schmidt et al prepared gold 

nanoparticles and nanowires in the core of CPBs with a poly(vinyl pyridine) core and a 

poly(styrene) shell73. In Müller’s group, semi-conducting74 and supraparamagnetic75 

nanoparticles were also made within amphiphilic core-shell brushes. Scheme 1-8 shows 

the structures of these hybrids. 

Au, CdS, CdSe, Fe2O3 …== Au, CdS, CdSe, Fe2O3 …
 

Scheme 1-8. Hybrids with inorganic nanoparticles in the shell of core-shell CPBs. 

 

Hybrids with inorganic nanoparticles covalently linked to the CPBs can be formed by 

grafting functional monomers with inorganic precursors onto previously formed CPBs. 

Matyjaszewski et al reported on the synthesis of multi-block copolymer brushes with 

poly(acrylonitrile) as the core by ATRP76. Pyrolysis of the brushes resulted in novel 

carbon nanomaterials. Very recently, Müller et al have reported the preparation of CPBs 

with silsesquioxanes as the cores and poly(oligoethyleneglycol methacrylate) (POEGMA) 

as the water soluble shells, by consecutive ATRP grafting of a siloxane containing 

monomer and OEGMA, and subsequent sol-gel process77. These rigid core-crosslinked 

nano-cylinders showed typical lyotropic behavior, and could be turned into silica 

nanowires by pyrolysis on a suitable substrate.  
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These one-dimensional hybrid materials are ideal candidates as precursors for 

nanowires, nano-sensors, and catalyst carriers. Wide applications are forthcoming with 

the creating of more sophisticated hybrid systems with different functional CPBs and 

nanoparticles. 

 

 

Objectives of this thesis 

The main objective of this thesis is to explore new possibilities of CPBs with different 

architectures and functionalites. Furthermore, the response of suitable CPBs towards 

external stimuli in terms of solubility or conformation shall be exploited. Finally, their 

hybrids with inorganic nanoparticles will be also investigated. 

For a specific application in the field of magnetorheology of a ferrofluid-polymer 

hybrid system78, CPBs with a good solubility in the very hydrophobic and viscous solvent 

paraffin oil are needed. CPBs with side-chains carrying long alkyl groups were prepared 

to meet those requirements. 

Due to the wide interests in polyelectrolyte CPBs, novel monomers are used for the 

preparation of CPBs with different natures. Conventional synthetic methods for 

polyelectrolyte CPBs require tedious protection and de-protection processes. Within this 

thesis, a novel method is applied, providing a one-pot procedure, which involves 

supramolecular complexes. 

CPBs grafted from a flexible backbone have one more degree of freedom. Different 

morphologies could result from the conformational changes of the backbones, caused by 

the interactions between the side-chains and external stimuli. To broaden the possibilities 

and understandings of the single-molecular conformation transitions, CPBs which show 

responses to different stimuli, such as pH, counterions of different valencies, surfactant 

and oppositely charged linear polyelectrolytes, are widely investigated in this thesis. The 

responsiveness of the CPB-magnetic nanoparticles hybrid system in magnetic fields was 

also studied. The corresponding morphology transitions/switches and alignments made 

them good candidate for sensors or devices on the nano-scale79. 
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2. Overview of this Thesis 
 
 

The research presented in this thesis is dealing with cylindrical polymer brushes (CPBs) 

with various topologies, functionalities and their hybrids with inorganic nanoparticles. In 

general, these chapters can be divided into three categories: in chapter 3 brushes with a 

novel topology are presented; chapter 4 to 8 focus on the synthesis, characterization, and 

morphological transitions of cationic and anionic CPBs; finally, chapter 9 and 10 

highlight the hybrid materials created from inorganic nanoparticles and these CPBs. This 

thesis provides new insights into the responsiveness of CPBs and their hybrids with 

inorganic nanoparticles, which may lead to their applications as devices or sensors on 

nano-scale. 

In the following, a brief summary of the main results is presented. 

 

Double-grafted cylindrical polymer brushes 

To improve the solubility of CPBs in very hydrophobic solvents such as paraffin oil, 

poly(lauryl methacrylate) (PLMA) brushes with dodecyl side chains were prepared by 

grafting LMA monomers from linear macro-initiators poly(2-(2-bromoisobutyryloxy)-

ethyl methacrylate) (PBIEM) by atom transfer radical polymerizations (ATRP) at 70 oC. 

Considering the bulky nature of the LMA monomer, a low initiating efficiency was 

expected. In order to increase the initiating efficiency, a halide exchange reaction with 

CuCl was used. Also, 50 wt% solutions of monomer in anisole were used which 

considerably decreased the viscosity of the reaction solution. The ligand also plays a key 

role in the ATRP process. Dinonylbipyridine (dNbpy) was selected since the long alkyl 

chains of the dNbpy ligand are much better compatible with the LMA monomer and the 

solvent.  The chelating efficiency of dNbpy with Cu(I) halides is lower than that of 

PMDETA and therefore the polymerization rate decreased dramatically. However, this 

initiator/ligand combination drastically improved the controlled nature of the ATRP 

process. Figure 1 shows the 1H NMR spectra of the macro-initiator and PLMA brushes. 

The peaks assigned in Figure 1 confirmed the successful grafting process. Conventional 

GPC measurements were conducted for the brushes. They showed shifts to higher 

molecular weights compared to the macro-initiators. 
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Figure 1. 1H NMR spectra of the macro-initiator PBIEM (a) and the PLMA brushes (b). 

 

True molecular weights and sizes of the brushes were obtained by both dynamic and 

static light scattering measurements. The obtained values are comparable to the ones 

calculated from the monomer conversions. The values of Rg/Rh are all around 1.3, 

indicating the semi-flexible nature of these brushes. 

The initiating efficiencies were determined by cleaving the PLMA side-chains from 

the brushes through a trans-esterification reaction under basic conditions. The molecular 

weights of the cleaved side-chains then were compared with the theoretical values from 

the monomer conversions. It was found that the initiating efficiencies were quite low 

(between 34% and 67%), probably due to the bulky nature of the LMA monomer. 

The morphologies of the brushes were directly visualized by atomic force microscopy 

(AFM). Figure 2 shows the AFM height and phase images of PLMA brushes with a long 

backbone (DPn, backbone = 1500). According to the statistical analysis, the number-average 

length is Ln =151 nm, which corresponds to around 40% of the calculated contour length 

for the fully extended backbone (375 nm). This is mainly attributed to the rather low 

grafting density of the side chains. 
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Figure 2. AFM of PLMA brushes: (a) height image (z-range 6 nm), (b) phase image (z 

range 12o) and (c) histogram of the contour length for 30 molecules. 

 

DSC measurements of the brushes showed that they retained the crystalline properties 

of the original PLMA side-chains. These brushes are well-soluble in hydro-carbon 

solvents like n-hexane and paraffin oil. Thus, the highly hydrophobic worm-like PLMA 

brushes can be dispersed in paraffin oil based ferrofluids for further magneto-rheological 

applications. 

 

Synthesis of cationic polyelectrolyte brushes 

The grafting-from strategy was also employed to prepare poly(N,N-

dimethylaminoethyl methacrylate) (PDMAEMA) cylindrical brushes by ATRP from 

PBIEM macroinitiators. Due to the highly active monomer DMAEMA, the 
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polymerizations were carried out at room temperature. The formation of the weak 

polyelectrolyte PDMAEMA brushes was demonstrated by 1H NMR, GPC and SLS 

measurements. Their worm-like structure was visualized by AFM measurements. Due to 

the weak polyelectrolyte nature, they showed response to pH-changes in solution. Figure 

3 shows their apparent hydrodynamic radii changes with increasing pH. A steady 

decrease was observed, indicating the collapse of the PDMAEMA brushes at high pH. 

This was also evidenced by the cryo-TEM measurements at different pH values.  
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Figure 3. Apparent hydrodynamic radii of PDMAEMA brushes in 0.2 g/L aqueous 

solution at different pH values. 

 

Strong polyelectrolyte poly{[2-(methacryloyloxy)ethyl] trimethylammonium iodide} 

(PMETAI) brushes were obtained by further quaternization of the PDMAEMA brushes 

with methyl iodide. By treating the PMETAI brushes with a strong base, the side-chains 

of the brushes were detached. Molecular analysis and calculations showed that the 

initiating efficiencies for the CPBs with grafted PDMAEMA side-chains were around 

50%. 

Due to the strong Coulombic repulsion of the charged chains, the strong 

polyelectrolyte PMETAI brushes show a rather elongated conformation. Worm-like 

morphologies were also observed for the PMETAI brushes, as shown by AFM and cryo-

TEM images in Figure 4.  

 



2. Overview of this Thesis                                                                            II-5 

 
Figure 4. (a) AFM height image (Z range 7 nm) and (b) cryo-TEM image of PMETAI 

brushes 

 

Addition of salt to the solution will screen the electrostatic interaction within the 

polyelectrolyte brushes. Thus, the stretching of the polyelectrolyte chains should diminish, 

resulting in a more collapsed conformation. DLS measurements of the PMETAI brush 

with different NaBr concentrations confirmed this. Increasing the NaBr concentration 

from 0 M to 1 M leads to a remarkable decrease of the apparent Rh. When the salt 

concentration is higher than 1 M, the apparent Rh increases again. A possible explanation 

is that the bromine ions interact with the cationic polyelectrolyte chains. The collapsed 

nature of the CPBs was clearly seen in the AFM images for the PMETAI brushes from 

0.5 M NaBr solution. 

 

Helical morphologies induced by multi-valent counterions 

The response of the PMETAI brushes to counterions of different valences was 

investigated. At high concentrations of the CPBs, aggregation or precipitation occurred 

upon addition of di- or trivalent counterions, even at very low salt concentrations. The di- 

and trivalent salts were potassium tetracyanonickelate(II) K2[Ni(CN)4] and potassium 

hexacyanocobaltate(III) K3[Co(CN)6], respectively. In order to observe the single-

molecular morphologies of the brushes, very low concentration of brushes (0.02 g/L) 
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were prepared. For the divalent counterions and a charge ratio Z-/+ (the ratio between the 

negative charges from the counterions and the positive charges carried by the brushes) of 

1, the brushes displayed a transition from a worm- to a sphere-like conformation. 

Interestingly, helical morphologies were obtained before the collapse into sphere-like 

structures at Z-/+ = 0.75. Similar phenomena were also observed for the trivalent 

counterions at Z-/+ of 1, as shown in Figure 5. We believe that this helix-formation is 

driven by a contraction of the CPBs along their long axis initiated by the presence of the 

tion 2.2×10-2 mM; (b) and (c) show a typical right- and left-handed helix, 

spectively. 

 

results in a mixture of mono- and di-valent counterions and a charge ratio of around 0.66. 

multivalent counter-ions. 

 
Figure 5. (a) AFM height image of PMETAI brushes with added trivalent salt spin-

coated onto mica, Z-/+ = 1, z range 12 nm, brush concentration 0.02 g/L, and the trivalent 

salt concentra

re

Initial experiments showed that at Z-/+ = 0.66 for the divalent counterions, the brushes 

still exhibited a worm-like morphology. The trivalent counterion employed, [Co(CN)6]3-, 

is able to undergo photo-aquation upon UV irradiation, resulting in a mixture of mono- 

and divalent ions. This enabled us to change both charge ratio and the CPB conformation 

reversibly by UV. Starting from a charge ratio of 1 and trivalent counter-ions, irradiation 
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Thus, we could switch the morphologies of the cationic CPBs between extended 

structures and collapsed spherical states. The whole process is illustrated in Scheme 1. 

 

Scheme 1. Morphological transition processes by the switching of the counterion valency 

via UV irradiation. 

 

 

Morphological switching of cationic cylindrical brushes 

The morphology of cationic cylindrical polymer brushes’ (CCPB) can also be tuned by 

forming complexes with the anionically charged surfactant sodium dedecyl sulfonate 

(SDS). At high concentrations of the brushes, aggregation or precipitation occurs. In 

order to see the single-molecular morphology changes, AFM measurements were carried 

out at brush concentration of 0.02 g/L. Upon addition of SDS, the brushes showed a 

collapse from worms to spheres with an intermediate pearl-necklace structure. The 

addition of α- or β-cyclodextrins (CDs) results in a re-formation of the worm-like 

structures, through the formation of soluble supramolecular inclusion complexes between 

CDs and SDS. Further addition of adamantyl ammonium chloride (AdAC), a more 

competitive inclusion agent, can release SDS from the CD. The release of SDS results in 

a re-collapse of the CPBs to spherical morphologies. Figure 6 shows the morphology 

switches of the PMETAI brushes by interacting with SDS, CDs and AdAC. The 
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reversible morphological transitions of the cationic brushes might be of use as surfactant-

responsive sensors or devices on the nano-scale. 

 

a b c

ed f

a b c

ed f

Figure 6. AFM height images of (a) pure CCPB; (b) CCPB with SDS, with Z-/+ = 0.5; (c) 

CCPB with SDS, Z-/+ = 1; (d) CCPB/SDS Z-/+ = 1 with added α-CD (equimolar with 

SDS); (e) same, but with added β-CD; (f) sample with β-CD after addition of AdAC 

(equimolar with β-CD). The scale bars represent 200 nm and the brush concentration is 

0.02 g/L. Samples were spin-coated to a freshly cleaved mica surface. AFM height ranges 

are 5 nm, 12nm, 8nm, 8nm, 8nm, and 4 nm, respectively. 

 

 

Inter-polyelectrolyte complexes with cationic polymer brushes 

The formation of inter-polyelectrolyte complexes (IPECs) of the cationic CPBs with 

anionic linear poly(sodium styrene sulfonate) (PSS) in highly diluted solutions is another 

possibility to tune the morphology of the brushes. Similarly, all the experiments were 

conducted at very low concentrations of the brushes (0.02 g/L) to avoid inter-molecular 

aggregation. The AFM measurements were mainly carried out for all the following 

samples. It was found that the charge ratio Z-/+ plays a key role in the morphology 
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transitions of the cationic brushes. When short PSS was employed for the IPECs, at low 

charge ratios, the brushes only became straighter and the diameter increased (see figure 

7). Intermediated helix-like morphologies were observed at a Z-/+ of 0.75. Globular 

collapsed structures of the brushes were detected at a Z-/+ of 1. 
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Figure 7. (a) AFM height image of IPECs by PMETAI brushes and short PSS, charge 

ratio Z-/+ 0.1, AFM Z range 10 nm; (b) Section analyses of the cursors displayed in (a); (c) 

AFM height image of IPECs by PMETAI brushes and short PSS, charge ratio Z-/+ 0.5, 

AFM Z range 10 nm; (d) Section analyses of the cursors displayed in (c). 

 

Extremely long linear PSS was also used for comparison. It can induce the spherical 

collapse of the brushes at very low Z-/+ ratios without other transition states. Full collapse 

of the brushes was demonstrated at lower charge ratios (Z-/+ = 0.5), attributed to the large 

number of negative charges carried by the long PSS. 
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In conclusion, the morphologies of the cationic brushes could be tuned by IPEC 

formation with linear anionic polyelectrolyte chains, PSS. These results could provide a 

better understanding of the IPECs formed by polyelectrolytes or bio-macromolecules, 

and might be useful for the building of smart nano-sensors. 

 

 

Direct preparation of anionic polyelectrolyte brushes 

A new strategy for the direct preparation of strong anionic polyelectrolyte cylindrical 

brushes (BSPMA) without protection is demonstrated by the formation of supramolecular 

complexes between the monomer potassium sulfopropyl methacrylate (SPMA) and 

crown ether 18-crown-6 in DMSO using ATRP for the grafting-from processes. The 

synthetic procedure is shown in scheme 2. DLS and SLS measurements for the size and 

the absolute molecular weight of the CPBs indicated a good control of the polymerization 

reaction.  

By the treatment with a strong base, the side-chains of the BSPMA brushes were 

cleaved and transformed into poly(methacrylic acid) (PMAA). Further characterizations 

yielded that the initiating efficiency was 35%. 

 

Scheme 2. Synthetic procedure for anionic BSPMA. 
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Well-defined worm-like morphologies were directly obtained through AFM and cryo-

TEM measurements. Figure 8 displays the cryo-TEM images of BSPMA brushes in 1 g/L 

solutions with 0.1 M CsCl. Through the addition of heavy counter-ions (Cs+), even the 

corona of the CPBs is visible in the cryo-TEM micrographs. 
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Figure 8. Cryo-TEM images of BSPMA (1g/L) in 0.1 M CsCl solutions: (a) in a large 

scale; and (b) at a higher magnification. 

 

 

Magnetic hybrid nano-cylinders 

To improve the magnetic response of hybrid nano-cylinders formed by cylindrical 

brushes and magnetic nanoparticles, we employed a new strategy for their preparation. 

Water soluble double-hydrophilic core-shell cylindrical brushes were prepared, with 

PMAA as the core and poly(oligoethyleneglycol methacrylate) (POEGMA) as the 

protecting shell. They showed interesting pH responsiveness. As displayed in Figure 9, 

obvious pearl-necklace structures are obtained at pH 4 due to the low solubility of PMAA. 

At pH 7, however, these structures disappeared, caused by the ionization of PMAA. 

Magnetic hybrid cylinders were formed by introducing pre-formed 10 nm sized 

magnetite nanoparticles into the double-hydrophilic core-shell brushes. The formation of 

the hybrid cylinders was investigated by AFM and TEM measurements. It could be 

shown that the hybrid cylinders still exhibited the superparamagnetic properties of the 

single magnetite nanoparticles. 
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Figure 9. cryo-TEM images of BMO brush at a) pH=4 and b) pH=7. 
 

These hybrid materials could be aligned on a large scale on the substrates by applying 

magnetic fields during the drying process, as demonstrated in Figure 10. Similar 

experiments were also performed and visualized by non-stained TEM, leading to 

comparable results. 

 
Figure 10. a) AFM height image of the aligned magnetic hybrid on mica surface in a 

magnetic field of 40 mT, Z range 50 nm; and b) Magnification of one aligned chain of the 

magnetic hybrid cylinders. 
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Single-molecular hybrid nano-cylinders 

Single-molecular hybrid nano-cylinders were fabricated by covalently attaching a 

thiol-functionalized polyhedral oligomeric silsesquioxane (POSS) to poly(glycidyl 

methacrylate) brushes (BGMA). First, BGMA brushes, which carry a large number of 

epoxy groups, were prepared by the grafting-from strategy using ATRP technique in a 

similar way as described above for the other brushes. Scheme 1 shows the synthetic 

procedure. GPC, NMR, and light scattering results indicate a successful synthesis. 

Typical worm-like structures were observed by AFM measurements from anisole 

solutions, as is displayed in Figure 11. 

 

Scheme 3. Synthetic procedure for BGMA brushes by ATRP. 
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Figure 11. (a) AFM height image of BGMA on mica in anisole, Z rang 7 nm; and (b) 

section analysis of the cursor shown in (a). 

 
Hybrid BGMA-POSS materials were prepared by reacting the epoxy groups of BGMA 

with the thiol groups in the POSS under basic conditions at 65oC. Scheme 2 depicts the 

preparation process for the hybrid cylinders. FTIR was employed to prove the formation 

of the hybrid. From the molecular weight increase in SLS, the attaching efficiency of the 
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POSS nanoparticles was estimated to be only around 20%, probably due to the high steric 

hindrance. Significant contrast increase in the non-stained TEM measurements gave 

direct proof of the formation of BGMA-POSS, as shown in Figure 12. EDX and TGA 

were also employed for the characterization of the hybrid materials. 

 

Scheme 4. Procedure for the preparation of nano-hybrid BGMA-POSS. 

 
 

 
Figure 12. Non-stained TEM image of BGMA-POSS on carbon-coated TEM grid. 

 

Pyrolysis of the hybrid materials at high temperature resulted in porous silica materials, 

which might find their applications in fields like catalyst carrier or molecular sieves.
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Abstract 

Double-grafted cylindrical brushes with poly(lauryl methacrylate) (PLMA) as the side 

chains were synthesized using the grafting-from strategy via atom transfer radical 

polymerization (ATRP). The polyinitiator poly(2-(2-bromoisobutyryloxy)ethyl 

methacrylate) (PBIEM) with DPn = 240 and 1500 served as the backbone. The PLMA 

side chains of the brushes carry long alkyl chains. GPC and 1H NMR measurements 

confirmed the successful formation of the PLMA cylindrical brushes. The side chains 

were cleaved from the cylindrical brushes by transesterification. GPC and 1H NMR 

results indicate that the initiating efficiency of the bromoester groups on the backbone for 

the bulky monomer was in the range of 0.34≤ f ≤0.67. Static and dynamic light scattering 

show that the ratio of the radius of gyration to the hydrodynamic radius, Rg/Rh, is in the 

range of 1.2 to 1.3, indicating that the LMA cylindrical brushes are semiflexible in 

solution. Atomic force microscopy (AFM) measurements show that short PLMA brushes 

exhibit a spherical morphology while the long brushes exhibit a worm-like structure. 

Differential scanning calorimetry displayed melting peaks at around -30 °C, indicating 

the alkyl side chains of the PLMA chains in the double-grafted cylindrical brushes are 

crystallizable. 
 

Keywords: Poly(lauryl methacylate), cylindrical brushes, double-grafted, ATRP 

 



3. Double-grafted Cylindrical Brushes                                                                                                    III-3 

Introduction 

With the rapid development of nanotechnology, intense research has been focused on 

the preparation of various nanostructures[1, 2]. For various purposes of applications, 

different nanostructures are required[3, 4]. Hence, nanoparticles[5], nanowires[6], 

nanotubes[7] and other nanostructures have been successfully prepared. Soft materials like 

polymers play an important role for the templated synthesis, surface protection, surface 

functionalizations of nanostructures[8], since polymers can show diverse architectures, e.g. 

linear, star-like[9-11], comb-shaped[12], and dendritic[13, 14] topologies.  

When the side chains of the comb-shaped polymers are grafted densely enough, 

cylindrical polymer brushes are formed[15, 16]. The stretched and anisotropic nature of 

such comb-like polymers has gained vast experimental and theoretical interest. They 

exhibit different solution and bulk properties since the backbones are more stretched by 

the repulsion of the relatively short but dense side chains.   

The grafting-onto, grafting-through, and grafting-from strategies have proven very 

successful to obtain cylindral polymer brushes. Controlled/living polymerizations like 

atom transfer radical polymerization (ATRP)[17-20], nitroxide mediated radical 

polymerization (NMRP)[21] and ring opening polymerization (ROP)[22] have been used 

successfully used to attain well-defined materials.  

Based on the strategies described above, cylindrical polymer brushes with various 

architectures have been prepared. Core-shell cylindrical brushes[18-22], brushes with a 

grafting density gradient, [23, 24], hetero-grafted brushes[25-27], brush block copolymers[28], 

star brushes[29, 30], ring brushes[31] and double-grafted brushes[32] have been prepared. 

Cylindrical brushes with different functionalities were also available. Cylindrical 

polyelectrolyte brushes[33], thermal responsive brushes[34], photo-responsive brushes[22], 

sugar-containing brushes[35] and polypeptide brushes[36] were reported. 

Neugebauer et al.[32] reported the synthesis of double-grafted poly(poly(ethylene oxide) 

methacrylate) (PPEOMA) cylindrical brushes using the grafting-through strategy via 

ATRP, which was the first example of double-grafted cylindrical brushes. While double-

grafted brushes with short PEO segments were amorphous, while ones with longer PEO 

segments in the macromonomer were crystalline. However, during attempts to synthesize 
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PPEOMA chains with high molecular weight, crosslinked materials were obtained and 

the resulting double-grafted brushes could serve as a new type of elastomeric materials. 

Here we present the synthesis and characterization of cylindrical brushes containing 

poly(lauryl methacrylate) (PLMA) side chains. The long alkyl side-chains can be 

regarded as grafts on a poly(methyl methacrylate) backbone, thus giving the double-

grafte character. Linear PLMA is an interesting material since the long alkyl side chains 

can crystallize[37]. The alkyl chains has also lead to a very low a very low glass transition 

temperature, Tg, ABA block copolymers of LMA and methyl methacrylate (MMA) show 

typical properties of thermoplastic elastomers[38]. The alkyl side chains also make PLMA 

very hydrophobic, which may lead to applications such as oil-soluble drag reducers[39] 

and oil absorbency agents[40, 41]. PLMA is also used as a viscosity modifier for motor oils. 

The controlled synthesis of PLMA has been achieved by anionic polymerization[42], 

group transfer polymerization (GTP)[43] and ATRP. [44-46].  

Here we present the synthesis of double-grafted cylindrical brushes with PLMA as the 

side chains using the grafting-from strategy via ATRP. Polyinitiators poly(2-(2-

bromoisobutyryloxy)ethyl methacrylate) (PBIEM) with DPn = 240 and 1500 acted as the 

backbones. Scheme 1 presents the synthesis of these polymers. 

 

Scheme 1. Synthetic procedures of  PLMA cylindrical brushes 
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Because of the long alkyl sidechains, these bottlebrush polymers are expected to 

exhibit a good solubility in apolar solvents as paraffin oil. Hence, these bottlebrush 
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polymers could be used in inverse magnetorheological fluids,[47] serving as cylindrical 

holes in a magnetic quasi-continuum.[48]  

 

Experimental  

Materials. CuCl (97%, Aldrich) was purified by stirring with acetic acid overnight. 

After filtration, it was washed with ethanol and ether and then dried in vacuum oven. 

N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA, Aldrich) was distilled before 

use. 4,4′-Dinonyl-2,2′-dipyridyl (dNbpy) was purchased from Aldrich and used without 

further purification. Sodium methoxide (25% in methanol, Aldrich) was used as received. 

Lauryl methacrylate (LMA; mixture of 72% n-dodecyl methacrylate and 28% n-

tetradecyl methacrylate) was kindly donated by RohMax Additives GmbH (Darmstadt, 

Germany) and was purified by passing through basic alumina columns before 

polymerizations. Polyinitiators poly(2-(2-bromoisobutyryloxy)ethyl methacrylate) 

PBIEM-I (DPn = 240, PDI = 1.16) and PBIEM-II (DPn = 1500, PDI = 1.08) used for the 

synthesis of the PLMA brushes were reported previously[20]. All the other solvents and 

chemicals were used as received. 

Polymerizations. All polymerizations were carried out in a round-bottom flask sealed 

with a rubber septum. A typical example of the synthesis of a PLMA cylindrical brush is 

described as follows: PBIEM-I (55.8 mg, 0.2 mmol of initiating α-bromoester groups) 

and dinonylbipyridyl (dNbpy) (81.7 mg, 0.2 mmol) were dissolved in anisole (25.4 g) in 

a pear-shaped flask and stirred overnight to assure the complete dissolution of the high 

molecular weight polyinitiator. Then the monomer LMA (25.4 g, 0.1 mol) was injected 

via a syringe and stirred for 15 min. The flask was purged with argon for 15 min. About 

0.5 mL of solution was taken out with an argon-purged syringe as an initial sample for 

conversion measurement by 1H NMR. A round-bottom flask with CuCl (10 mg, 0.1 

mmol) was also deoxygenated by argon flow. Then the solution in the pear-shaped flask 

was transferred into the round-bottom flask by a cannula. The solution immediately 

turned orange. The round-bottom flask was then inserted into an oil-bath heated at a 

70 °C. Small samples were taken out at intervals to check the monomer conversion. After 

17 hours, the conversion determined by 1H NMR reached 14.5%. The round-bottom flask 
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was then cooled to room temperature and opened to air. Dichloromethane was added to 

dilute the solution and the color of the solution turned green. After passing through a 

basic alumina column, the colorless solution was concentrated by a rotary evaporator. 

Afterwards, it was precipitated into cold methanol to remove the residual monomer and 

other impurities. The precipitation procedure was repeated three times from THF solution 

into large amounts of cold methanol to make sure the viscous monomer was removed. 

The viscous crude product was then dried in a vacuum oven at 100 °C for two days. A 

transparent and viscous polymer was obtained. The polymer is soluble in THF, hexane, 

toluene and chloroform, but insoluble in methanol, acetone, and water. 

Cleavage of the side chains from the PLMA brushes: The cleavage of the side 

chains from the PLMA brushes was carried out by base catalyzed transesterfication 

reactions. One typical reaction is described as follows: The PLMA brush (0.1 g) was 

dissolved in 5 mL THF in a 20 mL bottle. Methanol was added until the solution became 

turbid. Sodium methoxide solution (10 drops) was then added. The tube was capped 

tightly and put in an oil bath and kept at 90 °C for 10 days. Then, the solution was cooled 

and stirred overnight in the presence of cationic ion-exchange resin (Dowex MSC-1). The 

solution was filtered and evaporated. The resulting product was analyzed by 1H NMR and 

conventional GPC with a linear PLMA calibration. 

Characterizations. 1H NMR was measured on a Bruker AC-250 instrument at room 

temperature with CDCl3 as the solvent. 

The apparent molecular weights of the brushes were characterized by conventional 

GPC using THF as eluent at a flow rate of 1.0 mL/min at room temperature. Column set: 

5 µm p SDV gel, 102, 103, 104, and 105 Å, 30 cm each (PSS, Mainz). Detectors used are 

RI and UV operated at 254 nm. Polystyrene standards (PSS, Mainz) with narrow 

molecular weight distribution were used for the calibration of the column set. The 

molecular weights of the cleaved side chains from the PLMA cylindrical brushes were 

also determined by the same instrument set-up, but with PLMA standards made by ATRP 

and characterized by GPC-MALS. 

GPC with a multi-angle light scattering detector (GPC-MALS) was used to determine 

the absolute molecular weights of the PLMA cylindrical brushes. THF was used as eluent 
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at a flow rate of 1.0 mL/min. Column set: 5 µm PSS SDV gel, 103, 105, and 106 Å, 30 cm 

each. Detectors: An RI detector and a Wyatt DAWN DSP-F MALS detector equipped 

with a He-Ne laser (λ = 632.8 nm) were used.  

The refractive index increment of the PLMA cylindrical brush solution in THF at 

25 °C was measured to be dn/dc = 0.080 mL/mg using a PSS DnDc-2010/620 differential 

refractometer. 

Static light scattering (SLS) was measured on a Sofica goniometer using a He-Ne laser 

(λ = 632.8 nm). Prior to the light scattering measurements, the sample solutions were 

filtered 3 times by using Millipore Teflon filters with a pore size of 0.45 µm. Five 

concentrations of the PLMA cylindrical brush solutions in THF were measured at angles 

in the range from 30 o to 150 o. Absolute weight-average molecular weights, Mw, radii of 

gyration, Rg, and second virial coefficient, A2 , of the PLMA brushes were obtained by 

the analysis of the Zimm-plots. 

Dynamic light scattering (DLS) was carried out on an ALV DLS/SLS-SP 5022F 

compact goniometer system with an ALV 5000/E correlator and a He-Ne laser (λ = 632.8 

nm) at five different angles. Before the light scattering measurements, the sample 

solutions were filtered 3 times by using Millipore Teflon filters with a pore size of 0.45 

µm. A CONTIN analysis was taken for the measured intensity correlation functions. 

Apparent hydrodynamic radii, Rh, of the PLMA cylindrical brushes were calculated 

according to the Stokes-Einstein equation. For depolarized dynamic light scattering 

(DDLS), the horizontal polarized scattered intensity, IVH, was measured by applying a 

Glan-Thomson prism in front of the detector. All the measurements were carried out at 

25°C.The measurements were performed at scattering angles ranging from 40° to 140° 

with an angular step of 10°. 

Atomic force microscopy (AFM) measurements were performed on a Digital 

Instruments Dimension 3100 microscope operated in tapping mode. The micro-cantilever 

used for the AFM measurements were from Olympus with resonant frequency between 

284.3 kHz and 386.0 kHz, and spring constant ranging from 35.9 to 92.0 N/m. Carbon-

coated mica substrates were prepared using a Balzers MED 010 minideposition system. 

Carbon with a thickness of approximately 10 nm was deposited on the freshly cleaved 
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mica surfaces by evaporation. The samples were prepared by dip-coating from very dilute 

(0.01 g/L) THF solutions of PLMA brushes onto freshly cleaved mica surfaces or carbon 

coated mica surfaces.  

Differential scanning calorimetry (DSC) measurements were performed on a Perkin 

Elmer Pyris-1 instrument. The samples were first heated up to 120 °C and kept for 5 min. 

Then the samples were subjected to a cooling process from 120 °C to -80 °C with a 

cooling rate of 10 K/min. They were kept at -80 °C for another 5 min. Finally, the 

samples were reheated to 120 °C from -80 °C with a heating rate of 10 K/min. 

 

Results and discussion 

1. Synthesis and molecular characterization of LMA brushes. The synthesis of 

cylindrical brushes using the grafting-from strategy requires linear polyinitiators, which 

determine the length and length distribution of the cylindrical brushes., The synthesis of 

PBIEM polyinitiators by both ATRP and anionic polymerization was previously reported 

by our group[20]. The PBIEM-I polyinitiator synthesized by ATRP had a DPn = 240 and 

relatively broad MWD (Mw/Mn = 1.16), while PBIEM-II prepared by anionic 

polymerization had DPn = 1500 and very narrow MWD (Mw/Mn = 1.08). Short and long 

double-grafted PLMA cylindrical brushes were prepared by growing PLMA side chains 

from the two polyinitiators. 

For the grafting-from process using ATRP, high local concentration of radicals in one 

polyinitiator molecule may cause intra- or even intermolecular radical coupling 

reactions.[17]. To suppress these coupling reactions the catalyst-to-initiator molar ratio 

was 0.5, which is much lower than normal ATRP processes for linear polymers.  

Considering the bulky nature of the LMA monomer, a low initiating efficiency was 

expected. In order to increase the initiating efficiency, a halide exchange reaction with 

CuCl was used.[49] Sumerlin et al.[50] proved that high dilution could improve the 

initiating efficiency of ATRP for cylindrical brushes. Thus, a 50 wt% solution of 

monomer in anisole was used, which considerably decreased the viscosity of the reaction 

solution. 
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Table 1. Synthesis and molecular characterization of PLMA cylindrical brushesa 

Brush Initiator DPn  

of back-bone 

time (h) conv(%) b 10-6Mn,GPC 

c 

PDI c 10-6Mn,calc 

d 

10-6Mw,  

GPC-MALS 

1 PBIEM-I 240 18 14.5 0.28 1.17 4.62 1.69±0.08 

2 PBIEM-I 240 42 21.7 0.43 1.13 6.89 6.74±0.33 

3 PBIEM-II 1500 17 11.3 0.84 1.28 22.40 10.1±0.50 

4 PBIEM-II 1500 40 24.9 0.88 1.31 49.00 19.5±7.8 
 

a50 wt % solutions in anisole; ATRP at 70 oC with constant ratio of [M]0/[I]0/[CuCl] 0/[dNbpy] 0 = 500:1:0.5:1. b Monomer conversion 

determined by 1H NMR. cApparent values determined by conventional GPC with a polystyrene standard calibration. dMn calculated 

from conversion by 1H NMR. Mn,calc= (262×Conversion + 280)× DPn,backbone. 
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The ligand also plays a very important role in the ATRP process. PMDETA was used 

for the first experiments. A very fast polymerization rate was observed, the conversion 

reaching over 20% within 15 min and the final product showing bimodal MWD. Then 

dinonylbipyridine (dNbpy) was used. The long alkyl chains of the dNbpy ligand are 

much better compatible with the LMA monomer and the solvent. Since the chelating 

efficiency of dNbpy with Cu(I) halides is lower than that of PMDETA, the rate of 

polymerizations decreased dramatically, but with better control of the reaction. 

Table 1 lists the results of of the characterization of the PLMA cylindrical brushes 

obtained. The MWDs of the brushes are quite narrow, indicating a good control of the 

ATRP process. However, the PDI of the long brushes are significantly higher than those 

of the long backbones, indicating a polydispersity in the number of side chains. 

18 20 22 24 26 28 30 32 34 36

  

Ve (mL)

 PBIEM-I
 Brush 1
 Brush 2

 

Figure 1. GPC traces of PBIEM-I and corresponding short PLMA cylindrical brushes. 

 

Figures 1 and 2 show the GPC traces of the polyinitiators and corresponding short and 

long PLMA cylindrical brushes. Monomodal eluograms were observed for all the PLMA 

cylindrical brushes. The molecular weights of the PLMA cylindrical brushes were first 

characterized by conventional GPC, using a polystyrene calibration. True molecular 

weights were determined by GPC-MALS. The true molecular weights are several times 
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higher than those from conventional GPC, typical for highly branched systems and also 

partially due to the inappropriate calibration standards.  It is also found that the molecular 

weight determined by GPC-MALS is always lower than the ones calculated from 1H 

NMR conversion. For the calculation of the Mn, the 1H NMR conversion values have to 

be multiplied by huge numbers (see Table 1). So, small deviations or errors will cause 

huge differences of the molecular weight. At the same time, NMR itself has around 5% 

error. According to the values in Table 1, some GPC-MALS results also have errors up to 

40%. This could be the cause of the mismatch of the calculated molecular weight values 

and experimental values. 

18 20 22 24 26 28 30

 

Ve (mL)

 PBIEM-II
 Brush 3
 Brush 4

 

Figure 2. GPC traces of PBIEM-II and corresponding long PLMA cylindrical brushes. 

 

Figure 3 shows the NMR spectra of the polyinitiator and the PLMA cylindrical 

brushes. The two peaks at 4.12 ppm (a) and 4.3 ppm (a′) are assigned to the methylene 

protons between two ester groups in the PBIEM polyinitiator. The methyl (peak c, from 

0.7 ppm to 1.1 ppm) and methylene protons (peak d, 1.75 ppm) of the backbone were 

also assigned. When the PLMA cylindrical brushes are formed, peak a and a′ disappear, 

while distinctive peaks from the long alkyl side groups of the PLMA side chains appear: 

methylene protons (e, 3.85 ppm) connected to the ester group, neighboring methylene 
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protons (f, 1.5 ppm), the other methylene protons (strong peak g, 1.2 ppm) and the end 

methyl protons (h, 0.8 ppm ). Thus, the 1H NMR spectra indicate the successful grafting 

of PLMA from the PBIEM backbones. 

 

 

2. Initiating efficiencies of the polyinitiators for LMA. The first case of checking 

the initiating efficiency of the cylindrical brushes prepared by grafting-from strategy was 

reported by our group[18]. Side chains of PS cylindrical brushes were detached from the 

backbone by basic hydrolysis of the ester linking groups. Almost 100% initiating 

efficiency was found for the PS cylindrical brushes. Using base-catalyzed solvolysis, 

Sumerlin et al.[50] and Neugebauer et al.[51] found low initiating efficiencies for 

poly(methyl methacrylate) (PMMA) and poly(n-butyl acrylate) (PBA) cylindrical brushes. 

For the PMMA brushes the initiating efficiencies were lower than 50% even if the 

Figure 3. 1H NMR spectra of (a) PBIEM-I and (b) PLMA brush 2 in CDCl3. 
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conversion of the monomer was up to 14.5%. Cylindrical brushes prepared from a very 

bulky sugar-carrying methacrylate also showed initiating efficiencies of less than 40% [34]. 

The LMA monomer is also very bulky. Thus, the initiating efficiency of the PBIEM 

backbones is not expected to be very high.  

In order to determine the initiating efficiency of the PBIEM polyinitiators towards 

LMA, base-catalyzed transesterification was employed to cleave the PLMA side chains 

from the cylindrical brushes. The reaction mechanism is shown in Scheme 2.  

 

Scheme 2. Cleavage of side chains from the PLMA brushes 
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The detached polymers were subjected to 1H NMR and GPC measurements. Figure 4 

shows the 1H NMR spectrum of the side chains cleaved from brush 3. Compared to the 
1H NMR spectrum of PLMA cylindrical brushes, there is almost no difference and the 

distinctive peaks from the PLMA remain. 1H NMR spectrum and GPC trace of linear 

PLMA polymer, which was subjected to the same reaction conditions of the base 

catalyzed transesterification, showed no difference from those of the original linear 

polymers. This suggests the transesterification reactions nearly exclusively occurred to 

the linking ester groups between the side chains and the backbones, not to the ester 

groups in the PLMA side chains. Possible reasons could be the high steric strain that the 

side-chains exert on the backbone or the different polarity of the backbone and the side 

chains leading to a higher methoxide concentration near to the backbone. 

GPC traces of the brush and the cleaved side chains are shown in Figure 5. In each 

case, only one peak was observed in the GPC elution curve, while no high molecular 

weight peaks were found. This indicates the full detachment of the side chains from the 
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backbones. Compared to the amount of side chains, the weight fraction of the backbone 

polymers is very small, and the effect of the backbones can be neglected. 

5 4 3 2 1

 

ppm  

Figure 4. 1H NMR spectrum of cleaved PLMA side chains from brush 3. 
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Figure 5. GPC traces of brush 3 and cleaved side chains from brush 3. 
 

To determine the true molecular weight of the cleaved side chains from the PLMA 

cylindrical brushes, a GPC calibration curve with PLMA linear polymer standards was 
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used[52]. The results are listed in Table 2. From the true molecular weight of the brush, 

the DP of the backbone and the DP of the side-chains, the number of side chains and thus 

the initiator efficiency were determined. 

Table 2. Characterization of cleaved side-chains from the PLMA cylindrical brushes. 

side 

chain of 

10-4 x 

Mn,GPC 
a 

PDI a 
DPn,sc, 

GPC b 

DPn, sc, 

calcd c 
f d Nsc 

e 
DPn,bb/ 

DPn,sc 

brush 1 3.40 1.36 130 72 0.55 132 1.8 

brush 2 4.24 1.23 162 108 0.67 161 1.5 

brush 3 4.31 1.36 164 56 0.34 510 9.1 

brush 4 4.83 1.17 184 124 0.67 1005 8.2 
 
 aDetermined by conventional GPC using linear PLMA calibration,. bDPn,sc,GPC = Mn,GPC 

/M0, M0 = 262 g/mol. cCalculated  from the monomer conversion in table 1, DPn, sc, calcd = 

([M] 0/[I] 0) × conversion. dInitiating efficiency of PBIEM, f = (DPn, sc, calcd/DPn,sc,GPC ); 
enumber of side chains per molecule. 

 

As can be seen in Table 2, the initiating efficiencies are quite low, but they increase 

with conversion, typical for a slow initiation. The polydispersity indices of the cleaved 

side chains are relatively high, being in the range of the theoretical value for slow 

initiation, 1.33[53]. This might be attributed to the bulky nature of the LMA monomer and 

steric hindrance. Also, the incompatibility between the LMA monomer and the 

polyinitiator could be the partial reason.  

 

3. Characterization of the cylindrical brushes in solution.  

Static (SLS) and dynamic light scattering (DLS) were used to characterize the solution 

properties of the PLMA cylindrical brushes in THF. The corresponding plots are given as 

Supporting Information. Table 3 summarizes the results obtained from the SLS 

measurements, namely Mw, the radii of gyration, Rg, and second virial coefficients, A2. 

Brush 1 and brush 2 were prepared from the same backbone (DPn = 240). The Rg of the 

PLMA brushes increased from 27.8 nm to 51.1 nm. This can be explained by the longer 
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and denser PLMA side chains attached to the backbones, which leads to the more 

stretched backbones of the cylindrical brushes. Brush 3 has a much longer backbone (DPn 

= 1500), and the Rg value (65.3 nm) is significantly larger than those of the short brushes.  

Dilute solutions of the cylindrical brushes in THF were also subjected to DLS 

measurements. The analysis was supplemented by depolarized DLS measurements.  No 

depolarized signal could be measured indicating that the rotational diffusion times are too 

small to be measured. Hence, this finding indicates a worm-like semiflexible structure in 

solution rather than a rod-like one of these systems. Table 3 shows the hydrodynamic 

radii obtained by DLS.  It is well know that the ratio γ = Rg/Rh reflects the polymer 

architecture[54]. According to theory, for rigid rods is γ > 2. Thus, the values shown in 

Table 3 point to rather small persistence lengths caused by the low grafting density of the 

side chains.  

Table 3. Light scattering characterizations of PLMA cylindrical brushes 

Brush 10-6Mw, SLS 
a 106A2 

a Rg (nm) a 

Rh (nm) 
b(PDI) Rg / Rh 

1 1.88±0.36 0.39±0.06 27.8±6.3 21.5 (0.10) 1.3 

2 9.48±0.49 5.04±0.87 51.1±5.2 42.2 (0.16) 1.2 

3 15.80±1.23 5.33±0.77 65.3±4.1 49.4 (0.14) 1.3 
a Determined by SLS. b Determined by DLS unsing the CONTIN procedure, at scattering 

angle of 90o. 

 

4. Visualization by AFM.  Although AFM images can not present the real state of 

cylindrical brushes in solution because of possible polymer-surface interactions, it is still 

a powerful tool to reflect the morphologies of cylindrical brushes. Choosing of suitable 

substrates for the AFM measurements is very important. Mica and silicon wafers were 

tried as the substrates for the AFM measurement of PLMA cylindrical brushes by dip-

coating from THF solutions. Only severe dewetting phenomena were found and no single 

brushes could be observed. This is due to the poor adsorption of the very hydrophobic 

PLMA cylindrical brushes to the quite polar mica or silicon wafer surfaces. Thus, freshly 
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cleaved mica was coated with carbon in order to obtain a more hydrophobic surface, 

which is more compatible with the nonpolar PLMA brushes.   

 
Figure 6. AFM of brush 3: (a) height image (z-range 6 nm), (b) phase image (z range 12o) 

and (c) histogram of the contour length for 30 molecules. 

 

Figure 6 represents the AFM images of the long brush 3.  This long brush 3 exhibits 

obvious worm-like structures. That is because the backbone (DPn = 1500) is much longer 

and the aspect ratio is also much higher. According to the statistical analysis, the number-

average length of brush 3 is Ln =151 nm, which is only 40% of the contour length of a 

fully extended chain, Lc = 0.25 x 1500 nm = 375 nm. This is attributed to rather low 

grafting density (only 34%) of the side chains. A cross-section analysis of the AFM 

height and phase images shows that the height of the brushes is around 3 nm while the 
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width of the brush is approximately 50 nm (not corrected for the tip radius). This 

indicates the soft PLMA side chains have a good compatibility with the carbon coated 

mica surface. The side chain length, LSC, can be regarded as half of the width of the 

brushes in phase image. The ratio of Ln/LSC is calculated to be 6.0, which is comparable to 

the ratio DPn,bb/DPn,sc shown in Table 2. 

Additional measurements on the short brush 2 with the DPn of the backbone with only 

240 monomer units show an ellipsoid-like morphology (see Supporting Information, Fig. 

S5). The number-average length of brush 2 is just Ln = 37 nm, which is 60% of the 

contour length. Due to the higher grafting density this stretching ratio is higher than for 

brush 3. 

 

5. Thermal properties of the PLMA cylindrical brushes. It is known that polymers 

with long alkyl side groups can exhibit sidechain crystallization. Hempel et al.[37] found 

that poly(n-alkyl methacrylates) with C ≥ 12 of the side chain alkyl carbons, crystalline 

behaviors were found.  In order to check if the PLMA with double-grafted cylindrical 

structures can form crystals in bulk, DSC measurements were performed. 
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Figure 7. DSC heating and cooling curves of PLMA brush 3. 
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The DSC measurements show broad apparent melting peaks at -30 °C in the heating 

curves and crystallization peaks in the cooling curves for all PLMA cylindrical brushes. 

Figure 7 shows the heating and cooling traces of brush 3. This demonstrates that the 

double-grafted cylindrical structures do not affect the crystallization abilities of PLMA.  

 

Conclusions 

We successfully synthesized double-grafted cylindrical brushes using the grafting-

from technique via ATRP with the CuCl/dNbpy catalyst system. By using polyinitiators 

with different chain lengths, we obtained relatively narrowly distributed short and long 

PLMA cylindrical brushes. By detaching the grafted side chains from the backbones 

using transesterification reactions, we found rather low initiating efficiencies, obviously 

due to the very bulky nature of the LMA monomer, also possibly due to the 

incompatibility of the monomer and the polyinitiator. SLS, DLS and AFM results proved 

the worm-like structure of the brushes in solution and on substrates. DSC measurements 

showed that the long alkyl side groups in the PLMA side chains are still crystallizable. 

The highly hydrophobic worm-like PLMA brushes can be dispersed in paraffin oil based 

ferrofluids and results on the properties of the related inverse magneto-rheological fluids 

will be published elsewhere.[48] 
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Figure S1. Zimm plot of brush 1 in THF. K = 2.63×1014cm/g. 
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Figure S2. Zimm plot of Brush 3 in THF. K = 1.04×1014cm/g. 

 



3. Double-grafted Cylindrical Brushes                                                                                                    III-24 

10-4 10-3 10-2 10-1 100 101 102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

 

 

g 2(t)
-1

t(ms)

 θ = 30o

 θ = 60o

 θ = 90o

 θ = 120o

 θ = 150o

100 101 102 103
 

 

 

Rh(nm)

(a) 

(b) 

(c) 

0.0 2.0x1014 4.0x1014 6.0x1014 8.0x1014
0

4000

8000

12000

16000

Γ
 (s

-1
)

 

 

 q2 (m-2)
 

Figure S3. DLS of brush 1: (a) Normalized intensity correlation functions at different 

scattering angles, (b) hydrodynamic radius distribution at scattering angle of 90°, and (c) 

dependence of decay rate on the square scattering vector. 
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FigureS4. DLS of brush 3: (a) Normalized intensity correlation functions at different 

scattering angles, (b) hydrodynamic radius distribution at scattering angle of 90°, and (c) 

dependence of decay rate on the square scattering vector. 
 

 



3. Double-grafted Cylindrical Brushes                                                                                                    III-26 

 

Figure S5. AFM of brush 2: (a) height image (z-range 4 nm), (b) phase image (z range 

10o) and (c) histogram of the contour length for 96 molecules 
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Abstract 

We present the synthesis and characterization of poly(N,N-dimethylaminoethyl 

methacrylate)  (PDMAEMA) cylindrical brushes, their pH responsiveness, and the 

corresponding quaternized poly{[2-(methacryloyloxy)ethyl] trimethylammonium iodide} 

(PMETAI) brushes. PDMAEMA brushes were prepared by atom transfer radical 

Polymerization (ATRP) using the grafting-from strategy. Initiating efficiencies of the 

ATRP processes were determined by cleaving the side-chains and gel permeation 

chromatography (GPC) analysis. Due to the slow initiation and steric hindrance, the 

initiating efficiency is only around 50%. PDMAEMA brushes showed worm-like 

structures and pH responsiveness, as proven by dynamic light scattering (DLS), atomic 

force microscopy (AFM), and cryogenic transmission electron microscope (cryo-TEM) 

measurements. Strong cationic polyelectrolyte PMETAI brushes were produced by 

quaternization of the PDMAEMA brushes. AFM and cryo-TEM images showed similar 

worm-like morphologies for the PMETAI brushes. The PMETAI brushes collapsed in 

solution with high concentration of monovalent salt, as proven by DLS and AFM results. 

 

Keywords 

PDMAEMA, PMETAI, ATRP, polyelectrolytes, cylindrical polymer brushes, pH 

responsive, cryo-TEM, AFM, DLS 
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Introduction 

With the rapid development of nano-science and nanotechnology, scientists’ attention 

has been shifting from the preparation of various nanostructures and nano-materials to 

manipulable nano-devices[1, 2]. Although researchers have long been successful in the 

microscopic motors, actuators, or sensors, the same concept in the nanometer scale has 

met great challenges due to the special properties of nano-objects.  

In recent years, it became obvious that polymers can play an important role in building 

smart and controllable nano-objects owing to their natural advantages[3, 4].  Firstly, the 

size of the polymer chains ranges in the nanometer scale. Secondly, polymers show 

diversified topologies like linear, star-like, dendritic, comb-shaped and crosslinked 

structures. Moreover, they can also self-assemble into different structures. Thirdly, 

because of their vast possibilities of functionalities, polymer can respond to different 

external or internal stimuli, such as pH, solvent, ions, temperature, radiation, electric or 

magnetic field [5].  

Among polymers of different structures, cylindrical polymer brushes (CPBs) have 

drawn increasing attention for their potential as single molecular responsive nano-objects. 

When the grafting density of polymer chains to a much longer linear chain is high enough, 

a cylindrical polymer brush is formed[6-9]. Because of the anisotropic nature and the 

worm-like structure, cylindrical brushes demonstrate special solution and bulk 

properties[10]. So far, three different strategies have been developed for the preparation 

of CPBs: grafting-onto[11], grafting-from[12, 13] and grafting-through[7]. Every strategy 

has its own advantages and disadvantages. Different controlled/living polymerization 

techniques have also been applied to prepare well-defined CPBs: atom transfer radical 

polymerization (ATRP)[12, 14, 15], nitroxide mediated radical polymerization (NMP)[16, 

17], ring-opening polymerization (ROP)[18] and ring-opening metathesis polymerization 

(ROMP)[19]. 

There are already several examples of using CPBs as responsive nano-objects. Schmidt 

et al showed that poly(N-isopropylacrylamide) (PNIPAAm) polymer brushes can 

transform from worm-like structures into spheres when the temperature is higher than the 

lower critical soluble temperature (LCST)[20]. Similar brushes with different backbone 

or side chains were also reported by McCarley et al. [21] and Matyjaszewski et al.[22]. 
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Sheiko et al.[23] and Möller et al.[24] reported the conformational transition of 

cylindrical polymer brushes on a surface due to lateral pressure stimuli. Matyjaszewski et 

al. successfully prepared photo-tunable temperature responsive core-shell type cylindrical 

brushes[25]. 

Polyelectrolytes are macromolecules carrying covalently bound anions or cationic 

groups with counterions providing electroneutrality[26, 27]. Due to the Coulombic inter-

actions they demonstrate special solution properties, which are strongly influenced by the 

type and concentration of salt in aqueous solution.[28] For weak polyacids and –bases the 

pH value is another important parameter since it controls the ionization degree. Inspired 

by these special features of polyelectrolytes, the corresponding cylindrical polymer 

brushes may display totally different responsiveness compared to uncharged cylindrical 

brushes, which could be used for building smart single-molecular nano-objects. Although 

there are already several examples of polyelectrolyte cylindrical polymer brushes[29-32], 

most of the research was concentrated on the synthesis work. Few were conducted on the 

responsiveness and the transition of the polyelectrolyte cylindrical brushes.  

Herein, we describe the synthesis of poly(N,N-dimethylaminoethyl methacrylate) 

(PDMAEMA) cylindrical brushes and their quaternized salts, poly{[2-

(methacryloyloxy)ethyl] trimethylammonium iodide} (PMETAI) brushes. Previously, 

our group has reported on the multi-responsive solution properties of PDMAEMA linear 

and star polymers and their quaternized derivatives[33-35]. Due to the weak 

polyelectrolyte nature of the PDMAEMA, the corresponding cylindrical polymer brushes 

are expected to show different properties. Matyjaszewski et al. showed the temperature 

responsiveness of the PDMAEMA brushes at various concentrations in solution[36]. In 

this study, we will demonstrate the response of this type of brushes on pH and the 

concentration of monovalent salt. A detailed study with added di- and trivalent salts will 

be published elsewhere. The responsiveness of the PDMAEMA and PMETAI brushes 

could be potentially applied in nano-scale sensor systems or nano-actuator systems[37].  
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Experimental section: 

Materials. CuCl (97%, Aldrich) was purified by stirring with acetic acid overnight. 

After filtration, it was washed with ethanol and diethyl ether and then dried in vacuum 

oven. CuCl2 (99%, Acros) was used without purification. 2-dimethylaminoethyl 

methacrylate (98%, Merck) was purified by passing through basic alumina columns 

before polymerizations. N,N,N’,N’’,N’’’,N’’’-hexamethyltriethylenetetraamine 

(HMTETA, Aldrich) was distilled before use. The synthesis of the macroinitiator poly(2-

(2-bromoisobutyryloxy)ethyl methacrylate) (PBIEM) (DPn = 1500, PDI = 1.08) by 

anionic polymerization was reported previously[15]. Methyl iodide was purchased from 

Aldrich and was used as is. All other solvents and chemicals were used as received. 

Regenerated cellulose membranes were used for the dialysis (ZelluTrans with MWCO = 

4000 – 6000 Da from Roth, Karlsruhe, and Spectra/Pore 7 with MWCO = 1000 Da). 

Polymerizations. All polymerizations were carried out in round-bottom flasks sealed 

with rubber septa. A typical example of the synthesis of PDMAEMA cylindrical brushes 

is described as follows: PBIEM (55.8 mg, 0.2 mmol of initiating α-bromoester groups) 

and HMTETA (46.1 mg, 0.2 mmol) were dissolved in anisole (31.4 g) in a round-bottom 

flask and stirred overnight to assure the complete dissolution of the high molecular 

weight macroinitiator. Then the monomer DMAEMA (15.7 g, 0.1 mol) was injected via a 

syringe and stirred for 15 min. CuCl2 (5.4 mg, 0.04 mmol) was added, followed by Argon 

purging for 5 minitues. CuCl2 was dissolved and the color became brown. Then CuCl 

(19.8 mg, 0.2 mmol) was added and the flask was purged with argon for 15 min. About 

0.5 mL of solution was taken out with an argon-purged syringe as an initial sample for 

conversion measurement by 1H NMR. The round-bottom flask was then inserted into a 

water bath at room temperature (25 oC). HMTETA was injected by argon-purged syringe 

to start the reaction. The solution immediately turned green. Small amounts of samples 

were taken out at intervals to check the monomer conversion by 1H NMR. After 12.5 h, 

the reaction solution became viscous and was stopped by opening to the air. Final 

conversion determined by 1H NMR reached 6.5%. THF was added to dilute the solution. 

After passing through a basic alumina column, the solution was concentrated by a rotary 

evaporator. Afterwards, it was precipitated into cold n-hexane to remove the residual 

monomer and other impurities. Then the polymer was re-dissolved in certain amount of 

 



4. Cationic Cylindrical Brushes                                                                                                 IV-6 

dioxane. A part of the solution was subjected to freeze-drying and the other part was 

further diluted by dioxane and dialyzed against pure dioxane for 7 days. After the dialysis, 

a part of the dioxane solution was dialyzed against water for 7 days to switch the solvent 

from dioxane to water.  

Synthesis of poly{[2-(methacryloyloxy)ethyl] trimethylammonium iodide} 

cylindrical brushes: To quaternize the obtained PDMAEMA brushes, the polymer was 

dissolved in dioxane. Methyl iodide was added at room temperature at a molar ratio of 2 

compared to amino groups. After around 20 min, the solution became turbid. Stirring was 

kept for 2 days to ensure the full reaction. Then dioxane was decanted and the polymer 

was washed several times with diethyl ether. Afterwards, the quaternized polymers were 

dissolved in water and dialyzed against pure water for one week. Finally, it was freeze 

dried to get white powders. 

Cleavage of the side chains from the PDMAEMA brushes: The cleavage of the side 

chains from the quaternized PDMAEMA brushes was carried out by alkaline hydrolysis. 

One typical reaction is described as follows: 100 mg of quaternized PDMAEMA brushes 

and about 10 ml of concentrated NaOH (18 M) aqueous solution were put into a PE vial 

and heated for 10 days at 90 °C. After one hour at 90 °C, some more drops of water were 

added to dissolve some suspending polymers. A dark brown precipitate was observed 

after the reaction and the smell of amine is also quite strong. The mixture was then 

cooled down and the supernatant solution was removed by syringe to separate it from the 

precipitate. Concentrated HCl solution was added to the solution to tune the pH to around 

4. This solution was freeze-dried and redissolved in water. Dialysis was carried out 

against pure water by using regenerated membranes (Millipore SpectraPore 7 MWCO 

1000) over 3 days. In order to ensure the full protonation of the final product, 

poly(methacrylic acid) (PMAA), a small amount of HCl was added before freeze-drying 

the solution. 1H-NMR measurement in D2O was performed to check the conversion of the 

ester cleavage. Aqueous GPC was used to check the molecular weight of the final PMAA 

product with a PMAA calibration. 

Characterization. 1H NMR was measured on a Bruker AC-250 instrument at room 

temperature with CDCl3 or D2O as the solvent. 
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The apparent molecular weights of the PDMAEMA brushes were characterized by 

conventional gel permeation chromatography (GPC) using 0.05 M solution of LiBr in 2-

N-methylpyrrolidone (NMP) as eluent at a flow rate of 1.0 mL/min at room temperature. 

PSS GRAM columns (300 mm×8 mm, 7 μm): 103, 102 Å (PSS, Mainz, Germany) were 

thermostated at 70 °C. An RI detector and a UV detector (λ = 270 nm) were used. 

Polystyrene standards (PSS, Mainz) with narrow molecular weight distribution were used 

to calibrate the columns, and methyl benzoate was used as the internal standard.  

An aqueous GPC (internal standard, ethylene glycol; additives: 0.1 M NaN3, 0.01 M 

NaH2PO4) was applied to obtain the molecular weight of PMAA (PMAA standards, PSS, 

Mainz). Column set: two 8mm PL Aquagel-OH columns (mixed and 30 Å), operated at 

35°C and RI detection. 

Static light scattering (SLS) was measured on a Sofica goniometer using a He-Ne laser 

(λ = 632.8 nm). Prior to the light scattering measurements, the sample solutions were 

filtered 3 times by using Millipore Teflon filters with a pore size of 0.45 µm. Five 

concentrations of the PLMA cylindrical brush solutions in dioxane were measured at 

angles in the range from 30 o to 150 o. The weight-average molecular weight, Mw, of the 

PDMAEMA brushes was obtained by the analysis of the Zimm-plots. The refractive 

index increment of the PDMAEMA cylindrical brushes in dioxane solution at 25 °C was 

measured to be dn/dc = 0.0543 mL/g using a PSS DnDc-2010/620 differential 

refractometer. 

Dynamic light scattering (DLS) was carried out on an ALV DLS/SLS-SP 5022F 

compact goniometer system with an ALV 5000/E correlator and a He-Ne laser (λ = 632.8 

nm) at an angle of 90o. For the PDMAEMA brush solutions in dioxane, the sample 

solutions were filtered 3 times by using Millipore Teflon filters with a pore size of 0.45 

µm before the light scattering measurements. For the water solution of PDMAEMA 

brushes at different pH and quaternized brushes at different salt concentration, the sample 

solutions were filtered by Millipore nylon filters with pore size of 0.45 µm. CONTIN 

analyses were performed for the measured intensity correlation functions. Apparent 

hydrodynamic radii, Rh, of the cylindrical brushes were calculated according to the 

Stokes-Einstein equation.[38] All the measurements were carried out at 25 °C. For the 
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measurement of quaternized brushes in salt solutions, the change of viscosity of the 

aqueous solutions was taken into account. For salt concentrations higher than 0.2 M the 

obtained hydrodynamic radius was divided by the relative viscosity [33]. 

Atomic force microscopy (AFM) measurements were performed on a Digital 

Instruments Dimension 3100 microscope operated in tapping mode. The micro-cantilever 

used for the AFM measurements were from Olympus with resonant frequency between 

284.3 kHz and 386.0 kHz, and spring constant ranging from 35.9 to 92.0 N/m. For the 

PDMAEMA brushes in THF solution, the samples were prepared by dip-coating from 

very dilute (0.01 g/L) THF solutions of PDMAEMA brushes onto freshly cleaved mica 

surfaces. For the measurement of the quaternized brushes in water, very dilute aqueous 

solutions (0.02 g/L) were prepared and were spin-coated on freshly cleaved mica.  

For cryogenic transmission electron microscopy (cryo-TEM) studies of PDMAEMA 

brushes and the quaternized brushes, a drop of the sample (aqueous solution, 

concentration around 0.01 g/L) was put on an untreated bare copper TEM grid (600 

mesh, Science Services, München, Germany), where most of the liquid was removed 

with blotting paper, leaving a thin film stretched over the grid holes. The specimens were 

instantly shock vitrified by rapid immersion into liquid ethane and cooled to 

approximately 90 K by liquid nitrogen in a temperature-controlled freezing unit (Zeiss 

Cryobox, Zeiss NTS GmbH, Oberkochen, Germany). The temperature was monitored 

and kept constant in the chamber during all the sample preparation steps. After the 

sample is frozen, it was inserted into a cryo-transfer holder (CT3500, Gatan, München, 

Germany) and transferred to a Zeiss EM922 EFTEM. Examinations were carried out at 

temperatures around 90 K at an acceleration voltage of 200 kV. Zero-loss filtered images 

(ΔE = 0 eV) were taken under reduced dose conditions (100-1000 electrons/nm2). All 

images were registered digitally by a bottom-mounted CCD camera system (Ultrascan 

1000, Gatan) combined and processed with a digital imaging processing system (Gatan 

Digital Micrograph 3.10 for GMS 1.5). 
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Results and discussion 

Syntheses of PDMAEMA brushes 

The PDMAEMA cylindrical brushes were prepared by the combination of anionic 

polymerization and ATRP using the grafting-from strategy. The synthesis of the 

backbone of the brushes by anionic polymerization with DPn = 1500 and a very low 

polydispersity was reported previously by our group [15]. Scheme 1 shows the synthetic 

strategy of the PDMAEMA cylindrical brushes. 

 

Scheme 1. Synthetic strategy of the PDMAEMA cylindrical brushes 
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It has been known that the initiating efficiencies of grafting from the backbone for the 

synthesis of cylindrical brushes are limited due to the steric hindrance[39, 40]. In order to 

obtain relatively densely grafted cylindrical brushes, some points have to be taken into 

account. Matyjaszewski et al. have shown that reducing the monomer concentration and 

increasing the copper amount enhances the grafting efficiency[40]. It is also known that 

initiation of methacrylates is more efficient when bromine is exchanged to chlorine by 

the use of CuCl[41]. Using HMTETA as the ligand and anisole as the solvent has proved 

to work well for the ATRP of linear DMAEMA polymers[42]. Thus, for our system, we 

chose CuCl as the catalyst, HMTETA as the ligand and anisole as the solvent. Since the 

monomer DMAEMA is quite reactive, we added 20% CuCl2 to the system to lower the 

rate of polymerization. Quite low monomer concentrations were used with the weight 

ratio of DMAEMA to anisole 1:2. Temperature also plays a very important role. Whereas 

crosslinked polymer was obtained at 70 oC, soluble polymers were achieved at room 

temperature. Table 1 lists the results of the polymerizations. It shows relatively low 

polydispersity for the brushes, considering the extremely high molecular weight. The 

molecular weights determined by conventional GPC were not true values since the 

compact structure of the brushes is not comparable with that of the linear polystyrene 
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standards. However, the calculated molecular weights do not deviate much from the true 

molecular weight determined by static light scattering in dioxane, indicating that the 

synthesis of the PDMAEMA brushes was successful. 

 

Table 1. Synthesis, molecular characterization and light scattering measurements of 

PDMAEMA brushes a 

Sample B1 B2 

Conversionb 6.5% 8.0% 

DPsc,calc 
c 32 40 

10-5Mn,app,GPC 
d 6.26 6.85 

PDIapp d 1.33 1.35 

10-6Mn,calc 
e 7.95 9.84 

10-6Mw,SLS 
f 8.64 12.40 

Rh
g, nm (PDI) 25 (0.126) 32 (0.165) 

 

aATRP at 25 oC with 33.3 wt % DMAEMA concentration in anisole and constant ratio of 

s0/[I]0/[CuCl]0/[CuCl2]0/[HMTETA] = 500:1:1:0.2:1. DPn,backbone.= 1500. bMonomer 

conversion determined by 1H NMR. ccalculated DPn of side-chains, DPsc,calc= 

([M]0/[I]0)×conversion. dApparent values determined by conventional GPC with NMP as 

the eluent and PS calibration. ecalculated from monomer conversion. Mn,calc= 

(157×DPsc,calc + 279)× DPn,backbone.  fdetermined by SLS in dioxane. gHydrodynamic 

radius and polydispersity measured by DLS in dioxane. 

 

Although conventional GPC cannot give true molecular weights of the brushes, it still 

can show the difference of the eluent volume changes between the brushes and the 

macroinitiator. Figure 1 shows the GPC eluent curves of the PDMAEMA brushes. They 

both demonstrate monomodal distributions, indicating good control of the ATRP grafting 

reactions. There is a coupling peak for the macroinitiator PBIEM, which has been 

reported before[15]. Since the coupling peak covers only a small part of the PBIEM 

polymer, and the polydispersity of the macroinitiator is very low, it does not influent the 

final brushes too much.  
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Solutions of PDMAEMA brushes in dioxane were also subjected to dynamic light 

scattering analysis. The plots of the decay rates versus the square of the scattering vector 

are linear and lead to the apparent hydrodynamic radii given in Table 1. The CONTIN 

plots of both brushes (at 90° scattering angle) are monomodal and the polydispersities, as 

determined by the cumulant method are below 0.2, demonstrating the narrow distribution 

of the PDMAEMA brushes. 

14 16 18 20 22

Ve (mL)

 PBIEM
 B1
 B2

 
Figure 1. GPC curves of the PDMAEMA brushes in NMP (RI detection) 

 

Figure 2 shows the 1H NMR spectra of the PDMAEMA brushes. The two peaks at 4.1 

and 4.3 ppm (a, a′), are assigned to the methylene protons between two ester groups in 

the PBIEM macroinitiator. When the PDMAEMA cylindrical brushes are formed, peak a 

and a′ disappear, while distinctive peaks from the dimethyl aminoethyl groups appear: 

methyl protons (c, 2.2 ppm) connected to the amino group, methylene protons (d, 2.5 

ppm) neighboring to the amino groups, and the other methylene protons (e, 3.95 ppm) 

connected to the ester groups. Thus, the 1H NMR spectra indicate the successful grafting 

of PDMAEMA from the PBIEM backbones. 
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Quaternization and grafting densities  

The grafting-from strategy does not always provide full initiator efficiency, leading to 

lower than expected grafting densities. Since the grafting density influences the length, 

flexibility and other characteristics of the CPBs, its knowledge is important. The ester 

bonds connecting the side-chains to the backbone are used for the cleavage of the side-

chains by a strong base. Because of the LCST behavior of PDMAEMA in aqueous 

solution at pH > 7, it is not convenient to cleave the PDMAEMA brushes’ side chains in 

basic solutions. Thus, the brushes were quaternized by methyl iodide to their salt form, 

PMETAI, and subjected to a strong base and heating. This treatment not only cleaves the 

ester linkage between the side-chains and the backbone, but also the ester groups in the 

monomer units. Scheme 2 shows the procedures of the quaternization and cleavage 

reactions. 
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Figure 2. 1H NMR of PBIEM, PDMAEMA brush and PMETAI brush 
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Scheme 2. Procedure for the quaternization and cleavage reactions 
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From Figure 2, we can compare the 1H NMR spectra of the PDMAEMA brushes and 

the quaternized PMETAI brushes. After quaternization, the distinct peaks from the 

methylaminoethyl groups all shift to higher chemical shift: methyl groups connected to 

the ammoniums (c’, 3.2 ppm), methylene groups adjacent to the ammoniums (d’, 3.75 

ppm) and the other methylene groups linking to the ester groups (weak peak e’, 4.4 ppm). 

It is also found there are no peaks left at the original peak positions (c, d, e), which 

indicates quantitative quaternization of the PDMAEMA brushes. Thus, strong cationic 

polyelectrolyte PMETAI brushes are obtained. 

The cleavage of arms from PMETAI star polymers has already been reported by our 

group[33]. The similar procedure was used to detach the side-chains from the PMETAI 

brushes. The final product, poly(methacrylic acid) (PMAA), was separated and purified 

for 1H NMR and aqueous GPC analyses. 1H NMR and water GPC eluent curves of the 

PMAA cleaved from quaternized B2 sample are shown in the Supporting Information. 

The GPC results and calculated initiating efficiencies are listed in Table 2. According 

to the GPC results, the cleaved PMAA shows mono-modal distribution. However,  the 

polydispersity is relatively high (1.38), which is close to the value 1.33 expected for slow 

initiation[43]. Since DMAEMA is a quite active monomer and there is remarkable steric 

hindrance on the backbone, the propagation rate of DMAEMA chains is expected to be 

much higher than that of initiation. In both brushes the initiating efficiencies are ca. 50%, 

irrespective of halogen exchange and lower monomer concentration used. Nevertheless, 

the grafting-from strategy is effective for the preparation of cylindrical brushes despite its 

inevitable relatively low grafting density.  

Thus, both brushes consist of 1500 monomer units in the backbone and carry ca. 750 

side chains of DPn = 65 and 82 for brushes B1 and B2, respectively. 
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Table 2. GPC results of PMAA arms obtained after cleaving and initiating efficiencies 

sample 
PDMAEMA 

brush 

PMETAI 

brusha 

103 

Mn,GPC
b 

PDIb DPsc,calc
c DPsc,GPC

d f e 

PMAA1 B1 Q1 5.6 1.38 32 65 50% 

PMAA2 B2 Q2 7.1 1.38 40 82 49% 
aQ1 and Q2 are the quaternized brushes corresponding to the PDMAEMA brushes B1 

and B2. bDetermined by water GPC using PMAA calibration. cfrom Table 1. dMn,GPC/86. 
eInitiating efficiencies, f = DPsc,calc/DPsc,GPC. 

 

AFM imaging of the PDMAEMA brushes 

The morphology of the PDMAEMA brushes is shown by AFM. Figure 3 displays the 

AFM height images of sample B1 and B2, dip-coated on the freshly cleaved mica surface 

from THF solution. From Figure 3, we see that the B1 brushes are quite curved while B2 

brushes are more stretched, indicating a higher persistence length. Nevertheless, their 

average lengths are both around 170 nm, which is ca. 45% of the contour length of the 

totally stretched backbone length (Lc = 1500×0.25 nm = 375 nm), probably due to the 

low grafting density and the not too long side-chains (65 and 82 monomer units, 

respectively). 

 

200 nm200 nm200 nm200 nm200 nm

a b

200 nm200 nm200 nm200 nm200 nm

a b

Figure 3. AFM height images of PDMAEMA brushes B1 (a) and B2 (b) obtained by dip-

coating from 0.01 g/L THF solutions onto mica. The Z ranges for images (a) and (b) are 4 

nm and 5 nm, respectively. 

 



4. Cationic Cylindrical Brushes                                                                                                 IV-15 

pH responsiveness of PDMAEMA brushes 

Since PDMAEMA is a weak cationic polyelectrolyte, its degree of ionization depends 

on pH. The apparent pKb value (pKb = 14 - pH at 50% ionization) for stars with a large 

number of arms is around 8 [35] and we expect the same behaviour here. In the case of 

CPBs, a change in ionization is expected to induce structural changes. DLS 

measurements for the brushes at different pH values were carried out in water at a 

scattering angle of 90°. Figure 4 shows the hydrodynamic radii of the PDMAEMA brush 

B2 at different pH values. All measurements were performed in the absence of salt at 

very low concentration (0.2 g/L) to avoid intermolecular aggregation at high pH values. 

An obvious pH dependence of the apparent hydrodynamic radii is observed. Wheras Rh at 

pH 10 is close to the one obtained in dioxane, the values increase by 10 nm between pH 

10 and pH 2, which is explained by the stretching of the PDMAEMA brushes at low pH 

(high ionization) and collapse at high pH.  
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Figure 4. Hydrodynamic radii of PDMAEMA brush B2 in 0.2 g/L aqueous solution at 

different pH values 

 

In order to see the true morphological changes of the PDMAEMA brushes, cryo-TEM 

measurements were performed at pH 2, pH 7 and pH 10 in the absence of salt. Figure 5 
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displays the cryo-TEM images of PDMAEMA brushes in aqueous solution at a 

concentration as low as 0.01 g/L. It is seen that the length of the PDMAEMA brushes at 

pH 7 is around 180 nm, which is slightly higher than that measured by AFM. In AFM, 

the brushes are tightly adsorbed at the mica surface and this surface effect must be taken 

into account when measuring the size of the brushes. In the cryo-TEM system, the 

solutions were vitrified in an extremely short time and the images reveal almost the true 

situations of the brushes in the solution state. At pH 7, the PDMAEMA brushes take a 

worm like structures and some of them are quite curved. At pH 2, most of the brushes are 

protonated and ionized, and they show more stretched morphologies. More remarkably, 

at pH 10, the brushes are strongly contracted with an average length around 110 nm, 

which is attributed to a collapse of the non-ionized PDMAEMA side chains. 

 

 
Figure 5. Cryo-TEM images of PDMAEMA brushes in vitrified 0.01 g/L aqueous 

solution at (a) pH 2, (b) pH 7 and (c) pH 10 

 

Morphology of PMETAI cylindrical brushes 

By quaternization with methyl iodide the weak polyelectrolyte PDMAEMA brushes 

are converted to strong polyelectrolyte brushes, that is, all side chains carry charges 

irrespective of the pH in the system. From the 1H NMR spectra in Figure 2, the successful 

conversion was proven. Figure 6 shows typical AFM and cryo-TEM images of PMETAI 

brush Q2. On mica surface, the PMETAI brushes show a quite curved structure, which 

again is attributed to the strong interaction of the cationic brushes with negatively 

charged mica substrate. However, the worm-like structure of the charged CPBs is 
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immediately obvious. The length of the PMETAI brushes is around 180 nm, similar to 

that of the PDMAEMA brushes on surface or in solution. 

 
Figure 6. (a) AFM height image (Z range 7 nm) and (b) cryo-TEM image of PMETAI 

brushes 

 

Effect of monovalent salt 

Due to the strong Coulombic repulsion of the charged chains, the strong 

polyelectrolyte PMETAI brush assumes a rather elongated conformation. Although, due 

to Manning condensation, the majority of counterions are confined in the brush [44-47], 

the charge density is still high enough to considerably stretch the brush. Addition of salt 

to the solution will screen the electrostatic interaction within the polyelectrolyte. Thus, 

the stretching of the polyelectrolyte chains should be diminished and the conformation 

should be more collapsed. Figure 7 shows the change of the hydrodynamic radii of the 

PMETAI Q2 brush with increasing NaBr concentration. There is a remarkable decrease 

of the apparent Rh when salt is added. Increasing the NaBr concentration from 0 M to 1 

M leads to a decrease of 8 nm in Rh. This marked change of the overall shape has already 

been studied for planar and spherical polyelectrolyte brushes[29, 48]. However, Schmidt 

et al.[29] reported no significant change of the Rg and Rh for quaternized 

polyvinylpyridine (PVP) brushes when the concentration of added salt was increased to 

0.1 M. Here we performed the DLS measurements at a wider range of salt concentrations 

(up to 2M of NaBr). Whereas the apparent hydrodynamic radius is equal to the one for 
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the non-quaternized brush at pH = 2, we indeed find a pronounced decrease of Rh at high 

salt concentration. The reasons for this discrepancy are not obvious and may be traced 

back to a difference in grafting density, which is higher for the PVP brushes synthesized 

by the polymerization of PVP macromonomers. 

When the salt concentration is higher than 1 M, the apparent Rh increases again, as has 

also been found for the spherical polymer brushes[49]. As already pointed out there, 

bromide ions may have specific interactions with cationic polyelectrolyte chains. Hence, 

a solution of NaBr of sufficient concentration will lead to an adsorption of bromine ions 

onto the polyelectrolyte chains which is followed by a re-swelling of the brushes. 
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Figure 7. Apparent hydrodynamic radii of the PMETAI brushes as a function of NaBr 

concentration. 

 

The collapse of the PMETAI brushes at high salt concentration can directly be 

visualized by AFM. Figure 8 shows the AFM height image of the PMETAI brushes on 

mica, spin-coated from its 0.5 M NaBr solution. It is clearly seen that most of the brushes 

show an ellipsoid-like conformation and the length of the brushes is less than 100 nm, 

which is much lower than that shown in Figure 6. 
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200nm200nm

Figure 8. AFM height image of PMETAI brushes on mica spin-coated from 0.5 M NaBr 

solution. Z range 12 nm 

 

Conclusions 

We have demonstrated the successful preparation of PDMAEMA cylindrical brushes 

using the grafting-from strategy by ATRP. The initiating efficiencies of the ATRP 

processes were determined by cleaving the side-chains and GPC analysis. The initiating 

efficiency is around 50%, probably due to slow initiation caused by steric hindrance. 

DLS, SLS and AFM measurements clearly show the worm-like structure of the 

PDMAEMA brushes in solution. The brushes also show pH responsiveness as proven by 

DLS and cryo-TEM at different pH values. 1H NMR confirms the successful 

quaternization of PDMAEMA brushes to form strong cationic polyelectrolyte PMETAI 

brushes. The PMETAI brushes collapse in solution with high concentration of 

monovalent salt, as were evidenced by DLS and AFM.  
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Figure S1. 1H NMR of the linear PMAA cleaved from the PMETAI brushes 
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Figure S2. Water GPC eluent curve of the cleaved linear PMAA.  
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Figure S3. DLS of B1 brush in dioxane solution: a) dependence of decay rate on the 

square scattering vector; b) hydrodynamic radius distribution at scattering angle of 90°. 
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Figure S4. DLS of B2 brush in dioxane solution: a) dependence of decay rate on the 

square scattering vector; b) hydrodynamic radius distribution at scattering angle of 90°. 
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Abstract 

We present a study of the spatial structure of cationic cylindrical polymer brushes in 

presence of counterions of different valencies. Dynamic Light Scattering (DLS) and 

Atomic Force Microscopy (AFM) studies demonstrate that the brushes undergo a 

transition from an extended to a collapsed state when the ionic strength is raised. In the 

presence of di- or trivalent salt this collapse passes through an intermediate state in which 

the cylindrical polymer brushes assume a helical conformation. The helical pitch (25 nm) 

is in the range expected from theoretical considerations. Moreover, we demonstrate that 

the collapse can be reversed by a photochemical cleavage of the complex trivalent 

counterion into one monovalent and one divalent ion (photoaquation). All data 

demonstrate that the spatial structure of cylindrical polymer brushes can be manipulated 

on the nanoscale in a defined fashion. 

 

Keywords: cylindrical polymer brush, polyelectrolyte brush, AFM, photoaquation, helix. 
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Introduction 

Cylindrical polymer brushes consist of a long main chain onto which flexible side 

chains are densely grafted.1-3 These polymers adopt a stretched conformation in dilute 

solution due to the steric interaction of the side chains.4,5 Recently, we6 and others7 

reported on the synthesis of cylindrical polyelectrolyte brushes.1,8 The most prominent 

feature of polyelectrolyte brushes in general is the strong confinement of the counterions 

within the brush layer9,10. Hence, virtually all counterions are confined within the brush 

layer thus creating an enormous osmotic pressure11. In case of cylindrical polyelectrolyte 

brushes, this osmotic pressure should be followed by a strong elongation of the polymers 

in salt-free solution. Our previous work already demonstrated that adding monovalent salt 

to solutions of the cylindrical polyelectrolyte brushes leads to a marked decrease of the 

hydrodynamic radius. This effect is clearly due to the transition of from an osmotic to a 

salted brush7a,8,11. Hence, the side chains that have adopted a highly stretched 

conformation in the salt-free state (osmotic limit) collapse in presence of a sufficiently 

high salt concentration. A similar finding was reported for planar12 and spherical 

polyelectrolyte brushes11,13. Thus, the cylindrical polyelectrolyte brushes behave in the 

same way as the spherical ones. The obvious difference is related to the fact that the 

polyelectrolyte chains are not attached to a rigid surface but to a flexible backbone. 

Hence, the present systems have one more degree of freedom that allows them to react on 

an external trigger, namely the ionic strength, in a much more pronounced way, as 

evidenced by the collapse to an unstructured globular state.  

Up to now, the dependence of the conformation of cylindrical polymer brushes on 

ionic strength was only studied in presence of monovalent salt. However, recent work has 

demonstrated that trivalent counterions lead to a collapse from a stretched to a dense 

spherical conformation in the case of spherical polyelectrolyte brushes14 and of 

polyelectrolyte stars15. Moreover, Pochan and colleagues demonstrated that triblock 

copolymers with acidic coronas can assemble to various structures if multivalent amine is 

added as counterions16-20. In particular, these authors showed that cylindrical micelles 

with a charged corona may form well-defined helices in presence of triamines and 

tetraamines. They explained the formation of a helical structure by the combination of a 

uniaxial pressure along the long axis of the cylinders together with the electrostatic 
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repulsion of the charged surface of the cylinder. Together with previous work on brushes 

and polyelectrolyte stars this work suggests that multivalent counterions introduced into 

cylindrical polyelectrolyte brushes should present a novel way to adjust the conformation 

within wide limits. Since the charged side chains are appended to the main chains by 

chemical bonds, it should be possible to explore all states from the full expanded 

conformation to a fully collapsed state. 

 

Scheme 1: Chemical structure of the cylindrical polyelectrolyte (PMETAI) brush used, 
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Here we present the first study of the conformation of cylindrical polyelectrolyte 

brushes in aqueous solution in presence of di- and trivalent counterions. Scheme 1 shows 

the chemical structure of the polymers under consideration here, having a backbone of 

1500 methacrylate units and 750 side-chains of quaternized poly(N,N-dimethylamino 

methacrylate) (PDMAEMA-Q), also named poly(methacryloylethyl trimethylamino 

iodide) (PMETAI). Each brush has 6.3x104 cationic charges, a number-average 

molecular weight of 1.9×107 g/mol and a polydispersity index of 1.38. The synthesis and 

the characterization as well as the solution behaviour in presence of monovalent ions are 

described elsewhere.6 We investigate the conformation in solution by a combination of 

dynamic light scattering (DLS) and Atomic Forcs Microscopy (AFM). Moreover, we use 

photoaquation to convert the complex trivalent ions into a mixture of mono- and divalent 

ions21 which is followed by an unfolding of the collapsed chains into an open state again. 
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The main goal of the present paper is to demonstrate that cylindrical polyelectrolyte 

brushes can be manipulated on the nanoscale in a well-defined manner. 

 

Experimental 

The polyelectrolyte brush Q2 were synthesized by quaternization of uncharged 

poly(N,N-dimethylamino methacrylate) (PDMAEMA) brushes, which were prepared by 

grafting side chains of N,N-dimethylaminoethyl methacrylate (DMAEMA) from a 

polyinitiator main chain by Atom Transfer Radical Polymerization (ATRP).22 The details 

of the synthesis and the characterization are given elsewhere.6 The quaternized polymer 

brushes were dissolved in water and dialyzed against pure water for one week. 

Subsequently, the polymer was obtained by freeze-drying.  

Dynamic light scattering (DLS) was carried out on an ALV DLS/SLS-SP 5022F 

compact goniometer system with an ALV 5000/E correlator and a He-Ne laser (λ = 632.8 

nm) at an angle of 90o. Cryogenic transmission electron microscopy (cryo-TEM) was 

performed as already described. Atomic force microscopy (AFM) measurements were 

performed on a Digital Instruments Dimension 3100 microscope operated in tapping 

mode. The micro-cantilevers used for the AFM measurements (Olympus) had resonant 

frequencies between 284.3 kHz and 386.0 kHz, and spring constants ranging from 35.9 to 

92.0 N/m. For the measurement of the quaternized brushes in water, very dilute aqueous 

solutions (0.02 g/L) were prepared and spin-coated on freshly cleaved mica. For all the 

quaternized brushes with different salts in water solution, 0.02 g/L aqueous solution of 

brushes were first prepared and then different amount of salt or salt solutions were 

introduced by syringe. Then spin-coating was performed on mica surface.  

The di- and trivalent salts potassium tetracyanonickelate(II) K2[Ni(CN)4] (ABCR) and 

potassium hexacyanocobaltate(III) K3[Co(CN)6] (Aldrich), respectively, were used as 

received. To transform the trivalent salt into a divalent one, a UV lamp (Honle UVHAND 

250H1/BL, 310 W) was employed. IR radiation was reduced by a water flow cooling 

system. The glass vials with sample solutions were placed around 7 cm away from the 

lamp. 
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Results and discussion 

Figure 1 shows typical atomic force microscopy (AFM) and cryogenic transmission 

electron microscopy (cryo-TEM) images of PMETAI brush Q2 in salt-free aqueous 

solution. The extended worm-like structure is evident from both micrographs. On the 

mica surface, however, the PMETAI brushes seem to adopt a more curved conformation 

than in solution. This observation must be due to the strong interaction of the cationic 

brushes with negatively charged mica substrate. The length of the PMETAI brushes is 

around 180 nm, similar to that of the PDMAEMA brushes on the surface or in the 

solution. We can hence conclude that the analysis of the cylindrical polyelectrolyte 

brushes on the mica surface give a reliable information on the solution structure.  

 
Figure 1. (a) AFM height image (z range 7 nm) of PMETAI brushes spin-coated on 

freshly cleaved mica from 0.02 g/L aqueous solution and (b) cryo-TEM image of brushes 

in 0.01g/L aqueous solution. 

 

As shown in our previous report, dynamic light scattering (DLS) is suitable to follow 

the overall shape of the brushes in solution with great precision although the resulting 

apparent hydrodynamic radius RH,app gives no direct insight into the overall shape. Fig. 2 

summarizes all results obtained on the cylindrical polyelectrolyte brush by DLS. As 

already discussed in Ref.6, addition of 0.5 M NaBr leads to a collapse to globular objects. 

Small salt concentrations have virtually no effect. At highest salt concentration a re-
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swelling takes place due to specific interactions of the bromine ions with the cationic 

charges. If the monovalent counterions are replaced by divalent or trivalent counterions, 

the osmotic pressure of the polyelectrolyte will decrease due to the much lower ionic 

strength and a contraction or collapse should be observed at much lower concentration of 

added salt. Here we chose the two cyanometalates as the divalent and trivalent salt with 

the quadratic planar tetracyanonickelate(II), [Ni(CN)4]2-, and the octahedral 

hexacyanocobaltate(III), [Co(CN)6]3-, as the di- and trivalent  counterions, respectively. 
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Figure 2. Apparent hydrodynamic radii RH,app as the function of the concentration of 

monovalent (squares), divalent (circles) and trivalent salt (triangles). The concentration of 

the brushes is 0.2 g/L in all cases. The data of RH,app in presence of monovalent salt have 

been taken from Ref.6. 

 

Fig. 2 demonstrates that this is observed indeed: When a 10 mM solution of the 

divalent counterions [Ni(CN)4]2- was added to a 1 g/L solution of the PMETAI brushes 

(corresponding to 3.3 mM of cationic charges), precipitation was observed immediately. 

From previous work on spherical polyelectrolyte brushes and polyelectrolyte stars it is 
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evident that there must be a quick exchange of monovalent counterions by divalent 

ions.14,15,21 An excess of divalent ions then can link neighboring brushes which causes 

intermolecular aggregation of the brushes and precipitation. Hence, the poylmer solutions 

were diluted to 0.2g/L for all subsequent measurements. 

The apparent hydrodynamic radii, RH,app, for the brushes in the absence of added salt 

are around 44 nm. Already at very low concentrations of di- or trivalent salts (10-2 mM), 

the apparent radii increased markedly (58 nm and 68 nm for the divalent and trivalent salt, 

respectively). Here aggregation takes place too but at a much slower rate. On further 

addition of the di- and trivalent salts, the RH,app values decrease again, indicating the 

collapse of the aggregated and/or non-aggregated brushes. Higher concentrations than 0.3 

mM and 5×10-2 mM for di- and and trivalent salt, respectively, cause precipitation again 

as is obvious from a stronger raise of the measured hydrodynamic radius (not shown). 

Even stronger dilutions were not practical due to the much decreased scattering signal.  

 

 
Figure 3. AFM height images of PMETAI brushes spin-coated from divalent salt 

solutions on mica: (a) Z-/+ = 0.66, AFM z range 10 nm, brush concentration 0.02 g/L, and 

the divalent salt concentration 2.2×10-2 mM, (b) Z-/+ = 1, AFM z range 12 nm, brush 

concentration 0.02 g/L, and the divalent salt concentration 3.3×10-2 mM, and (c) Z-/+ = 1, 

AFM z range 35 nm, brush concentration 1g/L and  divalent salt concentration 1 mM. 

 

To avoid possible complications by aggregation, all AFM-micrograph discussed in the 

following have been done using polymer concentration that were still lower (0.02g/L). 

Figure 3 shows typical AFM images of the cylindrical brushes in presence of [Ni(CN)4]2-. 

The concentration of added salt was 2.2×10-2 mM. We chose such a small concentration 
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to avoid all possible complications by aggregation. Given the small concentration of 

added salt, a molar charge ratio Z-/+ can be defined which is given by the ratio of the 

added anionic charges and the cationic charges carried by the PMETAI brushes. For the 

case shown in Fig. 3 Z-/+ = 0.66. This means that all [Ni(CN)4]2- ions present in the 

system would not suffice to neutralize the positive charges of the cylindrical brush. 

Moreover, there will be a Donnan-equilibrium between the ions inside and outside of the 

polyelectrolyte brush (see the discussion of this point in Ref.14). The previous 

calculations have shown that the divalent counterions will be taken up by the brush with 

high preference.  Hence, the concentration of the divalent ions remaining in solution must 

be smaller. In what is to follow, we therefore give only the ratio Z-/+ in order to 

characterize the amount of counterions present in the system. 

As is obvious from Fig. 3a, the brushes still kept their worm-like structures. When the 

charge ratio Z-/+ was increased to unity (salt concentration 3.3×10-2 mM), most of the 

brushes collapsed into globular structures, as can be clearly seen in Fig. 3b. The 

comparison of Fig. 3a and b moreover demonstrates that virtually no aggregates are 

formed despite the fact that divalent salt is present. Thus, most of the collapsed structures 

seen in Fig. 3b are still single chains. Figure 3c then demonstrates that there must be a 

strong attraction due to the presence of divalent salt. Here the polymer concentration was 

much higher again than in the experiments shown in Fig. 3a and b. The collapsed chains 

have assumed a nearly spherical shape aggregate and form larger clusters on which the 

single chains are still visible. These results are in direct agreement with the ones 

discussed in conjunction with Fig. 2. 

An entirely new feature appears at high dilution when Z-/+ = 0.75. Figure 4 clearly 

reveals that the collapse can be stopped at an intermediate helical state with a pitch of ca. 

25 nm. Obviously, the chains twist in order to relieve a part of the strain caused by the 

contraction along the long axis of the molecule. In some case this leads to a helix with 

several turns. Since there is no chiral unit within the chains, both right-handed and the 

left-handed helices are observed in similar numbers (Figure 4b and c). Figure 4a 

furthermore demonstrates that the helical conformation is an intermediate state between 

the stretched and fully collapsed spherical conformation: Some chains are only slightly 

curved while other are already totally collapsed. Evidently, the helical conformation is 
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only induced in a small window of salt concentrations in which the charges of the 

cylindrical brush are not fully balanced by the divalent ions. 

 
Figure 4. (a) AFM height image of PMETAI brushes with divalent ions [Ni(CN)4]2- with 

the ratio Z-/+ = 0.75. Concentration of the brush was 0.02 g/L and the concentration of the 

divalent ions 2.5×10-2 mM, AFM z range 6 nm; (b) and (c) show a typical right- and left-

handed helix, respectively. 

 

Figure 5 depicts the transition of the morphologies of the PMETAI brushes after 

adding trivalent [Co(CN)6]3- salt. As already observed in presence of the divalent 

counterions, helical structures are found (see the enlarged portions of Fig. 5b and 5c). 

The trivalent counterions lead to very well-defined helices with a pitch of 30 nm. Fig. 5 

also demonstrates that the helical structures present again a well-defined intermediate 

between the stretched and the collapsed globular state.  
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Figure 5. (a) AFM height image of PMETAI brushes with added trivalent salt spin-

coated on mica, Z-/+ = 1, z range 12 nm, brush concentration 0.02 g/L, and the trivalent 

salt concentration 2.2×10-2 mM; (b) and (c) show a typical right- and left-handed helix, 

respectively. 

 

One might argue that the helix formation is due to interaction with the substrate. Thus, 

to see the real conformation of the brushes in solution with added trivalent salt, cryo-

TEM measurements were performed. Figure 6 shows the typical structures observed in 

the vitrified solution with the charge ratio Z-/+ = 1 and very low concentration of the 

brushes (0.02 g/L). The left image shows that the brushes are considerably shortened, 

which is caused by the collapse with added trivalent salt. The center image shows a helix-

like structure with the upper part starting to collapse. The right image shows two typical 

zigzag morphologies, indicating the transition from extended states to a collapsed 

structure.  

From all results shown in Figures 4, 5 and 6, we conclude the following: Monovalent 

salt just leads to a collapse from the stretched to the globular conformation as expected 

from work performed on spherical polyelectrolyte brushes. However, divalent and in 

particular trivalent ions lead to the formation of a novel intermediate, namely the 

 



5. Helical Worms Induced by Counterions                                                                                                               V-12 

formation of helices. In the following section the formation of helices in achiral systems 

will therefore be discussed in more detail. 

 
Figure 6. Cryo-TEM images of PMETAI brushes with added trivalent salt, Z-/+ = 1, 

brush concentration 0.02 g/L, and the trivalent salt concentration 2.2×10-2 mM. 

 

Origin of helical conformations  

The above findings fully agree with the results obtained by Pochan et al. on cylindrical 

micelles. 20 They have demonstrated that helicity may be brought about in achiral systems 

differing widely in their chemical structure and their overall dimensions. It is hence 

interesting to discuss the origins of helix formation in more detail. Chain molecules such 

as proteins and DNA frequently adopt helical conformations. In most cases helicity is 

caused by chiral main chains or by chiral side groups.23,24 A different situation arises, 

however, if a helical structure is brought about solely by packing consideration in achiral 

systems. Some polymers with bulky side-groups adopt a static or dynamic helical 

conformation solution; poly(tripenylmethyl methacrylate)25 and polyhexylisocyanate26 

are examples for the two cases. In a similar manner, polycationic dendronized polymers 

can form helical double-stranded structures.27 Modelling proteins as impenetrable flexible 

tubes of finite thickness reproduces many of the basic building blocks of real proteins.28 

Moreover, purely entropic approaches have been suggested in order to understand the 

folding of helices. Here the helix arises from an interaction with depleting solvent 

molecules.29,30 The effective entropic attraction is due to the extra volume that becomes 

available to the solvent molecules when chain molecules adopt helical conformations, 

leading to an overlap of excluded-volume which increases the entropy of the system. The 
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excluded-volume overlap argument can thus be used as a substitute for the energetic 

arguments invoked so far.  

In general, a helix can be described by a radius R and pitch P, so that the centerline of 

the helix follows from r(s) = (R cos(2π s), R sin(2π s), P s), where s is a parameter that 

runs from 0 to m, with m being the number of complete turns. The parameters P and R 

can be varied subject to the constraint that the tube does not self-overlap. The space 

filling helices shown in Figure 5 are characterized by the ratio c = P/R ≈ 2.8 which is 

comparable to the so-called optimal ratio c* =2.5122 and the ratios of α-helices of 

common proteins.28 By creating a helix the cylindrical polymer brushes can generate an 

overlap of the excluded-volume from successive turns. In the case of small spheres acting 

as depletion agents the overlap of excluded-volume amounts to two segments of the tube 

touching. The segments touch along a line because they are aligned. Similarly, there is no 

overlap of the excluded-volume in the case of a straight tube.  

Helices with a particular pitch-radius ratio are selected in the case where boundary 

effects are not dominant. However, Figures 4 and 5 display cationic cylindrical polymer 

brushes in contact with a negatively charged mica surface. In the presence of surfaces, the 

competition between fluid-substrate and fluid-fluid interactions can lead to interesting 

surface-driven changes of mean local densities, orientations, and conformations of chain 

molecules.31 If a tube approaches a substrate, the total volume available to other tubes 

and solvent molecules increases. The total entropy of the system is increased by an 

amount proportional the excluded-volume overlap region. Therefore the density of tubes 

lying with their main body parallel and close to the wall is larger than the density of tubes 

oriented perpendicular to the wall. The excluded-volume overlap region of a straight tube 

lying with its main body parallel and in contact with the substrate is proportional to the 

total length of the tube in the limit of a small size of the solvent molecules. This is due to 

the fact that the tube touches the substrate along a line. A further increase of the 

excluded-volume overlap region is possible by forming an overlap of excluded-volume 

by bending back on itself. Thus, in this case, excluded volumes of distant regions of the 

tube can overlap. An example of an arc-like tube is shown in Figure 5a below the left-

handed helix that is enlarged in Figure 5c. In the case of a helix lying with its main body 

parallel and in contact with the substrate, the additional excluded-volume overlap region 
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is considerably smaller, because the contact region of the helix and the substrate is point-

like. Hence, the size of the tube-tube excluded-volume overlap region and the tube-

substrate excluded-volume overlap region changes considerably when going from the 

solution to the surface. Therefore a transition from a helical structure of the cylindrical 

polymer brushes in the bulk to a globular structure close to the substrate may take place.  

Real tubes, as opposed to the ideal tubes we have been considering, have a bending 

rigidity characterized by the persistence length. The bending energy will compete with 

the entropy and attractive interactions in selecting the ideal tube conformation. However, 

the strong binding of the trivalent counterions to the polyelectrolyte chains virtually 

neutralizes the counterions implying a rather small persistence length. Hence the ideal 

tube model is appropriate in this case and electrostatic repulsion along the long axis of 

the helix will be of minor importance for the stability of a given conformation. 

 
Scheme 2. Transition of the morphology of the PMETAI brushes after adding trivalent 

salt and subsequent UV radiation: Trivalent counterions lead to a collapse of the 

cylindrical conformation to a globular structure. Photo-aquation generates one mono- and 

one divalent counterion from one trivalent ion thus increasing the number of counterions 

and concomitantly the osmotic pressure in the brush layer. Therefore the brush layer 

unfolds again and the cylindrical polyelectrolyte brush re-expands and assumes a 

stretched conformation again. 
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Unfolding of the globular structure under UV-radiation 

From the results shown above, we found that at the concentration of 2.2×10-2 mM 

(with Z-/+=1), the trivalent counterions had induced the collapse of the brushes while the 

same concentration of divalent counterions (leading to Z-/+=0.66) the brushes still kept 

their worm like structures. Now the question arises whether the collapsed state formed in 

presence of trivalent ions can be reversed by photo-aquation, that is, by conversion of one 

trivalent counterion into one monovalent and one divalent counterion.32 This method has 

recently be used to re-open a polyelectrolyte star polymer collapsed in presence of 

trivalent ions (“nano-blossoms”, see Ref.21 for further details).  When applying UV 

radiation to a 0.02 g/L solution of the brushes with 2.2×10-5 M (Z-/+=1) trivalent salt, the 

trivalent ions are converted to divalent ions via photoaquation and the charge ratio 

decreases to Z-/+ = 0.66. This does not suffice anymore to induce the full collapse of the 

PMETAI brushes and the brushes are expected to return to worm-like structures. Scheme 

2 shows this process in a schematic fashion.  

200 nm200 nm

 
Figure 7. AFM height image of PMETAI brushes with added trivalent salt (Z-/+ = 1, 

brush concentration 0.02 g/L, and the trivalent salt concentration 2.2×10-2 mM) after UV 

radiation for 2h; spin-coated on mica, z range 10 nm. 

 

Figure 7 shows the AFM image of the PMETAI brushes with trivalent counterions 

after UV radiation. It clearly shows that the brushes recovered from their collapsed 

structure back into a more extended worm-like structure. Hence, the conformation of the 
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PMETAI cylindrical brushes can be tuned from a worm-like structure to collapsed 

globular morphology by adding trivalent salt, and finally back to a worm-like 

conformation by illumination with UV light. 

 

Conclusions 

We demonstrated that the collapse of charged cylindrical brushes collapse in presence 

of divalent or trivalent salt. This collapse goes through an intermediate state where the 

single bottlebrush polymers assume a helical state. The formation of the helix is 

prompted by the contraction of the polymer molecules along the long axis by the 

presence of the multivalent ions. If trivalent ions are converted to a mixture of mono- and 

divalent ions by light (photo-aquation), the collapse transition can be reversed and the 

chains are stretched again. All data demonstrate that charged cylindrical brushes can be 

manipulated by multivalent ions on the nanometric length scale. 
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Responsive polymers are sensitive to environmental stimuli, which can greatly change 

their conformations or macro-/microscopic properties1. They have drawn more and more 

attention due to the potential of building smart sensors or actuators based on these 

intelligent molecules2. Smart single-molecular nano-structured polymers are of particular 

interest for the possibilities of building nanoscopic devices3. Among them, cylindrical 

polymer brushes (CPBs) are good candidates. They are composed of a long linear 

backbone and densely grafted side-chains4. In good solvents, they normally adopt a 

worm-like conformation owing to the steric hindrance caused by the repelling side-chains, 

which can be directly observed by atomic force microscopy (AFM) on a suitable 

substrate5. The anisotropic nature provides the brushes with peculiar solution and bulk 

properties. The chemical properties of the brushes are mainly depending on the side-

chains. However, when the backbones are flexible, it provides the CPBs one more degree 

of freedom, and different morphologies could result from the conformational changes of 

the backbones caused by the interactions between the side-chains and external stimuli. 

Worm-to-sphere6 and worm-to-helix7 conformational transitions have been evidenced for 

CPBs with different side-chains and stimuli. These kinds of morphology transitions may 

give inspirations to creating intelligent nano-devices8. 

Polyelectrolyte CPBs, mimicking some biological macromolecules in nature, contain 

linear ionic side-chains and show different properties from their neutral counterpart. It is 

well known that linear polyelectrolytes can form complexes with oppositely charged 

surfactants and polymers9. Although the polyelectrolyte CPBs behave similarly to their 

linear analogs when forming complexes with surfactants, their distinctive cylindrical 

nanostructures make it possible to detect the morphology changes directly by microscopy 

such as AFM. Recently, Schmidt et al.7a reported helical structures formed by a complex 

of sodium dodecyl sulfate (SDS) and a cationic polypeptide CPB. When SDS was in 

excess, a worm-to-sphere transition was observed.  

Recently, we reported the synthesis of a new cationic CPB (CCPB) with side-chains of 

poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and its quaternized analog 

(PMETAI), and its responsiveness to mono- and multivalent salts7b,10. The low initiating 

efficiency in the synthesis by ATRP led to the chemical structure of the CCPB in scheme 

1. Here we present its worm-to-sphere transition by forming ionic complexation with 
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negatively charged surfactant SDS. More importantly, we are able to switch back to the 

worm-like morphology by supramolecular inclusion complex between SDS and 

cyclodextrins (CDs). When β-CD is used for the complex with SDS, we could even make 

the transition process reversible by using a more competitive inclusion agent, 1-

adamantylammonium chloride (AdAC). Scheme 1 depicts the transition process. 

Non-polar compounds,11 linear polymers12 and polymers with non-polar side groups13 

form stable inclusion complexes with CDs. Figure 1 shows the 1H NMR spectra of SDS 

and its mixture with α-CD in D2O. The 3 peaks for the methyl and methylene groups 

shift to lower field, and the peak for the methylene groups separates into two peaks, 

indicating that the alkyl chains form an inclusion complex with α-CD with a part of the 

methylene groups inside the hydrophobic cavity. 

 

Scheme 1: Morphological transitions of CCPB brushes. 
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At relatively high concentration (1 g/L) of CCPB, when SDS is added at a charge ratio 

(ratio of charges of SDS and those carried by the CCPB) Z-/+ = 1, precipitation appears 
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immediately, indicating the instantaneous formation of the complex and aggregates (see 

Supporting Information, Figure S1). Dynamic light scattering (DLS) measurements 

(Figure 2) show the change of the brush size at c = 0.2 g/L from the CCCB to its complex 

with SDS, and then with SDS (Z-/+ =1) and α-CD, (in equal amounts). For the pure 

CCPB, the apparent z-average hydrodynamic radius, Rh,app, is 44 nm. When SDS was 

added, the solution becomes turbid immediately, but does not precipitate. Rh,app increases 

to ca. 200 nm, indicating the formation of aggregates at this concentration. When α-CD is 

added to the mixture, the solution becomes clear again and Rh,app returns to 53 nm, 

somewhat higher and more disperse than that of the original brush. This might indicate 

that the inclusion complex of SDS and α-CD may still form an ionic complex with CCPB, 

expanding the size of the brushes. (see also Supporting Information,  Figure S2). 
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Figure 1. 1H NMR spectra of SDS and its complex with α-CD. 

 

The DLS results demonstrate that it is not possible to avoid aggregates of the CCPB 

with SDS at brush concentration above 0.2 g/L. To observe the single-molecular 

morphology changes, AFM measurements from a very low concentration (0.02 g/L) were 

carried out to diminish the intermolecular aggregates.  
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Figure 2. Intensity-weighted hydrodynamic radii distributions of CCPB , and its 

complexes with SDS, and with SDS + α-CD in aqueous solution, (cCCPB = 0.2 g/L, 

equimolar amounts). 

 

Figure 3 shows the results of the AFM measurements on mica. The pure CCPB shows 

typical worm-like structures. When a medium amount of SDS is added, the brush forms 

pearl-necklace structures, indicating that the SDS forms a complex with cationic side-

chains and causes the insoluble part around the backbone of the brush (Figure 3b). 

Simulations show that pearl-necklace structures form when the inner part of a CPB 

becomes insoluble.14 Samokhina et al. made a similar observation with spherical 

polyanion brushes and the cationic surfactant CTAB15. The brushes straighten somewhat, 

probably due to the cross-linking effect of SDS around the backbone. However, when the 

charge ratio reaches Z-/+ = 1, most of the worm-like structures are turned into collapsed 

spheres (Figure 3c). When α- or β-CD is added to the CCPB-SDS complex (Z-/+ = 1), the 

collapsed spheres return to their worm-like shape (Figures 3d, e), as a result of the 

inclusion complexes between the dodecyl groups with CDs, which again solubilize the 

side-chains of the CCPB.  

When a more competitive hydrophobe, AdAC, is added to the SDS-β-CD complex, it 

removes the β-CD from the relatively weak inclusion complex. Then SDS is released, 

and again forms the insoluble polyelectrolyte-surfactant complex with the CCPB, causing 
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the collapse of the brush to spheres again (Figure 3f). Due to the unmatched size of 

AdAC and the cavity of α-CD, the attempt for the re-collapsing with α-CD is not 

successful. 

 
Figure 3. AFM height images of (a) pure CCPB; (b) CCPB with SDS, with Z-/+ = 0.5; (c) 

CCPB with SDS, Z-/+ = 1; (d) CCPB/SDS Z-/+ = 1 with added α-CD (equimolar with 

SDS); (e) same, but with added β-CD; (f) sample with β-CD after addition of AdAC 

(equimolar with β-CD). The scale bars represent 200 nm and the brush concentration is 

0.02 g/L. Samples were spin-coated to a freshly cleaved mica surface. AFM height ranges 

are 5 nm, 12nm, 8nm, 8nm, 8nm, and 4 nm, respectively. 

 

In conclusion, we have shown that the anionic surfactant SDS forms an ionic complex 

with the cationic CPB, leading to the collapse of the brush from worms to spheres, while 

both α-CD and β-CD form supramolecular inclusion complexes with SDS, liberating the 

CCPB, thus again enabling the worm-like conformation. AdAC can remove the β-CD 

from the SDS-β-CD complex, causing the re-collapse of the brush. This drastic 

conformation-switching between worms and spheres makes the system a good candidate 

for sensors or devices on the nano-scale. 
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Supporting information 
 

Materials: 

The synthesis of the cationic cylindrical polymer brush (CCPB) with poly{[2-

(methacryloyloxy)ethyl] trimethylammonium iodide} (PMETAI) as side-chains was 

reported previously1. Sodium dodecyl sulfonate (SDS) (Aldrich), α-cyclodextrin (α-CD) 

(Fluka) and β–cyclodextrin (β-CD) (Sigma) were used without further purification. 1-

Adamantylammonium chloride was prepared by dropping HCl into the solution of 1-

adamantylamine (Aldrich) in water and tuning pH to 4. 

 

Characterization methods: 
1H NMR was measured on a Bruker AC-250 instrument at room temperature with D2O 

as the solvent. 

Dynamic light scattering (DLS) was carried out on an ALV DLS/SLS-SP 5022F 

compact goniometer system with an ALV 5000/E correlator and a He-Ne laser (λ = 632.8 

nm) at an angle of 90o. The samples were filtered 3 times by using Millipore Nylon filters 

with a pore size of 1 µm before the light scattering measurements. CONTIN analyses 

were performed for the measured intensity correlation functions. Apparent hydrodynamic 

radii, Rh,app, of the brushes were calculated according to the Stokes-Einstein equation. All 

measurements were carried out at 25 °C. 

Atomic force microscopy (AFM) measurements were performed on a Digital 

Instruments Dimension 3100 microscope operated in tapping mode. The micro-cantilever 

used for the AFM measurements were from Olympus with resonant frequencies between 

284.3 kHz and 386.0 kHz, and spring constants ranging from 35.9 to 92.0 N/m. The 

samples were prepared by spin-coating from very dilute (0.02 g/L) solutions onto freshly 

cleaved mica surfaces.  
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Figure S1: Photograph of CCPB (1 g/L) with added SDS (Z-/+ = 1). 

 

 

 
Figure S2: Photographs of (a) pure CCPB (0.2 g/L); (b) complex of CCPB with SDS 

(Z-/+ = 1); and (c) adding α-CD (equal amount to SDS) to sample (b). 

 

Reference 

(1) Xu, Y., Bolisetty, S.; Drechsler, M.; Fang, B.; Yuan, J.; Ballauff, M.; Müller, A. H. 

E.  Polymer 2008, 49, 3957-3964. 
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Abstract 

We present the study of the inter-polyelectrolyte complexes (IPECs) formed by 

cationic cylindrical brushes (CPBs) and anionic linear poly(sodium styrene sulfonate) 

(PSS) using AFM measurements on mica surface. The IPECs were mainly prepared by 

dialysis of the two components from salt solutions. It has been found that the 

morphologies of the CPBs could be switched by changing the charge ratios between the 

two polyelectrolytes. For the IPECs with short PSS, the morphologies can be tuned from 

straight cylinders through intermediate helix-like structures to fully collapsed spheres. 

Excess of polyanions could stabilize the IPECs and the brushes adopted conformation of 

twisted worms. When extremely long PSS was used as the polyanions, they can induce 

the spherical collapse of the brushes at very low Z-/+ ratios and no other transition states 

were found. Interesting micrometer-scale core-shell cylindrical objects were found by 

directly mixing CPBs with long PSS, which might be the non-equilibrium state caused by 

the kinetically controlled IPECs formation.  

 

Keyword: Cylindrical polyelectrolyte brushes, PSS, IPECs, AFM 
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Introduction 

Intelligent polymers have drawn more and more attention due to their sensitiveness to 

various environmental stimuli, which may induce their dramatic morphology transitions 

or great changes of macro-/micro-scopic properties1. Smart nano-structured polymers are 

of particular importance for the potential of building nano-scopic devices2. The research 

on intelligent polymers of single types has been widely spreading. Recently, the co-

assembly processes by multiple-component polymer systems have obtained plenty of 

interests, owing to their multi-responsiveness and versatilities3-5. Among them, inter-

polyelectrolyte complexes (IPECs), which can be formed by the interactions of 

oppositely charged polyelectrolytes, have been applied in different areas like gene 

transfer6-9 and capsules as nano-templates10-12. 

Polyelectrolytes carry a large number of covalently-bound charges and surrounding 

counterions13. They can form complexes with oppositely charged polyelectrolytes, 

surfactants and colloidal particles14, 15. There are many factors that influence the structure 

and properties of IPECs16: Molecular natures, such as the type of the ionic groups and 

molecular weight of the polyelectrolytes; the ratios of the oppositely charged 

polyelectrolytes; solvent properties, such as pH value, ionic strength and valencies of the 

counterions; and the preparation methods of the IPECs. Although the studies on the 

IPECs between linear polyelectrolytes have been active, the IPECs of polyelectrolytes 

with other topologies are still rare, probably due to the synthetic difficulties. The study on 

IPECs of non-linear nano-structured polyelectrolytes is highly required by the fast 

developing nanotechnologies. A few examples of IPECs of spherical polyelectrolytes like 

dendrimers17-22, star polymers23 and micelles24, 25 were reported. However, studies on the 

IPECs of one-dimensional nano-structured polyelectrolytes, such as dendronized26 

polymers and cylindrical polymer brushes27 were rarely reported. Considering the 

anisotropic nature of these polyelectrolytes, the corresponding IPECs may show different 

properties and may find their applications in many fields.  

Cylindrical polyelectrolyte brushes (CPBs) consist of relatively very long backbones 

and densely grafted side-chains28, 29. One important feature of the CPBs is that most of 

the counterions are strongly confined within the brush layer30, 31, which leads to the great 

osmotic pressure and stretching of the brushes in salt-free solutions32. So far, grafting-
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from33 and grafting-through34, 35 strategies have been adopted to prepare CPBs. But in 

general, tedious synthetic work to get well-defined CPBs has hindered the further studies 

of such kind of polyelectrolytes.  

We have recently reported the synthesis of cationic CPBs with poly{[2-

(methacryloyloxy)ethyl] trimethylammonium iodide} (PMETAI) side-chains by grafting-

from via ATRP and further quaternization33. These brushes showed responsiveness to 

different types of counterions, which caused the transition of the morphologies of the 

brushes from worm-like through helix, to spherical collapsed shapes33, 36. We also found 

that they can form complexes with oppositely charged surfactant sodium dodecyl 

sulfonate (SDS)37. 

Although Schmidt et al reported the IPECs between cationic brushes with DNA27, 

systematic studies of the CPBs with linear polyelectrolytes are still scarce. In this work, 

we investigate the IPECs formation between the strong cationic PMETAI CPBs and 

strong anionic linear poly(sodium styrene sulfonate) (PSS). We found that the 

morphologies of the cationic CPBs could be manipulated by the formation of IPECs with 

oppositely charged PSS. Scheme 1 shows the morphology changes of the CPBs by the 

formation of IPECs with linear polyelectrolytes. This provides an additional way of 

controlling the morphologies of the CPBs, which might find its applications for some 

sensors or devices in nano-scale. Different mole ratios between the cations carried by the 

CPBs and the anions of the PSS were investigated, which controls the formation of the 

IPECs and the morphologies of the CPBs. Influence of the molecular weight of PSS to 

the formed IPECs are also discussed. 

In the study of the IPECs, different characterization methods have been applied to 

determine the macro-scopic properties of the formed IPECs. Atomic force microscopy 

(AFM) is a robust tool, which can directly observe the nano-structured polymers on 

different substrates38. Since we are interested in the conformation changes of the single 

brushes, most of the experiments were carried out in highly diluted solutions to avoid the 

inter-molecular aggregates. However, most characterization methods are not available in 

this concentration range. So in this work, AFM measurements were mostly employed to 

directly examine the IPECs formed by the cationic CPBs with linear polyelectrolytes. 
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Scheme 1. Schematic morphology changes of cationic CPBs by forming IPECs. 

 Cationic CPBs 

Anionic linear

Polyelectrolyte

Anionic linear

Polyelectrolyte

 

Experimental 

Materials 

Cationic cylindrical polymer brush with side-chain of poly{[2-(methacryloyloxy)ethyl] 

trimethylammonium iodide} (PMETAI) has been prepared in previous work33. The 

brushes have backbone of DP 1500. Grafting density of the side-chain is 50% and the DP 

of the side-chains is 84. The number-average molecular weight (Mn) of the brushes is 

1.9×107 g/mol. 

 Narrowly distributed linear poly(sodium styrene sulfonate) (PSS) with two different 

molecular weights were purchased from Fluka and were used as received (standard for 

GPC, sample 1: Mn = 1.32×104, DP = 64, PDI < 1.2; sample 2: Mn = 2.26×106, DP = 

11000, PDI < 1.2).  

NaCl was used as it is. Millipore water was used for the preparation of samples and 

dialysis. 

 

Preparation of IPECs by direct mixing 

Stock solutions of PSS (10 mM of anionic charges) were first prepared by dissolving 

them in de-ionized water. PMETAI brush dilute solutions (0.02g/L, 6.67 mM of cationic 

charges) were then prepared. Different amount of PSS was injected by micro-syringe 

according to the charge ratios between the cations and anions. 
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Preparation of IPECs by dialysis 

Stock solutions of PSS (10 mM of anionic charges) were first prepared by dissolving 

them in de-ionized water. PMETAI brush dilute solutions (0.02g/L, 6.67 mM of cationic 

charges) with 0.2 M NaCl were then prepared. Different amount of PSS was injected by 

micro-syringe according to the charge ratios between the cations and anions. Then the 

solutions were subjected to dialysis against de-ionized water for 4 days. 

 

Characterizations 

Dynamic light scattering (DLS) was carried out on an ALV DLS/SLS-SP 5022F 

compact goniometer system with an ALV 5000/E correlator and a He-Ne laser (λ = 632.8 

nm) at an angle of 90o. In each case, the concentration of the PMETAI brush is 0.2 g/L 

and concentration of NaCl is 0.1 M. Different amount of PSS was added directly 

according to the charge ratios. The samples were filtered 3 times by using Millipore 

Nylon filters with a pore size of 1 µm before the light scattering measurements. CONTIN 

analyses were performed for the measured intensity correlation functions. All 

measurements were carried out at 25 °C.  

Atomic force microscopy (AFM) measurements were performed on a Digital Instruments 

Dimension 3100 microscope operated in tapping mode. The micro-cantilever used for the 

AFM measurements were from Olympus with resonant frequencies between 284.3 kHz 

and 386.0 kHz, and spring constants ranging from 35.9 to 92.0 N/m. The samples were 

prepared by spin-coating from very dilute (0.02 g/L) solutions onto freshly cleaved mica 

surfaces. 

 

Results and discussions 

Strong cationic PMETAI brushes and strong anionic linear PSS were employed in this 

work for the formation of IPECs. Since they are all strong polyelectrolytes, their 

ionization behaviors are not dependent on the pH value. Nevertheless, all the experiments 

were performed at pH 7. The formation of IPECs is a process of electrostatic interaction 

of charged polymer chains and subsequent release of counterions39, 40. Thus ionic strength 

may play an important role to the formation and properties of IPECs. We prepared the 

IPECs by two different methods: direct mixing and mixing in salt solutions with 
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following dialysis in pure water. The length of the linear polyelectrolyte may also have 

influence on the IPECs, so short linear PSS and extremely long PSS are used for the 

comparison of the IPECs formation with PMETAI brushes. 

At relative high concentration of the PMETAI CPBs(0.2 g/L), IPECs samples were 

prepared by directly mixing PSS with CPBs with different charge ratios Z-/+ (the mole 

ratio between the charges carried by the anionic PSS and those by cationic CPBs) in the 

solutions with 0.1 M NaCl. For the IPECs of CPBs with short PSS, turbid solution was 

obtained when Z-/+ reached 0.4, indicating formation of big aggregates in the solution. 

When the charge ratio was as high as 0.5, precipitation appeared. DLS measurements 

revealed that at charge ratio Z-/+ as low as 0.1, big aggregates were already seen. So, at 

this concentration of the brushes, the aggregates of the brushes are unavoidable. Since we 

are more interested in the single-molecular morphologies of the CPBs, very low 

concentration (0.02 g/L) of the CPBs was used for the following studies to diminish the 

inter-molecular aggregates. Unfortunately, at this concentration, the signals for the DLS 

were too weak for reliable measurements. So AFM measurements of the spin-coated 

samples on mica surfaces were mainly performed for the direct observation of the CPBs’ 

morphology changes. 

 

IPECs prepared by dialysis 

It has been reported that adding salt weakens the formation of IPECs15. In order to 

acquire IPECs with well-defined structures, relative high concentration of salt (0.2 M) 

was added to the systems when mixing cationic CPBs with PSS. Slow dialysis process 

was followed to remove the excess counterions for the IPECs formation. IPECs with 

well-defined single-molecular structures were observed by this process. 

For the IPECs by short PSS and CPBs (concentration of 0.02 g/L), when the charge 

ratio Z-/+ is 0.5 or lower, the solutions were clear, while at Z-/+ of 0.75, some precipitation 

was observed. At Z-/+ of 1, more precipitation appeared and it was hard to find any 

objects in the AFM measurement, suggesting most of the polymers were phase 

segregated from the solution. When Z-/+ reached 2, the solution became transparent again. 

Similar behavior was found for the IPECs with the long PSS. The only difference is that 

the precipitation happened at even lower charge ratio (full precipitation at Z-/+ 0.75). The 
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change of the solubilities at such low concentration of brushes showed that the charge 

ratio Z-/+ might have great influence on the morphologies of the IPECs. Detailed AFM 

measurements provided the micro-scopic information of the IPECs. 
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Figure 1. (a) AFM height image of IPECs by CPBs and short PSS, charge ratio Z-/+ 0.1, 

AFM Z range 10 nm; (b) Section analyses of the cursors displayed in (a); (c) AFM height 

image of IPECs by CPBs and short PSS, charge ratio Z-/+ 0.5, AFM Z range 10 nm; (d) 

Section analyses of the cursors displayed in (c). 

 

Figure 1 shows the height images and section analyses of IPECs by short PSS and 

CPBs with Z-/+ of 0.1 and 0.5. When the charge ratio Z-/+ is 0.1, it is clearly shown in 

figure 1a, there are some brushes are much higher than the others. Quantitative section 

analysis in figure 1b revealed that most of the brushes are around 1.8 nm, which is within 

the error of the original brushes (1.6 nm)33. But some brushes have height of around 5 nm, 
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which is significantly higher than the original brushes, indicating the formation of the 

IPECs of the cationic CPBs with PSS. From figure 1a, we can also find that the original 

brushes adopt quite curvy morphologies (the bending angle sometimes even reaches 180o, 

probably due to the strong electrostatic interaction between the positively charged CPBs 

and negatively charged mica surfaces), while those IPECs are mostly more straight than 

the original brushes, but kept the same length of the original brushes (around 180 nm). 

Explanation for this is that the linear PSS formed IPECs with the brush and partially 

crosslinked the brushes, which increased the rigidity of the brushes. In the IPECs formed 

between linear polyelectrolytes and stars or micelles, the linear polyelectrolytes normally 

go to the core or around the core area due the hydrophobicity of the formed IPECs. Here 

no direct core-shell structures were recorded by the AFM height image and section 

analysis, suggesting that the distribution of the linear PSS in the brush is random, which 

raised the rigidity of the brushes. Interestingly, the formation of the IPECs with brushes 

was inhomogeneous and the question why brushes did not form IPECs in a homogeneous 

way with similar size and height in the solutions remain difficult to answer. Similar 

phenomena were also found for IPECs of cationic CPBs with DNA, where kinetics and 

diffusion controlled formation of IPECs in the solution was reckoned as the reason27. 

When the charge ratio Z-/+ reached 0.5, similar finding was shown in figure 1c. Species 

of different heights were recorded in the AFM height image. But it is clear that the 

portion of the higher brushes is significantly increased, while some part of the brushes 

remained unchanged. Section analysis in figure 1d demonstrates that the heights of some 

brushes kept their original ones (around 1.8 nm), while the heights of those who formed 

IPECs were raised to 6 nm. Similarly, these IPECs adopted more straight conformation 

than original brushes on the substrate.  

From the results discussed above, with the increasing charge ratio Z-/+, the proportion 

of the non-complexed brushes is decreasing. When Z-/+ is as high as 0.75, the original 

brushes could not be found any more in the AFM images, shown in figure 2a. Most of the 

brushes have similar heights of around 8 nm, as evidence by the section analysis in figure 

2d. New conformation of the brushes was detected, displayed in the AFM height and 

phase images (figure 2a and 2b). The surface of the CPBs became uneven with some 

tubers. Enlarged part of figure 2a displayed in figure 2c shows that the brush took helical-
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like structures with a pitch of around 30 nm. Also it is found that the average length of 

the formed IPECs is around 140 nm, which is lower than that of the original CPBs. 
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Figure 2. (a) AFM height image of IPECs by CPBs and short PSS, charge ratio Z-/+ 0.75, 

AFM Z range 20 nm; (b) AFM phase image of IPECs by CPBs and short PSS, charge 

ratio Z-/+ 0.75, AFM Z range 25o; (c) Magnified image of selected area in (a); (d) Section 

analysis of the cursors displayed in (a). 

 

When the number of the charges carried by the cationic CPBs and anionic PSS equals, 

most of the polymers precipitated from the solution, and only very few objects could be 

observed in the AFM measurements. In some area, some spherical objects (diameter of 

80 nm) were detected, while no worm-like structure could be found. Section analysis of 

these spherical objects indicated that they were just a little higher (2.2 nm) than the 
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original brushes. They might be the IPECs of those much smaller brushes with PSS. In 

order to get more information of the IPECs with Z-/+ of 1, 0.1 M NaCl solution was 

prepared with the IPECs precipitation. After vigorous stirring overnight, most of the 

precipitation was re-dissolved and it was possible to prepare the AFM samples using this 

solution. More ellipsoid and spherical objects (size around 90 nm) were shown in figure 

3c. Section analysis showed they have an average height of 9 nm, which is higher than 

those described above for Z-/+ 0.1, 0.5 and 0.75. These results indicates that when Z-/+ 

reaches 1, the positive charges of the CPBs and the negative charges of PSS compensate 

each other and lead to the phase separation of the IPECs from the solution. Adding salt 

weakened the IPECs and brought the IPECs back to the solution again. 
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Figure 3. (a) AFM height image of IPECs by CPBs and short PSS, charge ratio Z-/+ 1, 

AFM Z range 7 nm; (b) Section analysis of the cursors displayed in (a); (c) AFM height 
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image of IPECs by CPBs and short PSS in 0.1 M NaCl solution, charge ratio Z-/+ 1, AFM 

Z range 30 nm; (d) Section analysis of the cursors displayed in (c). 

 

When CPBs were mixed with excess linear PSS (Z-/+ = 2), worm-like structures could 

be found again. Figure 4a shows the co-existence of spheres and twisted worms. Since 

the negatively charges of PSS is in excess, the CPBs were wrapped by the linear 

polyanions, which make the IPECs still soluble in the solution. Section analysis shows 

the height of the IPECs was increased to 12 nm. 
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Figure 4. (a) AFM height image of IPECs by CPBs and short PSS, charge ratio Z-/+ 2, 

AFM Z range 25 nm; (b) Section analysis of the cursors displayed in (a). 

 

For the comparison, extremely long PSS (DP>10000) was used for the formation of 

IPECs with CPBs.  Figure 5a shows the AFM image of the IPECs by CPBs and long PSS 

with charge ratio Z-/+ of 0.2. Worm-like brushes are observed and some collapsed 

globular brushes co-exist. Different from the IPECs formed by CPBs and short PSS, no 

worm-like brushes with greater height could be found. Section analysis in figure 5b 

indicates that the globular IPEC is as high as 6.5 nm. This means that when long PSS was 

added to the CPBs, those brushes that formed IPECs with PSS immediately became 

collapsed spheres and no intermediate transition states were detected, which were found 

for the IPECs by CPBs and short PSS with Z-/+ 0.1, 0.5 and 0.75. A good reason for this is 

that the PSS with extremely high molecular weight carries a huge amount of negative 
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charges (11000 negative charges for every molecule) and can induce the collapse of the 

single brush molecules in the solution. 
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Figure 5. (a) AFM height image of IPECs by CPBs and long PSS, charge ratio Z-/+ 0.2, 

AFM Z range 10 nm; (b) Section analysis of the cursors displayed in (a). 

 

Further investigation on the IPECs formed by CPBs and long PSS with charge ratio 0.5 

was carried out. Completely soluble solution was obtained. Figure 6a shows the AFM 

height image of the IPECs. Obviously, no worm-like structures can be observed any more 

and only some spherical objects with diameter of 90 nm are clearly seen. Phase image 

shown in figure 6b revealed that the brushes adopted twisted morphologies to form the 

spherical IPECs, obviously induced by the extremely long linear PSS. It is surprising that 

at charge ratio Z-/+ as low as 0.5, most of the brushes were already collapsed into spheres. 

Section analysis displayed in figure 6e shows that the height of the spheres is only around 

3.5 nm, which is quite lower than that of the IPECs with short PSS (Z-/+ of 1). 

Interestingly, when NaCl was added to the soluble IPECs (0.1 M NaCl), the size of the 

spheres turned smaller (around 60 nm), and clear core-shell structures were observed 

both in the height and phase images, displayed in figure 6c and 6d. Section analysis 

shows that the height of the core reaches 12 nm. Since the cationic charges carried by the 

CPBs are still in excess to the negative charges by the PSS, the shell is probably non-

complexed PMETAI side-chains and core is the IPECs between PMETAI and PSS. This 

suggests that without adding salt, the IPECs formed by the long PSS and CPBs were 
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quite loose. When salt is added, re-arrangement happened and denser IPECs were formed 

in the inner part and the non-complexed PMETAI side-chains remain outside. 
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Figure 6. (a) AFM height image of IPECs by CPBs and long PSS, charge ratio Z-/+ 0.5, 

AFM Z range 8 nm; (b) AFM phase image of IPECs by CPBs and long PSS, charge ratio 
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Z-/+ 0.5, AFM Z range 12o; (c) AFM height image of IPECs by CPBs and long PSS from 

0.1 M NaCl solution, charge ratio Z-/+ 0.5, AFM Z range 35 nm; (d) AFM phase image of 

IPECs by CPBs and long PSS from 0.1 M NaCl solution, charge ratio Z-/+ 0.5, AFM Z 

range 20o; (e) Section analysis of the cursors displayed in (a); and (f) Section analysis of 

the cursors displayed in (c). 

 

IPECs by CPBs and PSS with charge ratio Z-/+ > 0.5 (0.75 and 1), most of the polymers 

precipitated from the solution and no objects were observed in the AFM measurements. 
IPECs with excess long PSS (Z-/+ = 2) was also prepared for the comparison to those 

with short linear PSS. Very less objects were found on the substrate, probably due to the 

incompatibility of the negatively charged IPECs with the negatively charged mica surface. 

Ellipsoidal structures could be seen in figure 7a. Quantitative section analysis shows the 

IPECs are as high as 17 nm, which is higher than all the IPECs described above, probably 

due to the high molecular weight of the complex PSS. 
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Figure 7. (a) AFM height image of IPECs by CPBs and long PSS, charge ratio Z-/+ 2, 

AFM Z range 30 nm; (b) Section analysis of the cursors displayed in (a). 

 

IPECs prepared by direct mixing 

IPECs were also prepared by direct mix the two polymers. It was found that in this 

case, the inter-molecular aggregates were still dominating. Figure S1 in the supporting 

information shows the AFM height image of the IPECs formed by CPBs with short PSS 
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via direct mixing (Z-/+ = 0.75). Big aggregates were clearly exhibited even at such a low 

concentration of brushes (0.02 g/L), and no single brushes were found. 

Surprisingly, when long PSS was directly mixed with CPBs with charge ratio 2, in 

addition to the random big aggregates (supporting information Figure S2), micrometer-

scale cylindrical objects were recorded by AFM measurements, demonstrated in figure 8a. 

The diameter of the cylinders is around 900 nm and the length varies from 1 μm to 5 μm. 

Due to the toxicity of the cationic CPBs to most of the bacteria41, these objects are 

excluded as bacteria. From figure 8a, we can see the cylinders have non-continuous 

narrow cores and relatively long shells. Section analysis in figure 8b shows that the 

height of the core is around 1.8 nm, which is close to that of the pure brushes. The length 

of the fully stretched long PSS was calculated as 2.75 μm (11000×0.25 nm), which is 

longer than the cylinders’ diameters. So the shell could be the extremely long PSS. 

(a)

1 μm 0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

H
ei

gh
t (

nm
)

Horizontal distance (μm)

(b)(a)

1 μm1 μm 0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

H
ei

gh
t (

nm
)

Horizontal distance (μm)

(b)

 
Figure 8. (a) AFM height image of IPECs by CPBs and long PSS via direct mixing, 

charge ratio Z-/+ = 2, AFM Z range 3 nm; (b) Section analysis of the cursors displayed in 

(a). 

 

In summary, we have investigated the IPECs formed by cationic CPBs and anionic 

linear PSS using AFM measurements. The IPECs were prepared either by dialysis of the 

salt solutions or by direct mixing the two components. When they are prepared by 

dialysis process, more well-defined structures were observed. It has been found that 

changing the charge ratios between the two polyelectrolytes, the morphologies of the 

CPBs could be tuned. For the IPECs with short PSS, two species were observed at the 
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charge ratio Z-/+ of 0.1 and 0.5 and the brushes which formed IPECs became more 

straight on the substrates. When Z-/+ reached 0.75, most of the brushes formed IPECs with 

PSS and helix-like transition states were found. If the amount of charges were equal, the 

brushes collapsed into sphere-like objects. Excess of polyanions stabilized the IPECs and 

the brushes adopted conformation of twisted worms. When extremely long PSS was used 

as the polyanions, they can induce the spherical collapse of the brushes at very low Z-/+ 

ratios and no other transition states were detected. Full collapse of the brushes was 

demonstrated for Z-/+ = 0.5. Similarly, excess of the long linear polyanions kept the 

IPECs in solution. Interesting micrometer-scale core-shell cylinders were found by 

directly mixing CPBs with long PSS, which might be the non-equilibrium state caused by 

the kinetically controlled IPECs formation. 

 

Conclusions 

It has been demonstrated in this paper that the morphologies of the cationic CPBs 

could be tuned by the formation with linear anionic polyelectrolyte PSS. By using 

different charge ratios between the CPBs and PSS, the morphologies can be changed 

from straight cylinders through helix-like structures to fully collapsed spheres. The length 

of the linear polyanions has great impact to the formation of the IPECs. The findings 

could provide better understandings of the IPECs formed by polyelectrolytes or bio-

macromolecules, and might be useful for the building of smart nano-sensors. 
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Supporting information: 
 
 

 
Figure S1. AFM height image of the IPECs formed by CPBs and short PSS with charge 

ratio Z-/+ 0.75. AFM Z range 40nm. 

 

 
Figure S2. AFM height image of the IPECs formed by CPBs and long PSS with charge 

ratio Z-/+ 2. AFM Z range 30nm. 
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Polyelectrolytes are polymers which carry a large number of charges and surrounding 

counterions1. Research on them has revealed their vital role in nature, and has promoted 

their wide applications in industry processes and our daily life2. Their conformations can 

be varied dramatically with added salt due to the strong Coulomb forces between the 

closely bound charges. When they are weak polyelectrolytes, the degree of ionization 

highly depends on the pH. Polyelectrolytes can form complex with oppositely charged 

polyelectrolytes, surfactants and colloidal particles3, 4. Extensive studies on linear 

polyelectrolytes have been carried out, while with the rapid development of 

nanotechnologies, more and more well-defined nanostructured polyelectrolytes are 

demanded for different cases of applications5. Cylindrical polyelectrolyte brushes (CPBs), 

which have relatively very long backbones and densely grafted side-chains, have drawn a 

lot of attention owing to their anisotropic nature, and special solution properties6. But the 

difficulties of preparing such kind of polymers have hindered the study on their 

properties and further applications. So far, very few examples of CPBs have been 

reported6-11.  

Both grafting-from7, 8, 12 and grafting-through6, 11 strategies have been used for the 

preparation of CPBs. In order to get CPBs with well-defined structures, living/controlled 

polymerizations were adopted to make either the backbone or the side-chains. For 

example, for the grafting-through method, anionic polymerization6 and atomic transfer 

radical polymerization (ATRP)11 have been used to prepare the side-chains. One limiting 

point for these polymerization methods is that the initiating or catalyst systems are very 

sensitive to different functional groups like hydroxyl, carboxylic or ionic groups, and 

maybe paralyzed by impurities like water. So generally, monomers with protected 

functional groups are needed. This complicated the synthesis process and more tedious 

synthetic steps, such as deprotection7, 8, 11 and functionalization like quaternization6, 12 and 

sulfonation6, are required to get water-soluble CPBs. In some cases, it is very hard to 

reach full de-protection and functionalization due to the very high molecular weight of 

the CPBs. Side reactions, such as the cross-linking caused by sulfonation of polystyrene, 

happen occasionally6. Most ionic monomers are soluble in water and related 

living/controlled radical polymerizations have showed the possibilities of preparing 

polymers in aqueous or mixed solvents13-15. But another problem has to be addressed in 
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this case. Controlled radical polymerizations like ATRP are generally used for the 

preparation of CPBs by grafting-from strategy. Thus, macro-initiators, generally 

hydrophobic, have to be employed, which makes it impossible to carry out the 

polymerizations in water due to the low solubility of the macro-initiators. To solve the 

problem, good solvents for both macro-initiators and ionic monomers are badly needed. 

In our continuous efforts of preparing different anionic and cationic CPBs, we mostly 

used ATRP for the grafting-from process7, 8, 12. More and more interests have now been 

shifted to strong polyelectrolytes due to their attractive solution and counterion properties. 

Previously, we reported the synthesis of a new strong cationic CPB and its 

responsiveness to counterions of different valencies12, 16. Strong anionic CPBs have also 

drawn our attention, since they may serve as a model for the study of the counterion 

distribution, and possible complexes with oppositely charged polyelectrolytes and even 

proteins17. Although Wegner et al has reported the synthesis of anionic CPBs by using 

protected sulfonated monomer, the further de-protections were somehow problematic and 

it was hard to get fully ionized CPBs9, 10. So we turned to non-protected sulfonated 

monomers. Solubility of two commercial sulfonated monomers, styrene-4-sulfonic acid 

sodium salt (SSNa) and potassium 3-sulfopropyl methacrylate (SPMA), have been tried 

in different solvents and they are soluble (or partially soluble) with high dilution in very 

polar solvent dimethyl sulfoxide (DMSO). This makes it possible to graft them from the 

macro-initiator, poly{2-(2-bromoisobutyryloxy)ethyl methacrylate} (PBIEM), which we 

have employed for the other brushes. However, direct ATRP of these monomers in 

DMSO caused precipitation 10 to 15 min after the reaction started, probably due to the 

low solubility of the high molecular weight strong ionic CPBs.  

In this communication, we solved the problems mentioned above by forming 

supramolecular complexes between the monomer SPMA and crown ether 18-crown-6 

(18-C-6), which not only improved the solubility of SPMA, but also stabilized the 

anionic CPBs in the polar organic solvent DMSO. Due to the improved solubility, 

narrowly distributed anionic CPBs with extremely high molecular weights (higher than 

2×107 Da) were prepared. According to our knowledge, this is the first time that ionic 

monomer/crown ether supramolecular complex has been used for the ATRP process to 

directly prepare CPBs. The case described here not only shows the robustness of the 
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method for the synthesis of CPBs, it provides possibilities of building well-defined 

polyelectrolyte topologies such as ionic block copolymers, stars, spherical brushes, 

dendritic and hyperbranched polyelectrolytes, where hydrophobic (macro)initiators or 

precursors might be used. 

Scheme 1 displays the synthetic procedures. Monomer SPMA first formed complex 

with 18-C-6, since it has been reported that 18-C-6 preferentially forms supramolecular 

complex with potassium ion18, 19. Then ATRP was employed to graft the SPMA/18-C-6 

complex from macro-initiator PBIEM. After the polymerizations, dialysis was applied to 

purify the anionic poly(potassium 3-sulfopropyl methacrylate) cylindrical brushes 

(BSPMA). 

 
Scheme 1. Synthetic procedures for anionic BSPMA. 
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To prove the formation of the complex between SPMA and 18-C-6, 1H NMR 

measurements were carried out. Figure 1a shows the 1H NMR spectra of pure 18-C-6 and 

mixture of SPMA with 18-C-6 in DMSO. The inset clearly shows that the peak assigned 

to the methylene groups of 18-C-6 shifted from 3.51 to 3.55, which indicates the 

formation of supramolecular complex between 18-C-6 and potassium ions in monomer 

SPMA.  
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Figure 1. (a) 1H NMR spectra of pure 18-C-6 and the mixture of SPMA with 18-C-6. 

The inset shows the magnified part between 3.4 ppm and 3.65 ppm; (b) 1H NMR spectra 

of macro-initiator PBIEM and final anionic brush BSPMA. 

 

For the preparation of anionic BSPMA, PBIEM with DPn 240 and 1500 were 

employed, which has been reported previously by us8. The resulted brushes are termed as 

BSPMA1 and BSPMA2, respectively. In order to improve the initiating efficiency, 
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halogen exchange and high dilution (10 wt% of monomer) were adopted. The details of 

the ATRP process and molecular characterization was shown in table 1 and supporting 

information. After the polymerizations, the dark blue solution are miscible with water and 

various organic solvents like acetone, dioxane, THF, methanol and so on, which further 

proved that the 18-C-6 also forms complex with the as-prepared anionic BSPMA since 

without the 18-C-6, these highly ionic polymers are not soluble in those organic solvent 

and should precipitate. Dialysis against dioxane was first carried out to remove 18-C-6, 

internal standard anisole and ligand HMTETA. After 5 days’ dialysis, the polymers 

precipitated in the dialysis tubes. Then the dialysis media was changed to 0.2 M KCl 

solution for 7 days to remove copper inside and the color turned transparent and colorless. 

Final product BSPMA was obtained by further dialysis in pure water for 5 days. And 

after the freeze-drying, white powders were obtained, indicating no copper remains in the 

BSPMA brushes. The brushes are well soluble in water. 

 

Table1. ATRP of SPMA in DMSO and molecular characterizations. 

sample Conv.b DPsc,calc
c 107*Mn,calc

d 107*Mw,sls
e Rh,app

f 
(PDI) Mn,PMAA

g DPsc,exp
h f i 

BSPMA1 17.8% 89 0.53 NA 34nm 
(0.140) NA NA NA 

BSPMA2 12.7% 64 2.40 2.63 74nm 
(0.173) 15700 182 0.35

 
a10 wt % of monomer in DMSO and 10 wt% anisole as internal standard. 18-crown-6 
was added with the same mole amount to monomer. ATRP at R. T. with constant ratio of 
[M]0/[I]0/[CuCl] 0/[HMTETA] 0 = 500:1:2:2. bMonomer conversion determined by 1H 
NMR. cCalculated DP of side-chains, DPsc,calc= ([M]0/[I]0)×conversion. dCalculated from 
monomer conversion. Mn,calc= (Monomer molecular weight ×DPsc,calc + 234.5)× 
DPbackbone.  edetermined by SLS in 0.1 M NaCl solutions. dn/dc was determined to be 
0.1157 mL/g. fApparent hydrodynamic radius and polydispersity measured by DLS in 0.1 
M NaCl solutions. gNumber averaged molecular weight of PMAA obtained from the 
hydrolysis of the brushes, determined by water GPC using linear PMAA calibration. hDP 
of the PMAA obtained from the hydrolysis of the brushes. iInitiating efficiency f = 
DPsc,calc/DPsc,exp. 
 

Figure 1b shows the 1H NMR spectra of PBIEM and BSPMA2. It is observed that the 

sharp peak for the methyl groups neighboring the bromide (peak i, 1.9 ppm) and two 

peaks for the methylene groups between two ester bonds (peak g and h, 4.1 ppm and 4.3 
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ppm, respectively) in PBIEM disappeared, while distinct peaks j, k, l (4.2 ppm, 2.2 ppm, 

and 3.1 ppm, respectively) appears in the brush BSPMA (assigned to the three methylene 

groups linking ester bond and sulfonate group). This verifies the successful grafting of 

the SPMA from macro-initiator PBIEM.  

Conventional aqueous gel permeation chromatography (GPC) was measured for 

BSPMA2, although it is not able to determine the true molecular weight and 

polydispersity of the CPBs (see supporting information, figure S1). The Mono-modal 

peak also revealed the formation of the BSPMA brush. 

In order to determine the true molecular weight of the brush, static light scattering 

(SLS) measurement was performed for BSPMA2 in 0.1 M NaCl solution. Absolute 

weight averaged molecular weight (Mw) shown in table 1 is in accordance with the 

calculated number averaged molecular weight (Mn), suggesting the accurate realization of 

brush BSPMA with extremely high molecular weight (more than 2×107 Da). 

Brushes with two different backbones were subjected to dynamic light scattering 

measurements in 0.1 M NaCl solutions. CONTIN plots show narrow mono-modal peaks 

for both brushes. As shown in table 1, the apparent hydrodynamic radius of BSPMA2 (74 

nm) is much higher than that of BSPMA1 (34 nm), due to the DPn of the macro-initiator 

for BSPMA2 is much larger than that for BSPMA1. The polydispersities for both brushes 

are quite narrow (<0.2), demonstrating the well-defined structures of the BSPMA brushes. 

Considering the new ATRP process with complexed ionic monomer with crown ether 

in very polar solvent, it is interesting to know the initiating efficiency for these brushes. 

Brush BSPMA2 was subjected to cleavage reaction in strong base and heating 

environment. The procedure was described in supporting information scheme S1. The 

side-chains were cleaved from the backbone and were finally transformed into linear 

poly(methacrylic acid) (PMAA) (evidenced by the 1H NMR spectrum shown in 

supporting information figure S3). Further aqueous GPC measurement using linear 

PMAA as calibration was carried out to determine the real DP of the side-chains in the 

brush BSPMA2. As listed in table 1, there is a great difference between the DP of the 

cleaved side-chains and that calculated from monomer conversion, and the initiating 

efficiency was only 0.35, which is much lower than that for other monomers reported by 

us7, 12, although measures like halogen exchange and high dilution were taken. The reason 
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probably lies in three points: first, the incompatibility of the hydrophobic macro-initiator 

and the ionic monomer, even if it has formed complex with crown ether; second, the 

steric hindrance raised by the complex formation between the monomer and crown ether; 

and third, the high polarity of DMSO, which boosted the rate of the side-chain growth 

and relatively make the initiating process slower20. Nevertheless, the low initiating 

efficiencies for the grafting-from process in preparing cylindrical polymer brushes have 

been pointed out by Matyjaszewski et al before,21, 22 and our case is just another example 

to show that. 

Direct evidence for the successful preparation of BSPMA brushes was provided by 

atomic force microscopy (AFM) measurements shown in figure 2. For BSPMA1, the 

backbone is relatively short and its length is comparable with the side-chains. Thus it 

mainly shows spherical or ellipsoid morphologies, with average diameter around 40 nm 

(see figure 2b). When it comes to BSPMA2, which has a very long backbone, worm-like 

structures can be clearly observed in figure 2a. The average length for BSPMA2 is 

around 120 nm, which is considerably lower than that of other brushes grafting from the 

same backbone8, 12. This may be attributed to the much lower grafting density of the side-

chains.  

 
Figure 2. AFM height images of (a) BSPMA2 and (b) BSPMA1 dip-coated on mica 

surface from 0.01 g/L solutions in water without added salt. AFM Z ranges are 10 nm and 

15 nm, respectively. 
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The real morphologies of BSPMA brush in solution were revealed by cryogenic 

transmission electron microscopy (cryo-TEM) measurement. Figure 3 shows the cryo-

TEM images of BSPMA2 (1g/L) in 0.1 M CsCl solution, which can enhance the contrast 

of the brush in solution. Clear worm-like structures are found in large scale and the 

average length of BSPMA2 obtained from the cryo-TEM image is around 130 nm, a little 

higher than that by AFM measurement. Interestingly, some black dots of 2 to 3 nm were 

found around the brushes, as displayed in figure 3b. This might be a good evidence for 

the condensation of counterions around the strong anionic CPBs23, 24. 

 

 
Figure 3. Cryo-TEM images of BSPMA2 (1g/L) in 0.1 M CsCl solutions (a), and at a 

higher magnification. 

 

In conclusion, we have demonstrated the successful preparation of strong anionic 

CPBs by direct grafting of SPMA/crown ether complex in DMSO. Measurements of 1H 

NMR, aqueous GPC, DLS and SLS proved the formation of the BSPMA brushes with 

backbones of different lengths. Cleavage of the side-chains revealed the low initiating 

efficiency for the ATRP of such systems. AFM and cryo-TEM measurements displayed 

the worm-like structures of BSPMA either on surface or in solution. The method by 

forming supramolecular complex with crown ether not only provides a straightforward 

and convenient way in preparing CPBs, but also could be extended to the building of 

other polyelectrolytes with different topologies, such as block copolymers, stars, 
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spherical brushes with different cores, dendritic and hyperbranched polymers. Study of 

the solution properties of the prepared strong anionic CPBs is in progress. Detailed 

kinetic investigations into the ATRP process of SPMA/crown ether system in different 

solvents are also going on, and the results will be published elsewhere. 
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Supporting information 
Experimental details: 

Materials. CuCl (97%, Aldrich) was purified by stirring with acetic acid overnight. 

After filtration, it was washed with ethanol and diethyl ether and then dried in vacuum 

oven. N,N,N’,N’’,N’’’,N’’’-hexamethyltriethylenetetraamine (HMTETA, Aldrich) was 

distilled before use. Potassium 3-sulfopropyl methacrylate (98%, Aldrich) was used 

directly. All the other solvents and chemicals were used as received. Regenerated 

cellulose membranes were used for the dialysis (Spectra/Pore 7 with MWCO = 12000 

Da). 

Polymerizations. All polymerizations were carried out in round-bottom flasks sealed 

with rubber septa. A typical example of the synthesis of BSPMA2 is described as follows: 

PBIEM (27.9 mg, 0.1 mmol of initiating α-bromoester groups), SPMA (12.3 g, 0.05 mol) 

and 18-crown-6 (13.2 g, 0.05 mol) were dissolved in DMSO (100 g) in a round-bottom 

flask and stirred overnight to assure the complete dissolution of the complex and macro-

initiator. Then anisole (12 g) was injected via a syringe and stirred for 15 min. 

Afterwards, CuCl (19.8 mg, 0.2 mmol) was added and the flask was purged with argon 

for 15 min. About 0.5 mL of solution was taken out with an argon-purged syringe as an 

initial sample for conversion measurement by 1H NMR. The round-bottom flask was then 

inserted into a water bath at room temperature (25 oC). HMTETA (46mg, 0.2 mmol) was 

injected by argon-purged syringe to start the reaction. Small amounts of samples were 

taken out at intervals to check the monomer conversion by 1H NMR. After 45 min, the 

reaction solution was stopped by opening to the air. Final conversion determined by 1H 

NMR reached 12.7%. The solution was first dialyzed against dioxane for 5 days to 

remove 18-C-6, internal standard anisole and ligand HMTETA. The polymers 

precipitated in the dialysis tubes. Then the dialysis media was changed to 0.2 M KCl 

solution for 7 days to remove copper inside and the color turned transparent and colorless. 

Final product BSPMA was obtained by further dialysis in pure water for 5 days. After 

freeze-drying, white powders were obtained.  

Cleavage of the side chains: The cleavage of the side chains was carried out by 

alkaline hydrolysis. The reaction is described as follows: 100 mg of BSPMA2 and about 

 



8. Novel Synthesis of Anionic Cylindrical Brushes                                                                    VIII-14 

20 ml of concentrated NaOH (18 M) aqueous solution were put into a PE vial and heated 

for 14 days at 90 °C. Concentrated HCl solution was added to the solution to tune the pH 

to around 4. This solution was freeze-dried and re-dissolved in water. Dialysis was 

carried out against pure water by using regenerated membranes (Millipore SpectraPore 7 

MWCO 1000) over 3 days. In order to ensure the full protonation of the final product, 

poly(methacrylic acid) (PMAA), a small amount of HCl was added before freeze-drying 

the solution. 1H-NMR measurement in D2O was performed to check the conversion of the 

ester cleavage. Aqueous GPC was used to check the molecular weight of the final PMAA 

product with a PMAA calibration. 

Characterization. 1H NMR was measured on a Bruker AC-250 instrument at room 

temperature. 

An aqueous GPC (internal standard, ethylene glycol; additives: 0.1 M NaN3, 0.01 M 

NaH2PO4) was applied to determine the elution curve of BSPMA2 and the molecular 

weight of PMAA (PMAA standards, PSS, Mainz). Column set: two 8mm PL Aquagel-

OH columns (mixed and 30 Å), operated at 35°C and RI detection. 

Static light scattering (SLS) was measured on a Sofica goniometer using a He-Ne laser 

(λ = 632.8 nm). Prior to the light scattering measurements, the sample solutions were 

filtered 3 times by using Millipore Nylon filters with a pore size of 1 µm. Four 

concentrations of the BSPMA2 solutions in 0.1 M NaCl were measured at angles in the 

range from 30 o to 150 o. The weight-average molecular weight, Mw was obtained by the 

analysis of the Zimm-plots. The refractive index increment in 0.1 M NaCl solution at 

25 °C was measured to be dn/dc = 0.1157 mL/g using a PSS DnDc-2010/620 differential 

refractometer. 

Dynamic light scattering (DLS) was carried out on an ALV DLS/SLS-SP 5022F 

compact goniometer system with an ALV 5000/E correlator and a He-Ne laser (λ = 632.8 

nm) at an angle of 90o. The sample solutions were filtered 3 times by using Millipore 

Nylon filters with a pore size of 1 µm before the light scattering measurements. CONTIN 

analyses were performed for the measured intensity correlation functions. Apparent 

hydrodynamic radii, Rh,app, were calculated according to the Stokes-Einstein equation. 
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Atomic force microscopy (AFM) measurements were performed on a Digital 

Instruments Dimension 3100 microscope operated in tapping mode. The micro-cantilever 

used for the AFM measurements were from Olympus with resonant frequency between 

284.3 kHz and 386.0 kHz, and spring constant ranging from 35.9 to 92.0 N/m. The 

samples were prepared by dip-coating on freshly cleaved mica from 0.01 g/L brush 

solutions.  

For cryogenic transmission electron microscopy (cryo-TEM) studies of BSPMA2, a 

drop of the sample (aqueous solution with 0.1 M CsCl, concentration around 1 g/L) was 

put on an untreated bare copper TEM grid (600 mesh, Science Services, München, 

Germany), where most of the liquid was removed with blotting paper, leaving a thin film 

stretched over the grid holes. The specimens were instantly shock vitrified by rapid 

immersion into liquid ethane and cooled to approximately 90 K by liquid nitrogen in a 

temperature-controlled freezing unit (Zeiss Cryobox, Zeiss NTS GmbH, Oberkochen, 

Germany). The temperature was monitored and kept constant in the chamber during all 

the sample preparation steps. After the sample is frozen, it was inserted into a cryo-

transfer holder (CT3500, Gatan, München, Germany) and transferred to a Zeiss EM922 

EFTEM. Examinations were carried out at temperatures around 90 K at an acceleration 

voltage of 200 kV. Zero-loss filtered images (ΔE = 0 eV) were taken under reduced dose 

conditions (100-1000 electrons/nm2). All images were registered digitally by a bottom-

mounted CCD camera system (Ultrascan 1000, Gatan) combined and processed with a 

digital imaging processing system (Gatan Digital Micrograph 3.10 for GMS 1.5). 
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Figure S1: Aqueous GPC elution curve of BSPMA2. 
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Figure S2: DLS CONTIN plot of BSPMA1 and BSPMA2 in 0.1 M NaCl solutions. 
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Scheme S1: Cleavage reaction of BSPMA2. 
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Figure S3. 1H NMR spectrum of the cleaved PMAA. 
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Figure S4. Aquesous GPC elution curve of the cleaved PMAA. 
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Abstract 

We demonstrate in this paper the synthesis of double-hydrophilic core-shell cylindrical 

polymer brushes (CPBs), their hybrids with magnetite nanoparticles using introducing-

into strategy, and the directed alignments of the magnetic hybrid cylinders by magnetic 

fields. Consecutive grafting from a macro-initiator poly(2-(2-bromoisobutyryloxy)ethyl 

methacrylate) (PBIEM) by tert-butyl methacrylate (tBMA) and oligoethyleneglycol 

methacrylate (OEGMA) using ATRP technique was performed and further de-protection 

yielded core-shell CPBs with poly(methacrylic acid) (PMAA) as the core and POEGMA 

as the shell, which was evidenced by 1H NMR, GPC, DLS and SLS. The resulted core-

shell brush is well soluble in water and shows pH responsiveness due to the weak 

polyelectrolyte core. Pearl-necklace structures were observed in the cryo-TEM image at 

pH 4, while at pH 7, these structures disappeared owing to the ionization of the core. 

Similar morphology was also found for the polychelate of the core-shell CPBs with Fe3+. 

Superparamagnetic magnetite nanoparticles were parepared and introduced into the core-

shell brushes. The hybrid material retained the superparamagnetic property of the 

magnetite particles, verified by the SQUID. Large-scale alignments of the hybrid 

cylinders in relatively low magnetic fields were performed on surface, clearly clarified by 

AFM and TEM measurements. 

 
Key words: 

Double-hydrophilic, cylindrical polymer brushes, magnetic nanoparticles, alignment, pH 

responsive, polychelate 
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Introduction 

Stimulus-responsive polymers have gained a lot of research interests due to their 

potential applications in many intelligent devices1. In the past years, polymers sensitive to 

different stimuli such as solvent, temperature, pH and salt have been widely developed. 

With the advances in the nanotechnologies and living/controlled polymerization 

techniques2-4, nano-structured polymer systems with mono- and multi-responsiveness 

have also been well established. Although people have long been intrigued by the self-

assembly of natural or synthetic polymers5-9, the attention has been shifted to directed or 

controlled assembly of the polymers or their hybrids for specific demands10-12.  Rational 

utilization of the sensitiveness of the polymers and other materials for the building of 

smart devices has been a hot topic13. Controlled assembly of the polymers or hybrids to 

form patterned or aligned structures is an especially important example14, 15, which has 

found its practical applications in the micro-electronics and liquid crystal displays. 

External forces are required to drive the formation of the ordered structures. Mechanical 

forces like shear flow16-20 have proven to be successful in the orientation of polymer 

systems. Recently, electric field21, 22 has been thriving in the alignment of block 

copolymers. Controlled alignment of polymers or their hybrids by magnetic field is also 

emerging in many aspects23-27. The non-contacting alignment by magnetic field is easier 

to handle and safer than that by electric field. But many challenges are still remaining. In 

most cases, very high magnetic fields are necessary to orient the organic polymers23, 24, 27. 

Inorganic magnetic materials have been incorporated into different polymers to generate 

better responses to magnetic field28. With the development of nanotechnologies and 

demands for smaller nano-objects, many contributions have been made to the synthesis of 

magnetic nanoparticles and their hybrids with polymers or other materials29-36. Pyun et 

al37-39 showed the preparation of polymer grafted ferromagnetic cobalt nanoparticles and 

their alignment in magnetic fields. Minko et al40 made the complex of magnetite 

nanoparticles with polyelectrolytes and their orientation in magnetic fields. Correa-

Duarte et al41 obtained magnetically alignable hybrids of magnetic nanoparticles with 

carbon nanotubes using layer-by-layer assembly. Gao et al42 and Greiner et al43 even 

showed the micro-manipulations of the magnetic hybrid cylinders by magnetic fields. 
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Continuous efforts have been made in our group for the making of different magnetic 

nano-hybrids of magnetic nanoparticles with cylindrical polymer brushes (CPBs)44. 

CPBs are composed of a relatively long backbone with densely grafted side-chains45-47. 

Due to their stretched and anisotropic nature, they exhibit different solution and bulk 

properties. Three different strategies, grafting-onto48, grafting-through49, and grafting-

from50, have been adopted to synthesize the CPBs. Recent progress in controlled/living 

polymerizations made it possible to prepare well-defined CPBs by grafting-from strategy, 

using atom transfer radical polymerization (ATRP)50, 51, nitroxide mediated radical 

polymerization (NMRP)52 and ring opening polymerization (ROP)53, 54. Based on these 

techniques, CPBs with various architectures have been prepared. Core-shell CPBs51, 52, 55, 

56, brushes with a grafting density gradient57, 58, hetero-grafted brushes59-61, brush block 

copolymers54, 62, star brushes63, 64, ring brushes65 and double-grafted brushes66, 67 have 

been prepared. CPBs with various functionalities were also available. CPBs responsive to 

stimuli such as solvent68, temperature69, light70, pH71 and salt71 are the novel examples.  

Our group has reported the hybrids of core-shell CPBs with different inorganic 

nanomaterials like CdS72, CdSe73 and silica74. In our previous work, superparamagnetic 

maghemite nanoparticles were also successfully in situ incorporated in amphiphilic core-

shell CPBs44. Because of the amphiphilic nature of the CPBs, organic solvent mixtures 

were used to disperse the hybrids, which were not so stable for long time and were not 

convenient for the applications. The magnetic nanoparticles generated in situ in the core 

of the CPBs were only 3 to 4 nm and the magnetic response was very weak. 

In this work, we made crucial improvements and prepared water soluble double-

hydrophilic core-shell CPBs, which is sensitive to pH and ions. More importantly, we 

employed a new strategy, introducing-into, to improve the magnetic responsiveness of 

the hybrid. Pre-made magnetite nanoparticles were introduced to the core of the core-

shell CPBs and the hybrids were aligned in a large scale by relatively low magnetic fileds. 

This provided a novel example for the alignment and directed assembly of polymer 

hybrid systems and applications are possible in many potential areas. 
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Experimental 

Materials. CuCl (97%, Aldrich) was purified by stirring with acetic acid overnight. 

After filtration, it was washed with ethanol and diethyl ether and then dried in vacuum 

oven. Oligoethyleneglycol methacrylate (OEGMA) (MW350, Bisomer, Germany) and 

tert-butyl methacrylate (tBMA) (kindly donated by BASF) were purified by passing 

through basic alumina columns before polymerizations. Trifluoroacetic acid (Aldrich) 

was used as received. N,N,N’,N’’,N’’’,N’’’-hexamethyltriethylenetetraamine (HMTETA, 

Aldrich) was distilled before use. The synthesis of the macroinitiator poly(2-(2-bromo-

isobutyryloxy)ethyl methacrylate) (PBIEM) (DPn = 1500, PDI = 1.08) by anionic 

polymerization was reported previously by our group56. All other solvents and chemicals 

were used as received. Regenerated cellulose membranes were used for the dialysis (from 

Spectra/Pore 7 with MWCO = 12 kDa). 

Preparation of PtBMA brush. The polymerization for the preparation of poly(tert-

butyle methacrylate) brush (Abbreviated as brush BT) was carried out in a round-bottom 

flask sealed with a rubber septum. The procedures are described as follows: PBIEM (55.8 

mg, 0.2 mmol of initiating α-bromoester groups) was dissolved in anisole (14 g) in a 

round-bottom flask and stirred overnight to assure the complete dissolution of the high 

molecular weight macro-initiator. After that, the monomer tBMA (14.2 g, 0.1 mol) was 

injected via a syringe and stirred for 15 min. Then CuCl (20 mg, 0.2 mmol) was added 

and the flask was purged with argon for 15 min. About 0.5 mL of solution was taken out 

with an argon-purged syringe as an initial sample for conversion measurement by 1H 

NMR. The round-bottom flask was then inserted into a water bath at room temperature 

(25 oC). HMTETA (23 mg, 0.1 mmol) was injected by argon-purged syringe to start the 

reaction. Small amounts of samples were taken out at intervals to check the monomer 

conversion by 1H NMR. After 2.5 h, the reaction was stopped by opening to the air. Final 

conversion determined by 1H NMR reached 11.9%. THF was added to dilute the solution. 

After passing through a basic alumina column, the solution was concentrated by a rotary 

evaporator. Afterwards, it was precipitated into mixture of methanol and water (4:1 v/v) 

to remove the residual monomer and other impurities. Then the polymer was re-dissolved 

in certain amount of dioxane and followed by freeze-drying overnight. 
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Preparation of PtBMA-b-POEGMA brush. The synthesis of core-shell PtBMA-b-

POEGMA brush (abbreviated as brush BTO) was carried out in a similar way as it was 

described above. The ATRP was performed at R. T. using methyl ethyl ketone as the 

solvent instead of anisole. Brush BT was used as the macro-initiator (88 mg, 0.01 mmol 

of initiating groups). Monomer OEGMA (3.5 g, 0.01 mol), CuCl (2mg, 0.02 mmol) and 

HMTETA (4.6 mg, 0.02 mmol) were used in the process. The final monomer conversion 

determined by 1H NMR was 20.0%. After the polymerization, it was precipitated into 

cold n-Hexane, dissolved in dioxane and dialyzed against dioxane for one week to 

remove the residual monomer and other impurities. Then it was freeze-dried for further 

use. 

Preparation of PMAA-b-POEGMA brushes. Brush BTO was subjected to 

hydrolysis to transform the PtBMA core into PMAA (poly(methacrylic acid)), which 

resulted in PMAA-b-POEGMA brush (abbreviated as brush BMO). Brush BTO was 

dissolved in dichloromethane and 10 fold excess of trifluoroacetic acid was injected, 

which was kept at R. T. for 48 h for the full reaction. After the reaction, solvent was 

evaporated and re-dissolved in dioxane for the freeze-drying. It was dialyzed against 

water for 7 days and part of it was freeze-dried.  

Polychelate of brush BMO with Fe3+. Brush BMO was first dissolved in water and 

the pH was tuned to 7 by adding NaOH solutions. Then suitable amount of FeCl3 solution 

was added. The solution was stirred overnight for further use. 

Synthesis of magnetite nanoparticles. Magnetite nanoparticles (MNP) was prepared 

by the co-precipitation procedures described in the literatures using citric acid as the 

protecting agent40, 75.  

Preparation of hybrid of MNP and brush BMO. First, 20 mL solution of BMO 

brush (0.1g/L) was prepared and the pH was adjusted to 7 by NaOH solutions. Then 2 

mL MNP solution (10 g/L) was added to the solution. The mixture was dialyzed against 

water for 7 days. Some precipitation was observed on the wall of the dialysis tube. After 

the dialysis, the solution was filtered to remove the precipitation. Then it was subjected to 

ultra-filtration using a membrane with pore size 50 nm.  

 



9. Hybrids of Magnetic Nanoparticles with Double-hydrophilic Cylindrical Brushes                                              IX-7 

Characterization. 1H NMR was measured on a Bruker AC-250 instrument at room 

temperature with CDCl3 or D2O as the solvent. 

The apparent molecular weights of the brushes were characterized by conventional gel 

permeation chromatography (GPC) using 0.05 M solution of LiBr in 2-N-

methylpyrrolidone (NMP) as eluent at a flow rate of 0.72 mL/min at room temperature. 

PSS GRAM columns (300 mm×8 mm, 7 μm): 103, 102 Å (PSS, Mainz, Germany) were 

thermostated at 70 °C. An RI detector and a UV detector (λ = 270 nm) were used. 

Polystyrene standards (PSS, Mainz) with narrow molecular weight distribution were used 

to calibrate the columns, and methyl benzoate was used as the internal standard.  

Static light scattering (SLS) was measured on a Sofica goniometer using a He-Ne laser 

(λ = 632.8 nm). Prior to the light scattering measurements, the sample solutions were 

filtered 3 times by using Millipore Teflon filters with a pore size of 1 µm. Five 

concentrations of the brushes solutions in dioxane were measured at angles in the range 

from 30 o to 150 o. The weight-average molecular weight, Mw, of the brushes was 

obtained by the analysis of the Zimm-plots. The refractive index increments of the brush 

BT and BTO in dioxane solution at 25 °C were measured to be dn/dc = 0.0537 and 

0.0422 mL/g respectively, using a PSS DnDc-2010/620 differential refractometer. 

Dynamic light scattering (DLS) was carried out on an ALV DLS/SLS-SP 5022F 

compact goniometer system with an ALV 5000/E correlator and a He-Ne laser (λ = 632.8 

nm) at an angle of 90o. For the brush solutions in dioxane, the samples were filtered 3 

times by using Millipore Teflon filters with a pore size of 1 µm before the light scattering 

measurements. CONTIN analyses were performed for the measured intensity correlation 

functions. Apparent hydrodynamic radii, Rh, of the cylindrical brushes were calculated 

according to the Stokes-Einstein equation. All the measurements were carried out at 

25 °C.  

Atomic force microscopy (AFM) measurements were performed on a Digital 

Instruments Dimension 3100 microscope operated in tapping mode. The micro-cantilever 

used for the AFM measurements were from Olympus with resonant frequency between 

284.3 kHz and 386.0 kHz, and spring constant ranging from 35.9 to 92.0 N/m. For the 

brush BT and brush BTO, the samples were prepared by dip-coating from very dilute 
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(0.01 g/L) THF solutions of brushes onto freshly cleaved mica surfaces. For the 

measurement of the hybrid of BMO brush with magnetite nanoparticles, very dilute 

aqueous solutions (0.02 g/L) were prepared and were spin-coated on freshly cleaved mica. 

For the alignment of the hybrid on surface, 3 drops of the solution of the magnetic hybrid 

(0.05 g/L) was put on the freshly cleaved mica surface. A magnet was put parallel to the 

mica surface with distance of 3 cm. Then the sample was kept overnight to evaporate the 

water in the solution. 

Transmission electron microscopy (TEM) measurements of the hybrid of BMO brush 

with MNP were carried out on Zeiss CEM 902, which was operated at 80 kV. The 

samples were prepared by putting one drop of the solution (0.05 g/L) on the carbon 

coated copper grid (200 mesh, Science Services, München, Germany). For the alignment 

of the magnetic hybrid, one drop of the sample solution was put on the carbon coated 

copper grid in a magnetic field (0.2 Tesla) and dried overnight. Then the sample was 

measured by a Zeiss EM 922 EFTEM with an acceleration voltage of 200 kV. 

For cryogenic transmission electron microscopy (cryo-TEM) studies of brush BMO 

and its polychelate with Fe3+, a drop of the sample (aqueous solution, concentration 

around 0.01 g/L) was put on an untreated bare copper TEM grid (600 mesh, Science 

Services, München, Germany), where most of the liquid was removed with blotting 

paper, leaving a thin film stretched over the grid holes. The specimens were instantly 

shock vitrified by rapid immersion into liquid ethane and cooled to approximately 90 K 

by liquid nitrogen in a temperature-controlled freezing unit (Zeiss Cryobox, Zeiss NTS 

GmbH, Oberkochen, Germany). The temperature was monitored and kept constant in the 

chamber during all the sample preparation steps. After the sample is frozen, it was 

inserted into a cryo-transfer holder (CT3500, Gatan, München, Germany) and transferred 

to a Zeiss EM 922 EFTEM. Examinations were carried out at temperatures around 90 K 

at an acceleration voltage of 200 kV. Zero-loss filtered images (ΔE = 0 eV) were taken 

under reduced dose conditions (100-1000 electrons/nm2). All images were registered 

digitally by a bottom-mounted CCD camera system (Ultrascan 1000, Gatan) combined 

and processed with a digital imaging processing system (Gatan Digital Micrograph 3.10 

for GMS 1.5). 
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Magnetic properties of the hybrid of brush BMO and MNP was determined by 

superconducting quantum interference device (SQUID) using Quantum Design, MPMS-

7. 

 

Results and discussions 

Syntheses of CPBs 

Different CPBs prepared by grafting-from using ATRP have been reported by our 

group previously51, 56, 67, 71, 74. PBIEM with high molecular weights and narrowly 

distributions served as the macro-initiators and different side-chains grew from the 

backbone. In this work, we prepared double-hydrophilic core-shell CPBs by consecutive 

grafting by ATRP and further reactions. Scheme 1 shows the procedures of the synthetic 

work. First, PtBMA brush (BT) was prepared by grafting from macro-initiator PBIEM 

(DP=1500). Continued grafting of second monomer OEGMA using the brush BT as the 

precursor was performed resulted in the PtBMA-b-POEGMA brush (brush BTO). 

Finally, cleavage of the t-butyl groups of the PtBMA core was realized by trifluoroacetic 

acid catalyst. Thus, core-shell structured CPBs with core containing large number of 

carboxylic groups and shell composed of considerable short ethylene glycol units were 

fabricated. The as-prepared CPBs are well soluble in water. 

 
Scheme 1. Synthetic procedures of the double-hydrophilic core-shell CPBs. 
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Conventional GPC measurements with NMP as the eluents were performed for macro-

initiator PBIEM, brush BT, brush BTO. Although the normal GPC cannot give the true 
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molecular weights and distributions of the brushes because of the difference of the 

hydrodynamic radii between the brushes and linear polymer standards, it is still able to 

show the difference of the eluent volume changes between the formed brushes and the 

macroinitiator. Figure 1 shows the GPC eluent curves of the CPBs. A coupling peak for 

the macroinitiator PBIEM exists, which covers only a small portion of the macro-initiator. 

But the overall polydispersity of the macro-initiator is very low, and the coupling peak 

has very minor effect on the final brushes, which has been evidenced by our previous 

works56, 67, 71. It is clearly shown that brush BT and BTO both demonstrate monomodal 

distributions, and BTO peak shifts to higher molecular weight direction, indicating good 

control of the ATRP grafting reactions. 

14 16 18 20

 

Elution Volume (mL)

 PBIEM
 BT
 BTO

 
Figure 1. GPC eluent curves of the PBIEM, brush BT and BTO. 

 

Comparison of 1H NMR spectra of the brushes is displayed in Figure 2. The two peaks 

at area a (4.1 and 4.3 ppm for the methylene protons between two ester groups in the 

PBIEM macro-initiator) and the peak at area c (1.9 ppm for the methyl groups 

neighboring the bromide group in PBIEM) disappeared when brush BT was formed, 

while at the same time, the distinctive peak for the t-butyl groups (1.4 ppm at area d) of 

PtBMA rose. After the blocking of POEGMA shell, intrinsic peaks for the short ethylene 

glycol units were shown at area b (between 3.0 ppm to 4.0 ppm). In the mean time, the 

peak for the t-butyl groups at 1.4 ppm remained, indicating the successful grafting of the 
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di-block side-chains. After the treatment with trifluoroacetic acid, the peak at 1.4 ppm for 

the t-butyl groups vanished, demonstrating the completing of the de-protection of the 

carboxylic groups. Thus, the 1H NMR spectra clearly confirmed the successful synthesis 

of the double-hydrophilic core-shell CPBs with PMAA core and POEGMA shell. 
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Figure 2. 1H NMR Spectra of macro-initiator PBIEM, brush BT, BTO and BMO. 

 

Table1. Molecular characterizations and light scattering analyses of brush BT and BTO. 

sample conversiona DPsc,calc 
b 10-7Mn,calc 

c 10-7Mw,SLS 
d Rh,app

e, nm 
(PDI) 

BT 11.9% 60 1.31 1.50 48 
(0.22) 

BTO 20.0% 200 10.5 10.9 170 
(0.32) 

 

aMonomer conversion determined by 1H NMR. bCalculated DP of side-chains, DPsc,calc = 

([M]0/[I]0)×conversion, for sample BT and BTO, the ratios of [M]0/[I]0 are 500 and 1000, 

respectively. cCalculated from monomer conversion. Mn,calc = (Monomer molecular 

weight×DPsc,calc + 234.5)×DPn,backbone.  ddetermined by SLS in dioxane. eApparent 

hydrodynamic radius and polydispersity measured by DLS in dioxane. 
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In order to know the true molecular weights of the brush BT and BTO, solutions of 

them in dioxane were subjected to SLS analyses. DLS measurements were also carried 

out. The results are listed in table 1. Absolute weight averaged molecular weights (Mw) of 

the brushes shows very little deviations from the calculated number averaged molecular 

weights (Mn), again proving the success of the brush syntheses. The CONTIN plots of 

both brushes (at 90° scattering angle) are monomodal (see supporting information: S1). 

The apparent hydrodynamic radii (Rh,app) for the brush BT and BTO are 48 nm and 170 

nm, respectively, displaying significant increase of the size of the brushes. 

 
 
pH responsiveness of BMO brush 

The double-hydrophilic core-shell brush BMO is composed of a shell of POEGMA 

and a core of PMAA. The weak polyelectrolyte nature of PMAA leads to the pH 

responsiveness of the BMO brush. Cryo-TEM measurements of BMO brush showed their 

true solution morphologies at different pH values in Figure 3. It was reported by 

literature76 that the pKa value of PMAA is around 4.71. So at pH 4, most of the 

carboxylic groups are protonated and are not well soluble in water, while at pH 7, most of 

them are ionized and well soluble in water. This was indeed observed from Figure 3. In 

Figure 3a, an interesting structure, pearl-necklace structure, was clearly observed due to 

the association of the PMAA core in the brushes. This was also predicted by simulation 

work and explained theoretically by Oleg et al recently77. However, at pH 7, these special 

morphologies disappeared, owing to the mostly dissociated carboxylic groups in the core. 

 
Figure 3. cryo-TEM images of BMO brush at a) pH=4 and b) pH=7. 
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From Figure 3, we also found that the brushes are mostly around 300 nm long. This 

length is much higher than that of other brushes prepared by the same macro-initiator 

(normally around 150 nm to 180 nm)56, 67, 71. This could be explained by the bulk nature 

of the OEGMA monomer. As shown in Table 1, the Rh,app values of the brushes increased 

from 48 nm to 170 nm, indicating great expansion of the brushes. Although the length of 

300 nm is still shorter than that of the fully stretched backbone (375 nm), it has showed 

the stretching effect of the bulky side-chains. 

 

Polychelate of BMO brush with Fe3+ 

Since the PMAA in the core of the BMO brush is a polyelectrolyte, it is able to uptake 

different counterions around it. At pH 7, the carboxylic groups are ionized and mono-

valent counterions should be mostly around the brush core. When trivalent counterions, 

in this case, Fe3+ ions are put into the solution, fast exchange of counterions would drive 

the moving of Fe3+ ions into the core of the brush78-80. This would cause the collapse of 

PMAA around the core. Figure 4 shows the pearl-necklace structures clearly. Similar 

findings were also reported previously by our group44, 81, 82 for the polychelates of 

amphiphilic brushes with Cd2+ and Fe3+. 

 

 
Figure 4. a) AFM height image of polychelate with BMO brush and Fe3+ on mica surface, 

Z range 35nm; and b) cryo-TEM image of polychelate with BMO brush and Fe3+ at pH=7. 
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Hybrid of brush BMO with magnetite nanoparticles 

In order to prepare the cylindrical magnetic nano-hybrids, magnetite nanoparticles 

were first produced by co-precipitation procedures reported in literatures40, 75. The 

magnetite nanoparticles were protected by citric acid and were stable in water. Figure 5 

demonstrates the TEM image of the as-prepared magnetite nanoparticles. Analysis 

indicates that the average diameter of the particles is around 10 nm, which is quite typical 

for the nanoparticles prepared by this process. SQUID measurement (see supporting 

information: S2) revealed that the particles are superparamagnetic without magnetic 

hysteresis at temperature 200 K. 

 
Figure 5. TEM image of the magnetite nanoparticles. 
 

The hybrid of magnetic nanoparticles with brush BMO was prepared in the procedure 

illustrated in Scheme 2. Excess of magnetite nanoparticles were mixed with BMO brush 

solution (pH tuned to 7) first, which was followed by dialysis. Citric acid was dialyzed 

away through the pores of the membrane and ligand exchange happened since there were 

large number of carboxylic groups in the core of the BMO brushes, which have strong 

interaction with the surfaces of the magnetite nanoparticles. The excess particles lost their 

protection and aggregated to form precipitations. Some particles were still free in the 

solutions. By filtration, the precipitation was removed. And ultra-filtration using a 

membrane with pore size 50 nm could remove the free magnetite particles while keeping 

the magnetic hybrid in the solutions. 
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The formation of the magnetic hybrid was evidenced by non-stained TEM portrayed in 

Figure 6. Chain-like structures are visible and Figure 6b further displayed the particles 

are arranged in a linear way. The size of the chains fit that of the brush BMO, as shown 

previously. This demonstrates that the construction of the hybrid of magnetite 

nanoparticles with brush BMO was achieved successfully. AFM images also evidenced 

the formation of the magnetic hybrid and no free particles were observed (see supporting 

information: S3). 

 

Scheme 2. the introducing-into strategy for the preparation of magnetic nano-hybrid. 
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Figure 6. Non-stained TEM of the purified hybrid of brush BMO and magnetite 

nanoparticles. 

 
The magnetic properties of the hybrid of brush BMO and magnetite nanoparticles were 

characterized by SQUID. Figure 7 shows the magnetization curve of the hybrid in 

different magnetic field at 200 K. No apparent magnetic hysteresis was found for the 

hybrid material, indicating that the hybrid of the brush BMO with the magnetite 

nanoparticles retained the superparamagnetic property of the original particles. This made 
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it possible to study the responses of the hybrid cylinders in the magnetic field and further 

alignment experiments. 
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Figure 7. Magnetization curve of the hybrid of brush BMO and MNP at 200 K. 
 
 
Alignment of the hybrid in magnetic fields 

In the literatures23, 24, 26, 27, most examples of alignments required high magnetic field. 

In our case, we have shown that magnetite nanoparticles are enriched around the core of 

the brush BMO, which increased the local concentration of magnetic particles around the 

brushes, and made it possible to align the hybrid cylinders in relatively low magnetic 

fields. 

It is indeed shown in Figure 8 that the hybrid cylinders formed aligned morphologies 

in a low field (40 mT) and in a scale of tens of microns, individual or aggregated chains 

were clearly observed. In Figure 8b, we can even see the end-to-end organization of 

single hybrid materials in the magnetic field direction. 

Similar experiment with higher magnetic field (0.3 T) was also carried out on the TEM 

grid. Analogous alignment was also obtained in a larger scale (several hundred micron 

scale). In Figure 9a and 9b, aligned stripes are clearly observed. Analysis of single stripe 

indicates that the width is much larger than the width of single hybrid cylinders, 

indicating the densely aggregated state of those cylinders. More detailed measurements in 
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the non-stained TEM shows that these stripes are made up of large number of magnetic 

nanoparticles (see supporting information: S4). 

 
Figure 8. a) AFM height image of Aligned magnetic hybrid on mica surface in a 

magnetic field of 40 mT, Z range 50 nm; and b) Magnification of one aligned chain of the 

magnetic hybrid cylinders. 

 

 
Figure 9. a) and b): non-stained TEM images of the aligned structures of the hybrid 

cylinders in a magnetic field of 0.3 T. Scale bar in the left image represents 100 micron. 

 

Conclusions 

We have successfully prepared double-hydrophilic core-shell CPBs with PMAA as the 

core and POEGMA as the protecting shell, by grafting-from strategy using ATRP 

technique, which was evidenced by different characterization methods like 1H NMR, 
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GPC, DLS and SLS. The as-prepared core-shell brush is soluble in water and shows pH 

responsiveness due to the weak polyelectrolyte characteristic of PMAA in the core. At 

pH 4, distinct pearl-necklace structures were observed in the cryo-TEM images. However, 

at pH 7, these structures disappeared owing to the ionization of the PMAA in water. The 

polychelate of the brush BMO with Fe3+ also showed similar pearl-necklace structures, as 

was demonstrated by AFM and cryo-TEM measurements. Superparamagnetic magnetite 

nanoparticles with average diameter of 10 nm were parepared and were introduced into 

the core-shell brushes. The hybrid material retained the superparamagnetic property of 

the magnetite particles, which was verified by the SQUID measurement. Micron-scale 

alignments of the hybrid cylinders in magnetic field were performed on mica surface and 

on TEM grid. Oriented stripes of the cylinders or the aggregated hybrids were observed 

from the AFM and TEM images. The successful preparation of the magnetic nano-hybrid 

cylinders and their convenient alignments in relatively low magnetic fields provided a 

novel example of directed assembly of polymer/inorganic nanoparticle hybrid materials 

by external field. They could be potentially applied in preparing well-patterned surfaces 

or in the micro-electronics.  
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S2. Magnetization curve of magnetite nanoparticles at 200 K. 
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S3. AFM height (left) and Phase (right) images of the magnetic hybrid of brush BMO and 

magnetite nanoparticles. 

 

 

 
S4. Non-stained TEM images of the aligned stripes of the hybrids in a magnetic field of 

0.2 T. Scale bars in the left and right images stand for 1 um and 50 nm, respectively. 
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Abstract: 

We present the preparation of novel single-molecular hybrid nano-cylinders by 

covalently attaching the mono-thiol-functionalized polyhedral silsesquioxane (POSS-SH) 

to poly(glycidyl methacrylate) cylindrical brushes (BGMA). Grafting of GMA from a 

long macro-initiator poly(2-(2-bromoisobutyryloxy)ethyl methacrylate) (PBIEM) via 

ATRP was first carried out. Gel permeation chromatography (GPC), 1H NMR, dynamic 

light scattering (DLS), static light scattering (SLS) and atomic force microscopy (AFM) 

measurements confirmed the well-defined worm-like structures of BGMA brushes. Then 

POSS-SH was covalently linked to BGMA brushes by reacting with the large number of 

epoxy groups. The fulfillment of the hybrid materials BGMA-POSS were demonstrated 

by Fourier transform infrared spectroscopy (FTIR), DLS, SLS, energy dispersive X-ray 

spectroscopy (EDX) and thermal gravimetric analysis (TGA) measurements. Due to the 

high steric hindrance, the attaching efficiency of POSS-SH only reached 20%. 

Nevertheless, size increases for the length and diameter were shown by AFM and non-

stained transmission microscopy (TEM) measurements. Residual SiO2 left from the TGA 

measurement of BGMA-POSS in air displayed interesting porous structures, as were 

revealed by scanning electron microscopy (SEM) and TEM characterizations. 

 

 

Keywords: poly(glycidyl methacrylate), cylindrical polymer brush, POSS, nano-

composite 
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Introduction 

With the rapid development of nanotechnologies, tremendous materials with different 

functionalities on nano-scale have been fabricated1. Combining inorganic materials’ 

outstanding mechanical, optical, electric and magnetic properties, with the soft organic 

materials’ excellent processibilities, functionalities and biocompatibilities, nano-

composite materials have demonstrated their advanced performances, which exceed the 

simple addition of their every single component’s characteristics, due to the special 

surface and quantum effects on nano-scale. Polymer based nano-composites have been 

widely investigated and a large category of inorganic materials, such as carbon materials, 

ceramics, clays, metals, metal oxides and silica, have been incorporated into different 

polymeric materials2. One advantage of such kind of composite materials is that very 

small amount of the added inorganic nano-materials can remarkably improve the 

mechanical, thermal and other properties of the polymer matrix3. To prepare the polymer-

based nano-composites with inorganic materials, two general strategies have been applied. 

The easiest way is to directly dispersing the nanometer-sized inorganic materials into the 

polymer by mechanical blending, melting or solution treatments. In order to improve the 

compatibilities of the inorganic materials with the polymer matrix, surface 

functionalizations are sometimes necessary. Recent research revealed the size of the 

blending materials is a key factor for the dispersing process4. Due to the non-covalent 

blending, the forces between the additive and the matrix are weak, and the improvement 

of the properties and the stabilities are poor. The other method is to prepare the nano-

composites via covalent linking, either by direct polymerization of functional monomers 

attached with inorganic groups, or by post-polymerization reactions. Thanks to the strong 

covalent linking of the inorganic part to the organic polymer chains, better performances 

of these materials are expected. 

Recent progresses have been achieved in the making of nano-composite materials on 

molecular level, which find their promising micro-electronic, optic and magnetic 

applications. Suitable nano-structured polymer matrices are greatly demanded. 

Spherically-shaped polymers like star polymers5, 6, dendrimer7 and hyperbranched 

polymers8 can meet the requirements to some extent. Demands on anisotropic polymer 

molecules are increasing, owing to their interesting properties and potential applications. 
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One-dimensional polymers like dendronized polymers9 and cylindrical polymer brushes 

(CPBs)10, 11 can play the roles. Tedious synthetic procedures for dendronized polymers 

have limited their uses. Relatively easier preparations of CPBs make them more attractive.  

CPBs, comprising very long backbones and densely grafted side-chains, adopt worm-

like morphologies in good solvents. Owing to their anisotropic nature, special solution 

and bulk properties have been displayed12, 13. So far, grafting-to14, grafting-through15 and 

grafting-from16, 17 strategies have been explored to prepare CPBs. Generally, well-defined 

CPBs can be obtained by using grafting-from method, since both the backbones and the 

side-chains could be grown by well-established living/controlled polymerization 

techniques. 

In the past years, a lot of attention has been paid to polyhedral silsesquioxanes (POSS), 

which have special cage structures18. They are made up of inner silicon/oxygen (SiO1.5)n 

cages and outside organic substituents. Sized between 1 to 3 nm, they can be viewed as 

the smallest silica nanoparticles. Unlike the pure inorganic silica materials, the outside 

organic substituents provide them many possibilities for further functionalizations, 

organo-cmopatibilities, and even bio-compatibilities. Incorporating POSS into polymers 

can dramatically improve their thermal and mechanical properties18-21. To prepare the 

composite of POSS with polymers, different methods have been developed. When the 

shell of POSS is deigned to be reactive, polymers can be connected covalently to them, 

either by grafting-from22 or grafting-to23 procedures. Another convenient way is to 

prepare monomers carrying POSS units and further polymerizations. Controlled radical 

polymerizations, such as atomic transfer radical polymerizations (ATRP) have been used 

successfully to prepare the homo-polymers or block-copolymers of POSS containing 

methacrylates24-26. 

In our groups’ persistent efforts, single-molecular nano-composites with semi-

conducting27, 28 and magnetic nanoparticles29 non-covalently incorporated in core-shell 

CPBs have been achieved. Very recently, we have reported the preparation of CPBs with 

silsesquioxanes as the cores and poly(oligoethyleneglycol methacrylate) (POEGMA) as 

the water soluble shells, by consecutive ATRP of a siloxane containing monomer and 

OEGMA and further sol-gel process30. They could be derived into silica nanowires by 

pyrolysis on substrates.  
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In this work, we employed another strategy to prepare silsequioxane containg single-

molecular cylindrical nano-hybrids. By attaching thiol-functionalized POSS to the 

preformed poly(glydidyl methacrylate) CPBs (termed as BGMA), we successfully 

obtained nano-cylinders (termed as BGMA-POSS) which contain the cage-like inorganic 

materials and organic cylindrical matrix. They might be used as building blocks for some 

nano-devices. 

 

Experimental 

Materials 

CuCl (97%, Aldrich) was purified by stirring with acetic acid overnight. After filtration, 

it was washed with ethanol and ether and then dried in vacuum oven. CuCl2 (99%, Acros) 

was used without purification. N,N,N’,N’’,N’’’,N’’’-hexamethyltriethylenetetraamine 

(HMTETA, Aldrich) was distilled before use. 4,4′-Dinonyl-2,2′-dipyridyl (dNbpy) was 

purchased from Aldrich and used without further purification. Glycidyl methacrylate 

(GMA) (97%, Aldrich) was purified by passing through basic alumina columns before 

polymerization. Macro-initiator poly(2-(2-bromoisobutyryloxy)ethyl methacrylate) 

(PBIEM) (DPn = 1500, PDI = 1.08) was reported previously31. Mercaptopropyl-isobutyl-

POSS (POSS-SH) (from Aldrich, molecular weight: 892 Da) was used as it is. All the 

other solvents and chemicals were used as received. 

 

Preparation of BGMA 

The grafting of GMA was carried out in a round-bottom flask sealed with a rubber 

septum. PBIEM (55.8 mg, 0.2 mmol of initiating α-bromoester groups) and 

dinonylbipyridyl (dNbpy) (163.5 mg, 0.4 mmol) were dissolved in anisole (28 g) in a 

pear-shaped flask and stirred overnight to assure the complete dissolution of the high 

molecular weight polyinitiator. Then the monomer GMA (14.2 g, 0.1 mol) was injected 

via a syringe and stirred for 15 min. The flask was purged with argon for 15 min. About 

0.5 mL of solution was taken out with an argon-purged syringe as an initial sample for 

conversion measurement by 1H NMR. A round-bottom flask with CuCl (20 mg, 0.2 

mmol) and CuCl2 (1.4 mg, 0.01 mmol) was also deoxygenated by argon flow. Then the 

solution in the pear-shaped flask was transferred into the round-bottom flask by a cannula. 
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The solution immediately turned brown. The round-bottom flask was then inserted into a 

water-bath at 25 °C. Small amount of samples were taken out at intervals to check the 

monomer conversion. After 32 hours, the conversion determined by 1H NMR reached 

24.9%. The round-bottom flask was then opened to air. THF was added to dilute the 

solution and the color of the solution turned green. After passing through a basic alumina 

column, it was precipitated into cold hexane. Then it was re-dissolved in dioxane. White 

powders were obtained after freeze-drying. 

 

Preparation of BGMA-POSS 

BGMA was dissolved in THF in a bottle and POSS-SH was added (2-fold to the 

glycidyl groups in BGMA) and followed by vigorous stirring. Then small amount of 

pyridine was added to the solution. It was subjected to heating at 65 oC. The reaction was 

kept for 7 days. Afterwards, it was cooled to room temperature and was purified by 

ultrafiltration through a membrane with the pore size of 200 nm using THF as the eluent.  

 

Characterizations 
1H NMR was measured on a Bruker AC-250 instrument at room temperature using 

CDCl3 as the solvent. 

Conventional GPC using THF as eluent at a flow rate of 1.0 mL/min at room 

temperature was performed for BGMA brush. Column set: 5 µm p SDV gel, 102, 103, 104, 

and 105 Å, 30 cm each (PSS, Mainz). Detectors used are RI and UV operated at 254 nm. 

Polystyrene standards (PSS, Mainz) with narrow molecular weight distribution were used 

for the calibration of the column set.  

Fourier transform infrared (FTIR) spectra were recorded at room temperature using a 

Bruker FTIR EQUINOX 55/S spectrometer at a resolution of 4 cm-1. The samples were 

prepared by casting sample solutions onto NaCl plates. 

Dynamic light scattering (DLS) was carried out on an ALV DLS/SLS-SP 5022F 

compact goniometer system with an ALV 5000/E correlator and a He-Ne laser (λ = 632.8 

nm) at angle of 90o. Before the light scattering measurements, the sample solutions were 

filtered 3 times by using Millipore Teflon filters. CONTIN analyses were taken for the 
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measured intensity correlation functions. Apparent hydrodynamic radii, Rh, of the brushes 

were calculated according to the Stokes-Einstein equation. All the measurements were 

carried out at 25°C. 

Static light scattering (SLS) was measured on a Sofica goniometer using a He-Ne laser 

(λ = 632.8 nm). Prior to the light scattering measurements, the sample solutions were 

filtered 3 times. Five concentrations of the brush solutions were measured at angles in the 

range from 30 o to 150 o. Absolute weight-average molecular weights, Mw, and radii of 

gyration, Rg, were obtained by the analysis of the Zimm-plots. The refractive index 

increments of the BGMA in dioxane and BGMA-POSS in THF at 25 °C were measured 

to be dn/dc = 0.07361 mL/g and 0.08092 mL/g, respectively, using a PSS DnDc-

2010/620 differential refractometer. 

Atomic force microscopy (AFM) measurement in liquid was carried out on a Digital 

Instruments Nanoscope Multimode using anisole as the solvent. The measurements were 

performed at room temperature. 

Atomic force microscopy (AFM) measurement of BGMA-POSS on dry state was 

performed on a Digital Instruments Dimension 3100 microscope operated in tapping 

mode. The micro-cantilever used for the AFM measurements were from Olympus with 

resonant frequency between 284.3 kHz and 386.0 kHz, and spring constant ranging from 

35.9 to 92.0 N/m. Carbon-coated mica substrates were prepared using a Balzers MED 

010 mini-deposition system. Carbon with a thickness of approximately 10 nm was 

deposited on the freshly cleaved mica surfaces by evaporation. The samples were 

prepared by dip-coating from very dilute (0.01 g/L) THF solution of BGMA-POSS onto 

carbon coated mica surface. 

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) 

were measured on a Zeiss, LEO 1530 FESEM. 

Non-stained transmission microscopy (TEM) measurements were performed on a LEO 

922 OMEGA, operated at 200 kV. 

Thermal gravimetric analyses (TGA) were performed on Netzsch 409C, in air 

atmosphere, with the temperature ranging from 25 oC to 65 oC and heat rate of 10 oC/min. 
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Results and discussions 

Synthesis of BGMA 

To prepare the hybrid materials BGMA-POSS, precursor CPBs with poly(glycidyl 

methacrylate) side-chains were first synthesized by grafting from a narrowly distributed 

macro-initiator PBIEM31 (DPn = 1500, PDI = 1.08) using ATRP technique. Scheme 1 

depicts the synthetic process of BGMA. 

 

Scheme1. Synthetic procedure of brush BGMA. 

O
OO

O

Br(
)

p
O

O

O
+ ATRP

p = 1500

O
OO

O
O

O

O

(
)

p m Cl
O

OO

O

Br(
)

p
O

O

O
+ ATRP

p = 1500

O
OO

O
O

O

O

(
)

p m Cl

 
It has been known that the initiating efficiency for the grafting-from by ATRP is low32, 

33. Some measures were taken to improve it. CuCl/CuCl2 catalysts were used instead of 

CuBr, to enhance the initiating process and lower the rate of growth, utilizing the halogen 

exchange phenomenon34. In addition, concentration of monomer was kept very low 

(around 30 wt%). Preliminary polymerizations using HMTETA as the ligand led to 

insoluble materials, suggesting too fast polymerization rate. So, weaker ligand dNbPy 

was used to slow down the polymerization. Due to the existence of very reactive epoxy 

groups in the monomer, the polymerization was carried out at room temperature to avoid 

possible side-reactions at high temperatures. 

Figure 1 shows the 1H NMR spectra of macro-initiator PBIEM and as-prepared BGMA. 

Disappearing of the distinctive peaks from the PBIEM (methylene groups linking the 

ester groups at 4.1 ppm and 4.3 ppm; and methyl groups neighboring bromide groups at 

1.9 ppm), and rising of the specific peaks for BGMA (methylene group linking the ester 

bond and epoxy, at 3.7 ppm and 4.2 ppm; and hydrogens in the epoxy ring, at 2.6 ppm, 

2.8 ppm and 3.2 ppm) indicating the success of the grafting reaction. 

Conventional GPC measurements were performed for the comparison of PBIEM and 

BGMA. Although they can not provide the true molecular weights and polydispersities of 

CPBs, the elution curves can be used to reflect the shift of the molecular weights. Figure 

2 displays the GPC elution curves of PBIEM and BGMA. A small shoulder peak for 
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PBIEM has been reported before, which does not influence the preparation of CPBs, due 

to the very trivial portion in the whole polymer. It can be clearly seen that the mono-

modal peak for BGMA was shifted in the direction of higher molecular weight. There is 

almost no intersection for the two peaks, which suggests the full grafting to the macro-

initiator.  
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Figure 1. 1H NMR spectra of PBIEM and BGMA in CDCl3. 

 
In order to get the true molecular weight and size of the brush BGMA, the solutions of 

GMA in dioxane were subjected to SLS and DLS measurements. Table 1 listed the 

results. The calculated number average molecular weight (Mn) is comparable to the 

weight average molecular weight (Mw), indicating the successful preparation of the brush. 

DLS measurement shows that the apparent hydrodynamic radius of BGMA in dioxane is 

around 57 nm, and the PDI is about 0.24, which is relatively low for brush of such high 

molecular weight. 
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Figure 2. GPC elution curves of PBIEM and BGMA in THF. 

 
Table1. Light scattering measurements of BGMA in dioxane and B-GMA-POSS in THF. 

sample Conver.a DPsc,calc
b 107*Mn,calc

c 107*Mw,sls
d Rg

e 
Rh,app

f

 (PDI) 

BGMA 24.9 % 125 2.70 3.26 104 nm 
57 nm  

(0.24) 

BGMA-POSS NA NA NA 8.12 112 nm 
62 nm 

(0.17) 
 

aMonomer conversion determined by 1H NMR. bCalculated DP of side-chains, DPsc,calc= 

([M]0/[I]0)×conversion. cCalculated from monomer conversion. Mn,calc= (Monomer 

molecular weight×DPsc,calc + 234.5)×DPbackbone.  ddetermined by SLS in dioxane or THF 

solutions for BGMA and BGMA-POSS, respectively. eRadii of gyration measured by 

SLS. fApparent hydrodynamic radii and polydispersities measured by DLS in dioxane or 

THF solutions for BGMA and BGMA-POSS, respectively. 

 
True morphologies of the brush BGMA were recorded by AFM measurements in 

solution. Figure 3a shows the AFM height image of BGMA on mica surface in anisole, a 
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good solvent for BGMA. Clear worm-like structures can be observed, and the average 

length of the brushes is about 130nm, which is shorter than the other brushes prepared by 

the same macro-initiator35, 36. Section analysis in figure 3b indicates that the height of the 

brushes is around 2.5 nm. 

The results illustrated above evidenced that well-defined BGMA brush was 

successfully prepared by grafting the epoxy containing monomer to a long linear macro-

initiator.  
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Figure 3. (a) AFM height image of BGMA on mica in anisole, Z rang 7 nm; and (b) 

section analysis of the cursor shown in (a). 

 
 
Preparation of the hybrid cylinder BGMA-POSS 
 

It has been reported that the highly active epoxy groups can react with mercaptans in 

the presence of base37. Thus, by attaching a mono-thiol functionalized POSS to the epoxy 

containing BGMA brushes, hybrid nano-cylinders were obtained. Scheme 2 shows the 

process for the reaction. 

The as-prepared hybrid can be well dispersed in diluted THF solutions. When it was 

dried, it could not be dissolved again. So it is hard to make 1H NMR measurements for 

such kind of materials. In stead, FTIR measurements of the solution-casted samples on 

NaCl plates were performed. Figure 4 shows the FTIR spectra of the POSS-SH, BGMA 

and hybrid BGMA-POSS. It can be observed that there were almost no absorption around 

3500 cm-1 for the precursor POSS-SH and BGMA, indicating no hydroxyl groups in them. 
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However, a strong and broad peak around 3500 cm-1 was clearly seen for the hybrid 

material BGMA-POSS, indicating the abundance of hydroxyl groups in it, as depicted in 

scheme 2. The spectrum of BGMA-POSS also shows the coexistence of the strong peaks 

attributing to the ester groups (around 1720 cm-1) from the BGMA precursor and Si-O 

(around 1100 cm-1), demonstrating the success of the fabrication of the hybrid materials. 

 

Scheme 2. Procedure for the preparation of nano-hybrid BGMA-POSS. 

 
Light scattering measurements were also carried out for the hybrid BGMA-POSS. 

From the results listed in table 1, we can see the Mw has been significantly increased from 

3.26×107 to 8.12×107 when POSS-SH was attached to BGMA. Apparent rises of Rg and 

Rh,app are also observed. According to the molecular weight values, the grafting efficiency 

of POSS-SH to BGMA was calculated to be 19.2%, which indicates quite low attaching 

efficiency, probably due to the high steric hindrance inside the BGMA brush. 

To see the morphologies of the hybrid materials, non-stained TEM measurements were 

performed for both BGMA and BGMA-POSS. From the image of BGMA (see 

supporting figure S1), no clear objects could be identified, due to the low contrast of the 

pure polymer brush BGMA. Figure 5 displayed the non-stained TEM image of BGMA-

POSS. Clear nano-cylinders can be observed and their lengths are around 150 nm, which 

is a little higher than that of BGMA brushes on mica surface, likely caused by the 

stretching effect of the attached POSS-SH. The increase of the contrast in the TEM 
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measurements provided another proof that the high contrast material POSS-SH 

nanoparticles have been attached to the brushes. 
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Figure 4. FTIR spectra of POSS-SH, BGMA and BGMA-POSS on NaCl plates. 

 

 
Figure 5. Non-stained TEM image of BGMA-POSS on carbon-coated TEM grid. 
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The same sample on the carbon-coated grid for the TEM measurement was directly 

subjected EDX measurement on an aluminum sample holder. In addition to apparent 

peaks for copper, aluminum and carbon from the TEM grid and sample holder, clear peak 

for silicon at 1.75 keV is observed in figure 6. This has qualitatively proved the existence 

of silicon element, thus POSS-SH in the BGMA-POSS hybrid. 

BGMA-POSSBGMA-POSS

 
Figure 6. EDX spectrum of BGMA-POSS on the carbon coated TEM grid. 
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Figure 7. (a) AFM height image of BGMA-POSS on carbon coated mica surface, Z 

range 30 nm; and (b) section analysis of the cursors present in (a). 

 

AFM measurement of the BGMA-POSS supplied more information of the hybrid. 

Figure 7 shows the AFM height image of BGMA-POSS on carbon-coated mica surface. 

It can be seen that some brushes’ length has exceeded 150 nm, suggesting the effect of 
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the attached POSS-SH. Further section analysis discloses that the height of these hybrid 

cylinders is around 14 nm, which is much higher than that of the pure BGMA in solution. 

 

Pyrolysis and resulted materials 

The hybrid material BGMA-POSS was subjected to TGA measurements. Figure 8 

displays the TGA results of pure brush BGMA, POSS-SH, and BGMA-POSS in air. It 

can be found that the degradation temperature for BGMA-POSS hybrid is a little lower 

than those of the precursor BGMA and POSS-SH, probably a result of the epoxy groups’ 

ring-opening and formation of large number of hydroxyl groups. After the heating 

process, almost nothing was left for pure brush BGMA, while some residuals are 

observed for POSS-SH and BGMA-POSS. EDX analysis (see supporting figure S2) of 

these residuals shows the main components of the residuals are silicon and oxygen, 

suggesting their nature of SiO2. According to calculations, if all the silicon element in the 

POSS-SH was turned into SiO2, then the theoretical residual percent in the TGA 

measurement should be 41%. The measured value is only 26%, which is much less than 

the calculated value. This might be because considerable amount of SiO2 dust was 

flushed away by the air flow in the TGA measurement. The same thing could have 

happened to the hybrid BGMA-POSS. The efficiency of the POSS-SH attaching was 

only 9.0% according to the calculation from the residuals percent in TGA measurements, 

which is much lower than that calculated by SLS measurements. A big proportion of 

formed trivial SiO2 dust must have been brought away by the flowing air, which caused 

the discrepancy of the attaching efficiency values. 

 The residual SiO2 was collected for the SEM measurement, as shown in figure 9. 

Loosely distributed layers are observed. More detailed analysis of these materials was 

done by TEM measurement. As is displayed in figure 10, a lot of white dots were found 

on the layered structures, indicating the formation of small pores with diameter 3 to 4 nm, 

due to the degradation of the organic part in the hybrid materials.  
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Figure 8. TGA measurements of BGMA, POSS-SH and BGMA-POSS in air. 

 
 

 
Figure 8. SEM image of the residual SiO2 collected from TGA measurement of BGMA-

POSS in air. 
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Figure 8. TEM image of the residual SiO2 collected from TGA measurement of BGMA-

POSS in air. 

 

Conclusions 

We have demonstrated the successful fabrication of single-molecular nano-hybrid 

cylinders by attaching the thiol-functionalized POSS to matrix CPBs with poly(glycidyl 

methacrylate) as the side-chains. Brush BGMA was first prepared by grafting of GMA 

from a long macro-initiator PBIEM via ATRP. 1H NMR, GPC, DLS, SLS and AFM 

measurements confirmed the well-defined worm-like structures of BGMA brushes. Then 

POSS-SH was covalently attached to BGMA brushes by reacting with the epoxy groups. 

FTIR, DLS, SLS, EDX and TGA measurements evidenced the achievement of the hybrid 

materials BGMA-POSS. Due to the steric hindrance, only 20% of the epoxy groups 

reacted with POSS-SH. Slight size increases for the length and diameter were indicated 

by AFM and non-stained TEM measurements. The residual SiO2 obtained from the 

pyrolysis of BGMA-POSS in TGA measurement showed interesting porous structures, 

which might find its applications in areas such as catalyst carrier or molecular sieves. 
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Supporting information: 
 
 

 
Figure S1. Non-stained TEM of BGMA. 

 

 

 
Figure S2. EDX spectrum of the residual from the TGA measurement of BGMA-POSS 

in air. 
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