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Chapter 1 

Introduction 

1.1 Glycopolymers 

Since the first studies of carbohydrates performed by Emil Fischer in the late nineteenth 

century, natural polysaccharides were found to be omnipresent in every living organism. In 

general, they are of enormous importance due to their appearance as food, biomass and 

raw materials. Despite of this, they play a major role in many recognition effects, which is 

the key to a multitude of biological processes, such as embryogenesis, immune defense, 

microbial and viral infection and cancer metastasis.1, 2  

1.1.1 Synthetical Strategies towards Glycopolymers of Various Architectures 

Glycopolymers, synthetic sugar-containing macromolecules, which display complex 

functionalities similar to those found in natural glycoconjugates, are attracting ever-

increasing interest from the chemistry community due to their role as biomimetic analogues 

and their potential for commercial applications (Figure 1).  
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Figure 1. Number of publications involving glycopolymers from 1993 until 2010 (SciFinder, keyword: 
glycopolymer). 
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The polymerization of carbohydrate-bearing monomers can be carried out by a 

plurality of polymerization techniques, including free-radical polymerization (FRP),3-11 

anionic polymerization,12 cationic polymerization,13 ring-opening polymerization (ROP)14, 15 

ring-opening metathesis polymerization (ROMP)16-20 and controlled/”living” radical 

polymerization (CLRP). The latter include reversible addition-fragmentation chain transfer 

polymerization (RAFT),21-29 atom transfer radical polymerization (ATRP)30-35 and nitroxide 

mediated polymerization (NMP).36-40  

Applying these techniques, a plethora of linear glycopolymers bearing various 

carbohydrate moieties were synthesized and analyzed. Linear glycohomopolymers show an 

interesting behavior in matters of bioactivity and biorecognition towards proteins, but their 

use for applications regarding biosensors or drug delivery is often limited. This tempted 

researchers to synthesize diblock copolymers, in particular amphiphilic diblock copolymers 

containing a hydrophilic glycopolymer block and a hydrophobic block that can self-assemble 

into more complex structures. Emphasis was put in the synthesis of block copolymers 

containing glycopolymers and water-insoluble41-44 or pH-/temperature-responsive 

polymers41, 45-47 which self-assemble into micelles in aqueous solution. As an example, Zhang 

et al.47 described the preparation of a poly(acryloylglucosamine)-block-poly(N-

isopropylacryamide) copolymer which formed micelles above the LCST of PNIPAAm and 

could be crosslinked by an acid-degradable acetyl-type crosslinking agent. These core-

crosslinked micelles were found to be stable against degradation at pH>6, whereas 

hydrolyzation at pH<4 occurred. 

As reported by Ting et al.28 the self-assembly of a poly(lactide)-block-poly(6-O-

acryloyl-galactopyranose) copolymer in aqueous solution led to the formation of micelles 

with pendent galactose moieties covering the surface. By introducing a diacrylate the 

micelles could be crosslinked at the nexus of the copolymer followed by the removal of the 

poly(lactide) core by aminolysis to form hollow poly(6-O-acryloyl-galactopyranose) 

nanocages. 

Adjusting the block length ratio of the hydrophilic and hydrophobic blocks can tune 

the morphology of the copolymer assemblies from micelles to vesicles. By this, 

copolymerizing glucosyloxyethyl methacrylate and diethyleneglycol methacrylate48 as well as 

butadiene and styrene and subsequent thiol-ene reaction with a thiol-sugar49 led to 
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glycopolymer vesicles. In the latter case a remarkable simple and efficient route to 

glycopolymer vesicles by the use of commercial available compounds in absence of toxic 

transition metal ions is reported (Figure 2). 

 

Figure 2. Synthesis of a glycopolymer vesicle by copolymerizing butadiene and styrene and subsequent thiol-
ene chemistry.49 

Beside the self-assembly of glycopolymer-containing amphiphilic copolymers, other 

synthetic strategies were performed to yield globular glycomacromolecules such as 

glycostars or dendrimers. Stars with 3, 4, 7 and 25 glycopolymer arms were prepared using 

the core-first method, either RAFT polymerization or ATRP and multiple initiator group 

bearing compounds such as modified β-cyclodextrin or silsesquioxane nanoparticles,26, 30, 50-

53 whereas in dendrimer synthesis only mono- or oligosaccharide units were attached to the 

dendritic surface in the final synthetic step.54-58  

In contrast to the efforts to achieve perfectly branched glycodendrimers, more facile 

synthetic strategies were performed to have access to branched and hyperbranched 

glycopolymers. Self-condensing vinyl copolymerization (SCVCP) of an acrylic or methacrylic 

initiator-monomer and glucose-containing glycomonomer,59, 60 ring-opening multibranching 

polymerization of anhydro carbohydrates61 and the ‘Strathclyde method’62 have been used 
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to create branched glycopolymers. SCVCP was also applied to modify the chemical 

functionalities of solid surfaces. Muthukrishnan et al. reported the synthesis of highly 

branched polyglycomethacrylates from the surface of silicon wafers, that were 

functionalized with covalently attached initiators.63 Furthermore Gao et al. grafted linear and 

hyperbranched glycopolymers from the surface of multiwalled carbon nanotubes (MWCNTs) 

(Figure 3).64 After deprotection of the sugar moieties, water-soluble MWCNTs with high 

density of hydroxyl groups could be achieved. 

 

Figure 3. (Left) Synthetic strategy for grafting hyperbranched glycopolymers from the surface of multiwalled 

carbon nanotubes by SCVCP. (Right) TEM and SFM images of of the prepared glycopolymer tubes. The 

hyperbranched polymer shell is highlighted.64 

 

1.1.2 Chemical Glycobiology 

The lock-and-key interactions between carbohydrates and lectins are highly specific, but 

usually weak with dissociation constants Kd ranging from 10-3 to 10-6 M. By introducing 

glycopolymers, these interactions can be strongly increased due to the multivalent effect of 

clustered saccharides. The importance of multivalency of carbohydrate chains in 

carbohydrate-lectin interactions has been well cited as the “glyco-cluster effect”.65-68 

Molecular recognition capabilities of glycopolymers can be estimated by measuring the 
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strength of their interactions with appropriate lectins. For this purpose a wide variety of 

methods, such as hemagglutination inhibition assay (HIA) and surface plasmon resonance 

(SPR) spectroscopy can be performed. In both cases the basic principle is based on the 

formation of isolated complexes between lectins and the ligand.69 Interactions between 

glycopolymers and lectins are influenced by the density of the sugar molecules as well as the 

rigidity, molecular weight and architecture of the polymer. Linear carbohydrate-bearing 

polymers are the most widely tested glycopolymers regarding their ability to bind towards 

lectins. As an example, Ladmiral et al. clicked different ratios of azido-sugar 

(galactose/mannose) derivatives to the polymer backbone bearing alkyne functional groups. 

Quantitative precipitation experiments with these copolymers were carried out and 

displayed that the average number of Concanavalin A (ConA) bound to the polymers 

increased with increasing mannose content in the polymer.31 Boyer and Davis reported that 

glucosamine-based glycopolymers interact with ConA, while galactosamine-based polymers 

were not able to form a cluster, confirming the specificity of the interactions between the 

polymer and lectin.70 Miyamoto et al. investigated the interaction of wheat germ agglutinin 

(WGA), which is known to specifically bind to acetylglucosamine, and a acetylglucosamine-

carrying polyvinyl ether-poly(isobutyl vinyl ether) block copolymer.71 They reported a 

significant increase in binding affinity compared to acetylglucosamine and its oligomers, 

which can be attributed to multivalent interactions. Furthermore, the used block copolymer 

exceeded the glyco-homopolymer in binding strength, which can be ascribed to the 

formation of micellar aggregates of the diblock in aqueous solution and therefore a further 

increase of the multivalency effect. Thus, micellar aggregates and other complex 

architectures can display a much higher binding affinity towards binding lectins caused by an 

increased surface area of spherical and three dimensional structures.  

As lectins are ubiquitously present on cell surfaces and take place in recognition and 

binding events (Figure 4), the incorporation of ligands such as carbohydrates or similar 

targeting compounds can lead to an increased cellular uptake of desired drugs or imaging 

tools via receptor-endocytosis.72-76 Targets for glycopolymeric drugs are among others 

Alzheimer´s disease, influenza and some cancers.  

The multiplicity of influenza viruses and the high number of fatalities that were 

caused by them led to a continuous search for effective treatments. In general, viral 
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infection is a multistep process consisting of the entry of the virus in the cell, release of the 

RNA into the cytoplasm, transport of the RNA into the nucleus and replication of the virus.  

The influenza virus enters the cell via endocytosis by binding to N-acetylneuramic acid 

residues on the cell via lectin structures known as hemagglutinin fingers. A molecule that 

could prevent the binding of the virus to the cell in the first place could therefore become a 

potent prophylactic against influenza. As the interaction of influenza hemagglutinin with 

monovalent sialosides is weak,77 the introduction of multivalent ligands could be a promising 

starting point. Matrosovich et al. reported the first example of an influenza hemagglutinin 

inhibitor based on a glycopolymer.78 By the reaction of poly(4-nitrophenylacrylate) with 

amino-terminated monosialosides, they were able to prepare a series of polymeric sialosides 

with varying ratio of carbohydrate within the copolymer (Figure 5). Little or no inhibition was 

detected for monovalent sialosides or glycopolymers carrying only few units of 

carbohydrates (  5̴%). 

 

Figure 4. Glycoconjugate biosynthesis and cell surface recognition. Exogenously supplied monosaccharides are 
taken up by cells and converted to monosaccharide “building blocks” inside the cell. In the secretory 
compartments the building blocks were assembled into oligosaccharides bound to a protein scaffold. Once 
expressed in fully mature form on the cell surface, the glycoconjugates can serve as ligands for receptors on 
other cells or pathogens. Chemical tools can be used to inhibit or control any stage of this process.79 
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Figure 5. Polymeric multivalent sialosides prepared by Matrosovich et al.78 

Increasing the sialoside density from 10 to 30% indicated a maximum level of 

inhibition at intermediate levels of sialylation (20%). In the case of a low density of 

carbohydrates the binding of one residue does not increase the likelihood of a subsequent 

group´s binding due to the distance of the sugars within the copolymer. However, a high 

content of carbohydrates may limit the binding as the steric bulk of the groups overcrowd 

one another. Furthermore, bulky or charged groups on the comonomer have the tendency 

to reduce the inhibition effect.80, 81 

Acquired immune deficiency syndrome (AIDS) is another viral disease that became a 

major international pandemic. In this case anionic glycopolymers found their way to be 

considered as HIV treatments. Anionic polysaccharides have been found to hinder the 

binding of the virus to the cell and therefore the penetration through the cell membrane.82 

Yoshida et al. prepared a sulfated maltoheptose-displaying methacrylic glycopolymer that 

was able to inhibit the infection of cells with the human immunodeficiency virus (HIV).83 The 

inhibitory effect could be further increased by copolymerizing the glycomonomer with 

methyl methacrylate (MMA) yielding a maximal effect at an incorporation of 80% MMA. At 

this composition the prepared glycomonomer displayed an inhibition effect that is still 2 

orders of magnitude worse than a commonly used anti-retroviral, azidothymidine. But due 

to the reduced cytotoxicity, it might still be a potential treatment against HIV in the future. 

Beside the use of glycopolymers to inhibit the binding of viruses to cells, 

carbohydrate-displaying polymers find application in glycopolymeric drug-delivery. The main 

problem in drug treatment in vivo is the occurrence of undesirable side effects due to not 

sufficient target selectivity or poor pharmacokinetics requiring large doses or regular uptake. 

This is especially important for anti-tumor drugs, as they are usually toxic and therefore their 

administration must be accurately controlled in order to not harm healthy cells. To 
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accommodate these aspects, Ringsdorf introduced a simple model for the targeted drug 

delivery, called the “magic bullet” method (Figure 6).84  

 

Figure 6. Ringsdorf model for polymeric drug delivery.84 

For this, a targeting unit, solubilising agent and a cleavable drug are attached to a 

polymer backbone. As glycopolymers bearing water-soluble carbohydrate moieties, they 

may act both as solubilising agent and targeting ligand, as they can interact specific with 

lectins on the surface of cells. Based on this model, Hopewell et al. prepared a polymeric 

anticancer conjugate, composed of an N-(2-hydroxypropyl)methacrylamide (HPMA) 

copolymer backbone and pendant doxorubicin (DOX) linked via a peptide spacer (PK2, Figure 

7).85 Furthermore, galactose residues are present to facilitate liver targeting. In general, 

doxorubicin is a powerful chemotherapy drug but limited in use due to the off-target 

cardiotoxicity.  
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Figure 7. Structure of doxorubicin-conjugated polymer PK2.85 
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A preclinical study in a rat model was used to determine acute and cardiovascular 

toxicities of the administrated PK2 and free DOX, which were monitored by weight loss and 

cardiac output respectively. Animals received intravenous doses > 2 mg / kg of free DOX 

displayed acute toxicity and significant weight loss 8-12 weeks after administration, whereas 

animals treated with PK2, containing an equal amount of DOX, gained weight. 3 mg / kg of 

injected free DOX lead to a significant decrease in cardiac output after 12 weeks. None of 

the animals survived until the 12 week end-point when given 4 mg / kg of free DOX, whereby 

all animals survived the treatment with PK2. The drug-glycopolymer conjugate was also 

administrated to patients in a Phase I clinical trial but was found to be unsatisfactory for its 

planned target.  

These are just few of the examples in which glycopolymers have been investigated 

for therapeutic development and delivery. But still extensive research is required if 

glycopolymer-based therapeutics are to reach the clinic. 

Beside their use as therapeutic compounds, glycopolymers find application in cellular 

imaging. Up to now, mainly carbohydrate capped quantum dots (QD) have been prepared to 

create fluorescent materials for cellular imaging. Quantum dots are versatile inorganic 

probes with unique photophysical properties, including narrow and size-dependent 

luminescence with broad absorption spectra. By immobilization of carbohydrate-containing 

thiols on the QD surface, researchers obtained access to mannose-, galactose-, 

galactosamine- and acetylglucosamine-displaying luminescent particles covered with 

carbohydrate unimers,86-88 whereas Sun et al. synthesized glycopolymer-coated QDs utilizing 

the strong binding of a biotin-terminated lactose-bearing polymer with avidin-coated QDs.89 

In the large majority of carbohydrate functionalized quantum dots, only carbohydrate 

unimers are attached to the material surface. However, there are examples that sugar-

displaying fluorescent particles have potential to be considered as cellular imaging probes. 

Niikura et al. reported the synthesis of mannose-, glucose-, galactose-, and 

acetylglucosamine-covered QDs.87 Binding experiments of the sugar-containing fluorescent 

particles to HeLa cells revealed a selective binding of acetylglucosamine-diplaying particles, 

indicating that this moiety is crucial for binding to the cells. The binding of 

acetylglucosamine-diplaying QDs could be clearly visualized by sliced confocal-laser 

microscopy images, showing QDs surrounding the nuclei (Figure 8A). Figure 8B-D shows 
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HeLa cells after staining with an endoplasmic reticulum (ER) marker, nucleus marker and 

QDs. These images show that the ER marker (green) and the QDs (blue) localized in the same 

area within the cells. This suggests that the QDs accumulated in the ER due to the successful 

recognition of the carbohydrate moieties by corresponding lectins in the ER.  

 

  

Figure 8. Comparison of subcellular distribution between QDs and the ER marker. A) Three-dimensional 
subcellular distribution of QDs in HeLa cells. Cross sections along the yellow and red lines are shown. B) 
Fluorescene image of the ER marker (green) and nuclei (red). C) Fluorescence image of the nuclei (red) and QDs 
(blue). D) Fluorescence image of the QDs (blue) and ER marker (green). Images were obtained with a confocal-
laser microscope. Scale bars = 20µm.87 
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1.2 Surface Modification of Solid Substrates 

The surface modification of particles can lead to polymer brushes, ultrathin polymer coatings 

consisting of polymer chains tethered with one chain end to a solid substrate. One can speak 

of a polymer brush if the grafting of the chains is sufficiently dense, i.e. when the distance 

between neighboring grafting points is much smaller than the linear dimensions of the 

polymer chains. In general, polymer brushes can be prepared by three approaches: “grafting 

to”, “grafting from” and “grafting through”. The “grafting to” approach involves the 

attachment of prior synthesized polymer chains to substrates via physisorption90-94 or 

chemisorption.95-99 As grafted chains on the surface increase the steric hindrance and 

therefore hamper the diffusion of other polymer chains to the reactive sites of the particles, 

formation of dense polymer brushes via “grafting to” is often limited.  

In the “grafting from” approach, the polymerization is initiated from surface-bound 

initiators. Even if conventional free radical polymerization100-104 is often used to prepare 

polymer brushes, most of the polymer brushes prepared by a “grafting from” approach are 

prepared using surface-initiated controlled radical polymerization methods.105 These 

methods are of particular interest as they allow control over brush thickness, composition 

and architecture of the polymer brushes.  

For the “grafting through” approach, double bonds on the surface must be exploited. 

Growing polymer chains in solution copolymerize with surface bound double bonds during 

the polymerization. This approach is commonly used for the surface modification of 

poly(divinylbenzene) microspheres.106 The different approaches are depicted in Figure 9. 

In the following chapters of this thesis glycopolymer chains were attached to solid 

substrates by various grafting approaches and polymerization techniques. Atom transfer 

radical polymerization and reversible addition fragmentation chain transfer polymerization 

were performed to “graft from” spheres and “graft through” surface bound vinyl bonds, 

while a “grafting to” approach was performed via thiol-ene reactions of thiol-bearing 

glycopolymers and surface functionalized substrates. The theoretical basics of ATRP, RAFT 

polymerization and thiol-ene reaction will be described hereafter.  
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Figure 9. Synthetic approaches for the preparation of polymer brushes. “Grafting to”: polymer brushes grown 
by (A) physisorption of a diblock copolymer and (B) chemisorption via reaction of end-functionalized polymers 
and functional groups on the substrate surface. “Grafting from”: (C) polymer brushes grown via surface 
initiated polymerization. “Grafting through”: (D) during polymerization the reactive chain end copolymerizes 
with surface-attached double bonds. 

1.2.1 Atom Transfer Radical Polymerization (ATRP) 

The invention of controlled/”living” radical polymerization methods depicted a powerful 

alternative to living polymerizations conducted via an ionic, coordination or ring-opening 

mechanism due to the tolerance regarding functional groups and impurities. ATRP is based 

on the formation of a rapid dynamic equilibrium between a small amount of growing free 

radicals and a large amount of the dormant species. The low overall concentration of free 

radicals ensures a very low rate of irreversible termination compared to the propagation 

rate. Furthermore, the exchange rate between radicals and dormant species must be faster 

than the rate of propagation to enable an equal probability of growing for all chains. In ATRP 

the dormant chains are alkyl halides, whereas free radicals are generated via a catalyzed 

reaction as shown in Figure 10.  

The radicals are generated through a reversible redox process catalyzed by a 

transition metal complex which undergoes a one-electron oxidation with simultaneous 

abstraction of a halogen atom (X) from a dormant species (R-X). Polymer chains grow by the 

addition of the intermediate radicals to monomers similar to conventional radical 

polymerization. Termination reactions mainly occur through radical coupling and 

disproportionation.  

ATRP is a multicomponent system, consisting of the monomer, initiator with 

transferable halogen and a catalyst, composed of a transition metal species and ligand. 
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Many parameters, such as ligand to transition metal ratio, type of ligand, counterion, 

temperature, solvent or initiator, influence the performance of ATRP.107 

 

Figure 10. General mechanism for Atom Transfer Radical Polymerization. R-X: alkyl halide; Ln: Ligand; Mt: 
transition metal. 

1.2.2 Reversible Addition Fragmentation Chain Transfer Polymerization (RAFT) 

Beside ATRP, reversible addition fragmentation chain transfer polymerization (RAFT) is 

another prominent type of CRP. RAFT polymerization has proven to be a versatile tool, as 

they are less oxygen sensitive and are compatible with a wider range of monomers 

compared to ATRP. A further big advantage is the absence of heavy metals which makes 

polymers prepared by RAFT polymerization interesting for biomedical applications. RAFT 

consists of the introduction of a small amount of dithioester with a general structure of Z-

C(=S)S-R in a conventional free-radical system. The transfer of the chain transfer agent 

between growing radical chains, present at very low concentrations, and dormant species, 

present at higher concentrations, will regulate the growth of the molecular weight and limit 

termination reactions. The mechanism of RAFT polymerization is depicted in Figure 11.108 
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Figure 11. General mechanism for Reversible Addition Fragmentation Chain Transfer Polymerization. 

After the decomposition of a radical initiator, the generated radicals react with the 

monomer. This growing polymer chain adds to the reactive carbon sulfur double bond of the 

CTA to form a radical intermediate. The fragmentation of the intermediate occurs reversibly 

either towards the initial growing chain or to free the re-initiating group (R) and a macro 

RAFT agent. By reacting with monomers, the R group starts a new polymer chain, which will 

propagate or react back on the macro-CTA. After the complete consumption of initial CTAs, 

only macro-CTAs are present in the reaction medium (main-equilibrium). In here, a rapid 

exchange between active and dormant species ensures equal probabilities for all chains to 

grow leading to narrow molecular weight distributions. Nevertheless, with the 

polymerization being of a radical nature, termination reactions cannot be fully suppressed. 
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1.2.3 Thiol-ene reaction 

The hydrothiolation of a carbon carbon double bond, the so-called thiol-ene reaction, has 

been known for over 100 years109 and still finds application due to its facile and versatile 

process. In general, almost any thiol can be employed, including highly functional species, 

and a wide range of enes serve as suitable substrates. The thiol-ene reaction can be 

performed under radical conditions, involving a photoinitiator or thermal initiator. Under 

such conditions it proceeds like a typical chain process with initiation, propagation and 

termination steps (Figure 12, left). Propagation is a two step process consisting of the direct 

addition of the thiyl radical across the C=C double bond towards an intermediate carbon-

centred radical followed by chain transfer to another thiol molecule to give the thiol-ene 

addition product with anti-Markovnikov orientation. Simultaneously a new thiyl radical is 

formed. 

Beside the radical mediated thiol-ene reactions, hydrothiolations can be performed 

under mild base or nucleophilic catalysis. For this only enes with an electron deficient C=C 

bond, e.g. (meth)acrylates, can be used, but given the large number of commercially 

available activated enes, there is still a remarkable application field for the synthesis of novel 

materials. The base/nucleophile-mediated addition to an activated ene can also be 

described as a thiol-Micheal addition. Reaction of a thiol with a base results in deprotonation 

of the thiol to the corresponding thiol anion that subsequent adds into the activated C=C 

bond at the electrophilic β-carbon forming an intermediate carbon-centred anion (Figure 12, 

right). The anion abstracts a proton from another thiol molecule yielding the anti-

Markonikov thiol-ene product.110 
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Figure 12. General mechanism for (left) radical and (right) base-mediated thiol-ene reaction. 

 

1.3 Objective of this Thesis 

The motivation of this work was to broaden the scope of glycopolymer-covered spherical 

particles with respect to their interaction towards carbohydrate-binding proteins and 

potential applications in biomaterial science. One focus of this thesis was the generation of 

novel nano- and micrometer sized glycopolymer-grafted spheres by applying various grafting 

techniques, whereby controlled radical polymerization methods, namely reversible addition 

fragmentation chain transfer (RAFT) and atom transfer radical polymerization (ATRP), were 

utilized in order to synthesize glycopolymers. However, the synthesis of these particles was 

not the sole objective of this thesis, and the interactions of these particles with various 

lectins were also investigated, in order to understand the effect of the specific carbohydrate 

that was incorporated into the polymer chain, and the architecture of the polymer chain 

itself. Furthermore, carbohydrate-protein interactions may facilitate the cellular uptake of 

carbohydrate functionalized particles within the cytoplasm or even nucleus, and such 

particles may find application as cellular imaging probes. 
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Chapter 2 

Overview of this Thesis 
 

This thesis contains four publications which are presented from chapter 3 to 6. 

 

Glycopolymer-displaying nanospheres were prepared via the combination of 

emulsion polymerization and conventional or controlled radical polymerization to create a 

crosslinked core and glycopolymer shell, respectively. These particles show a high affinity to 

adsorb wheat germ agglutinin (WGA) and can act as carriers for catalytically active gold 

nanoparticles (Chapter 3). 

By applying various grafting approaches glycopolymer chains were densely grafted 

from poly(divinylbenzene) microspheres to yield galactose-displaying particles. These 

spheres show a selective binding towards Ricinus communis agglutinin (Chapter 4). 

Hyperbranched glycopolymer-displaying microspheres were prepared via self- 

condensing vinyl copolymerization (SCVCP). The incorporation of branch points directly 

affects the binding affinity of wheat germ agglutinin towards the glycopolymer-grafted 

particles (Chapter 5). 

Magnetic, fluorescent glycopolymer-grafted silica particles were prepared via the 

combination of sequential RAFT polymerization and thiol-ene chemistry. These carbohydrate 

functionalized particles enabled the intranuclear imaging of lung cancer cells (Chapter 6).  

 

In this chapter, an overview of the results obtained within this thesis is presented.  
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2.1 Glycopolymer-Grafted Polystyrene Nanospheres 

This project focused upon the preparation of sugar-containing colloidal spherical polymer 

brushes by two different polymerization approaches. Photopolymerization and ATRP were 

used to attach glucose- and acetylglucosamine-displaying chains to colloidal polystyrene 

spheres by a “grafting from” approach. The synthesis of these particles was carried out in 

three steps: PS core particles were prepared by a conventional emulsion polymerization 

followed by the incorporation of an initiator and subsequent polymerization of the 

glycomonomer. A representative example for the synthesis of acetylglucosamine-displaying 

spheres is depicted in Scheme 1. 

Scheme 1. Synthesis of the glucosamine-containing polymer brushes. After deprotection of the sugar moieties, 
hydrophilic sugar particles were displayed. 

 

In contrast to conventional radical polymerization, the surface initiated ATRP ensured 

the growth of well-defined glycopolymer chains from the particle surface (PDI = 1.12). Figure 

1 shows FESEM images for pure PS-DVB particles (A) and glycopolymer-grafted brushes (B), 

respectively. The rough surface and the increase in diameter can be attributed to the grafted 

glycopolymer chains. Furthermore, the successful attachment of glycopolymer chains was 

confirmed by IR-spectroscopy. The “grafting from” approach enabled a high grafting density 

of 0.54 chains per nm2. 
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Figure 1. SEM images of (A) pure PS-DVB particles and (B) PS-DVB particles functionalized with protected 
glycopolymer brushes. TEM images of (C) immobilized gold nanoparticles and (D) WGA on glucosamine-
displaying spheres. (E) UV/vis spectrum of catalytic reduction of p-nitrophenol in the presence of gold 
nanocomposite particles and NaBH4. (F) Biacore sensograms of the interaction between linear poly-(N-
acetylglucosamine) chains (top curve), glycopolymer brushes (middle curve) and N-acetylglucosamine sugar 
unimer (bottom curve) with WGA. 

Deprotection of the sugar moieties yielded particles with a high density of hydroxyl 

groups that could be used to stabilize gold nanoparticles to create carriers for catalytically 

active gold nanoparticles. The addition of HAuCl4 to an aqueous solution of sugar containing 

polymer brushes and subsequent reduction of the AuCl4- ions by NaBH4 led to the formation 
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of gold nanoparticles with an average diameter of 6.3 nm within the glycopolymer shell 

(Figure 1C). The catalytic reduction of p-nitrophenol in the presence of gold nanocomposite 

particles was successfully monitored by UV/vis spectroscopy (Figure 1E). The reaction 

follows first order rate kinetics with regard to the p-nitrophenol concentrations as the 

concentration of sodium borohydride was adjusted to largely exceed the concentration of p-

nitrophenol. Thus, a linear relation between ln(ct/c0) versus time t has been obtained as 

shown in the inset of Figure 1E. This demonstrates the capability of the glycopolymer-

displaying polymer brushes to act as biocompatible carriers for catalytically active gold 

nanoparticles. 

Investigation of the recognition properties of N-acetylglucosamine chains towards 

lectins via turbidity measurements revealed a selective binding towards the lectin wheat 

germ agglutinin (WGA) whereas no binding to bovine serum albumin (BSA) or peanut 

agglutinin (PNA) could be observed. Surface plasmon resonance (SPR) spectroscopy was 

performed to investigate the association behavior of linear poly(N-acetylglucosamine), 

glycopolymer brush and N-acetyl-glucosamine sugar unimer (Figure 1 F). In comparison to 

linear glycopolymers, spherical brushes show a reduced adsorption to the immobilized 

lectin, which can be attributed to  the fact that the sugar residues next to the core are not 

available to bind the protein, due to steric hindrance, as well as the reduction of the total 

mass of sugar-units due to introduction of the polystyrene core. Nevertheless both show 

adsorptions magnitudes higher than the unimer.  

Addition of WGA to the polymer brushes in solution led to the fast formation of large 

aggregates, whereby UV/vis spectroscopy measurements revealed that 1 mg of 

glycopolymer brush is able to precipitate 0.5 mg of wheat germ agglutinin. The lectin-

polymer brush agglomerates are depicted in Figure 1D. 
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2.2  Surface Modification of Polymeric Microspheres using Glycopolymers 

for Biorecognition 

Research on core-shell microspheres covered with functional material is a topic of intense 

current research interest. Among others, cross-linked microspheres based on 

poly(divinylbenzene) (PDVB) are highly attractive because of their residual double bonds on 

the surface of the particle which can be easily used to attach single molecules or polymer 

chains to the surface by various grafting approaches. The aim of this project was the 

synthesis of two glycopolymer-containing core-shell microspheres by grafting either 6-O-

methacryloyl mannose (MAMan) (Scheme 1, path a) or 6-O-methacryloyl-1,2;3,4-di-O-

isopropylidene-galactopyranose (MAIGal) (Scheme 1, path b) from the particle surface. In 

case of MAIGal, three different grafting approaches were utilised, with special emphasis 

being put on the resulting grafting densities.  

 

Scheme 1.  Synthesis of glycopolymer-grafted DVB microspheres. 

 
 

Without the use of protecting group chemistry, RAFT polymerization was the 

polymerization technique of choice to yield well-defined unprotected PMAMan 

glycopolymers. Applying the “grafting through” approach, PDVB microspheres covered with 

a dense shell of mannose-displaying glycopolymer were achieved. Glycopolymer chains were 

found to be densely grafted through the microspheres (0.43 chains per nm2 surface area). 

Scanning electron microscopy (SEM) was used to visualize the particles before (Figure 1, left) 

and after (Figure 1, right) grafting glycomonomer from the surface. A much rougher surface 

can be observed in the case of the mannose covered microspheres. 
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Figure 1. Scanning electron microscopy images of blank (left) and MAMan grafted (right) microspheres. 

Lectin interaction studies of mannose-containing polymer revealed no binding 

towards a series of lectins, suggesting that the esterification of the 6-carbon position of the 

mannose molecule to form the glycomonomer inhibited its binding to these proteins. 

Because of the loss of binding ability, we investigated the use of another glycomonomer 

based on a protected galactose unit for the preparation of sugar-containing microspheres. 

For the preparation of the galactose covered spheres we performed three different 

approaches to affix glycopolymer chains to the particle surface, whereby RAFT 

polymerization has been used to prepare the glycopolymer chains. Approach 1 was 

conducted in a similar way to the preparation of the mannose containing microspheres. This 

“grafting through” technique yielded galactose-displaying particles with a grafting density of 

0.22 chains per nm2. Approach 2, a “grafting from” approach, consisted of prior modification 

of the particle surface by attaching the chain transfer agent. The calculation of the grafting 

density led to a surface coverage of 0.35 chains per nm2, a 1.6 times higher grafting density 

compared to the first approach. In Approach 3, a strict “grafting onto” technique was used. 

The use of thiol-ene chemistry showed the lowest grafting density (0.20 chains per nm2). 

After deprotection of the sugar moieties, the galactose-displaying polymer displayed 

selective binding towards Ricinus communis agglutinin (RCA120) whereas no binding to 

Concanavalin A (Con A) or Bovine serum albumin (BSA) occurred. UV/vis spectroscopy 

measurements revealed that each grafted glycopolymer chain is capable of binding to 0.7 

molecules of RCA120. The particles were found to have a superior binding affinity towards 

RCA120 in comparison to microspheres covered with galactose unimers. Even though 
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galactose units next to the core are not accessible for binding, the overall amount of bound 

lectin is four times higher. SEM images of the galactose- and the lectin-galatose-covered 

microspheres can be seen in Figure 2. 

 

Figure 2. SEM images of galactose-grafted microspheres (left) and protein-microsphere agglomerates (right). 

2.3 Hyperbranched Glycopolymer-Grafted Microspheres 

The scope of this project was to create core-shell particles covered with three-dimensional 

glycopolymer structures to investigate the influence of the glycopolymer architecture 

towards the binding affinity to WGA. The synthesis of highly branched glycopolymers was 

achieved by atom transfer radical polymerization (ATRP) of the methacrylic AB* initiator-

monomer (inimer) 2-(2-bromoisobutyryloxy)ethyl methacrylate (BIEM) and the protected 

methacrylic acetylglucosamine-displaying glycomonomer 1-methacryloyloxyethyl 2-

acetamido-2-deoxy-3,4,6-triacetyl-glucopyranoside (tetAcGlc) via self-condensing vinyl 

copolymerization (SCVCP) as depicted in Scheme 1.  

Scheme 1. General Route towards branched glycopolymers via SCVCP. 
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Prior to the surface grafting of hyperbranched glycopolymers to PDVB microspheres, 

the formation of ungrafted hyperbranched glycopolymers of different glycomonomer-to-

inimer ratios (γ) via SCVCP was investigated. First-order kinetic plots of the prepared 

branched glycopolymers revealed a decreasing apparent rate of polymerization kapp with 

increasing content of BIEM in the feed (Figure 1). Although more initiator groups were 

introduced with decreasing γ, the lower kapp indicates a fast formation of macroinimers but 

slow condensation of these macroinimers with each other. 

The dependence of the Mark-Houwink exponent α on the theoretical fraction of 

branch points is depicted in Figure 2. The decrease of the Mark-Houwink exponent α from γ 

= 15 to γ = 1 confirms the increase of branch points with increasing amount of BIEM in the 

feed. 

 

Figure 1. First-order kinetic plots for the SCVCP of BIEM and tetAcGlc at different comonomer ratios γ. Filled 
squares: γ = 15, filled triangles: γ = 5, open squares: γ = 2 and filled circles: γ = 1. The ATRP of linear PtetAcGlc 
with a monomer to initiator ratio [tetAcGlc]0/[EBIB]0 = 100 is given for comparison (open circles). 
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Figure 2. Dependence of the Mark-Houwink exponent α on the comonomer ratio γ. Filled square: mixture of 
linear PtetAcGlc with different molecular weights. 

The successful pathway towards hyperbranched glycopolymers was adapted to 

create core-shell particles consisting of PDVB microspheres onto which hyperbranched 

polymers have been grafted (Scheme 2, path b). Furthermore, microspheres covered with 

linear acetylglucosamine-displaying polymer have been prepared via ATRP (Scheme 2, path 

a) to compare the different particles in terms of surface coverage and binding affinity 

towards WGA.  

Scheme 2. Synthesis of linear (path a) and hyperbranched (path b) glycopolymer covered microspheres. 

 

After elemental analysis of the different polymer grafted spheres to determine the 

oxygen content, one can calculate the amount of grafted copolymer. It was found, that an 

increase in incorporated inimer, which results in more compact and branched structures, 

directly leads to an increase in particle coverage (1.6 – 2.4 wt.-%).  
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Deprotection of the sugar moieties led to acetylglucosamine-displaying spheres that 

could be easily dispersed in water and therefore enabled the investigation of the binding 

behavior of these sugar-covered microspheres towards the lectin WGA. UV/vis spectroscopy 

measurements revealed that with increasing content of BIEM in the copolymer, the amount 

of adsorbed protein per mg of grafted acetylglucosamine on the sphere increased. The 

incorporation of approximately 50% of the hydrophobic linker BIEM for γ = 1 led to an 

increase in adsorption of 26% compared to the branched glycopolymer with γ = 5 and 16% 

compared to the linear glycopolymer grafted particles. 

SEM images of the ungrafted and grafted microspheres are shown in Figure 3. After 

adsorption of wheat germ agglutinin, more organic matter covered the spheres, and marked 

agglutination of the spheres is clearly visible. 

 

Figure 3. SEM images of (left) ungrafted and glycopolymer grafted (γ = 1) microspheres (middle) before and 
(right) after addition of wheat germ agglutinin. 

 

2.4 Magnetic, Fluorescent Glycopolymer Hybrid Nanoparticles for 

Intranuclear Optical Imaging 

This project comprised the synthesis of fluorescent, magnetic galactose-displaying core-shell 

nanospheres by grafting a glycocopolymer consisting of 6-O-methacryloyl-galactopyranose 

(MAGal) and 4-(pyrenyl)butyl methacrylate (PyMA) onto silica-encapsulated iron oxide 

particles (Scheme 1). The surface modification of functional particles with carbohydrates 

should not only improve the biocompatibility and solubility, but also have an influence on 

the cellular uptake of the particles. 
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Scheme 1. Synthesis of glycopolymer-grafted magnetic, fluorescent nanoparticles. 

 

To create a fluorescent glycopolymer that can be attached onto silica spheres, we 

performed sequential RAFT polymerization of a protected glycomonomer and a fluorescent 

pyrene-carrying methacrylate, followed by the deprotection of the sugar moieties under 

acidic conditions. After aminolysis of the RAFT agent, the formed thiol end group is able to 

react with the double-bond bearing silica particles via Michael addition. The successful 

attachment of the fluorescent glycocopolymer chains to the surface of the magnetic silica 

spheres was confirmed by UV/vis spectroscopy measurements and vibrating sample 

magnetometry (VSM, Figure 1). The resulting magnetization curves indicate that neither the 

encapsulation of the maghemite particles with silica nor the grafting of glycocopolymer 

chains had a significant influence on the superparamagnetic properties. 

 

Figure 1. (Left) UV/vis absorption and fluorescence spectra of glycocoplymer-grafted nanospheres. (Right) 
Magnetic hysteresis curves of γ-Fe2O3 nanoparticles (solid line), silica encapsulated γ-Fe2O3 particles (dotted 
line) and glycocoplymer grafted nanospheres (dashed line). 
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The incorporation of pyrene into the core-shell particles allows their localization 

within cells by microscopy experiments as pyrene is a fluorescent dye with a high quantum 

yield and is stable against photobleaching. In fact the particles could be localised in cells 

(adenocarcinomic human alveolar basal epithelial cells (A549)) using both epifluorescence 

and confocal microscopy. Moreover, epifluorescence microscopy images (Figure 2, A-D) 

showed the preferential location of the nanospheres next to and within the cell nucleus, the 

membrane of which was stained with anti-NUP98-FITC (Figure 2 C and F). Confocal 

microscopy experiments confirmed the presence of the glycocopolymer grafted magnetic 

particles within the cell nucleus (Figure 2, E-G); confocal z-stacks proved that the particles 

were indeed located inside the cells and not stacked to the cell surface. 

 
Figure 2. Microscope images of A549 cells exposed to glycopolymer-grafted nanoparticles: (A-D) 
epifluorescence microscope, (E-G) confocal microscope.  (A) transmission image of cells, (B, E) merged 
fluorescence images, (C, F) fluorescence image that exclusively shows the green light emitting parts (nuclear 
membrane) and (D, G) blue (pyrene) emitting part (glycocopolymer covered nanospheres). 

As both glycoconjugates and carbohydrate-binding proteins are omnipresent in the 

cytoplasm and the nucleus, the galactose moieties in the outer sphere of the nanoparticle 

could have caused their nuclear uptake. A member of the galectin family, known for its 

binding affinity towards β-galactosides, might be the responsible lectin in this context. 
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Abstract 

The synthesis and characterization of spherical sugar-containing polymer brushes consisting 

of PS cores onto which chains of sugar-containing polymers have been grafted via two 

different techniques are described. Photopolymerization in aqueous dispersion using the 

functional monomer MAGlc and crosslinked or non-crosslinked PS particles covered with a 

thin layer of photo-initiator yielded homogeneous glycopolymer brushes attached to 

spherical PS cores. As an alternative, ATRP was used to graft poly(N-acetylglucosamine) arms 

from crosslinked PS cores. Deprotection of the grafted brushes led to water-soluble particles 

that act as carriers for catalytically active gold nanoparticles. These glycopolymer chains 

show a high affinity to adsorb WGA whereas no binding to BSA or PNA could be detected. 

Keywords: Atom Transfer Radical Polymerization (ATRP); glycopolymer; gold 

nanoparticles; lectin recognition; spherical brush 

3.1 Introduction 

Glycopolymers, synthetic sugar-containing macromolecules, which display complex 

functionalities similar to those found in natural glycoconjugates are attracting ever-

increasing interest from the chemistry community due to their role as biomimetic analogues 

and their potential for commercial applications.1-5 They are used as surfactants,6 texture-

enhancing food additives,7 drug release systems,8, 9 and biologically active polymers.10, 11 It is 

now clear that structural control of glycopolymers has a significant impact on their 

recognition functions, which has prompted researchers to develop new synthetic routes to a 

variety of sugar-displaying polymers with controlled architectures and functionalities.12-14 

Various types of synthetic polymers bearing sugar residues have been described, such as 

linear polymers,15 comb polymers,16 dendrimers,17 and crosslinked hydrogels.18 

In particular, carbohydrate-modified vinyl polymers have been extensively 

investigated because of their relatively simple synthesis via radical polymerization. In this 

case, controlled/”living” radical polymerizations have been reported as a very facile 

approach for well-defined and controlled synthesis of glycopolymers.19-23 

In this paper, we describe the synthesis of sugar-containing colloidal spherical 

polymer brushes by two different polymerization approaches. Photopolymerization of the 
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functional monomer 3-O-methacryloyl-D-glucose (MAGlc) was used to attach glycopolymer 

chains to colloidal polystyrene (PS) spheres by a “grafting from” technique.24, 25 As shown in 

Scheme 1, the synthesis of these particles can be carried out in three steps: In the first step, 

PS core particles are prepared by a conventional emulsion polymerization.26 In the second 

step of emulsion polymerization, these core particles are covered by a thin layer of the 

photo-initiator 2-[p-(2-hydroxy-2-methylpropiophenone)]-ethyleneglycol methacrylate 

(HMEM). In the third step, polymerization of MAGlc is started by UV irradiation of the 

suspension of these latex particles. By this grafting-from strategy sugar-displaying polymer 

brushes are generated on the surface of the core particles.  

Scheme 1. Synthesis of the sugar-displaying polymer brush via photo-induced free radical polymerization. 

 

The use of an unprotected functional monomer for the preparation of polymer 

brushes by means of photopolymerization avoided potentially damaging deprotection steps. 

Moreover, crosslinked PS core particles covered with a thin layer of photo-initiator were 

used for the first time for photopolymerization. Until now, all spherical polymer brush 

systems reported by Ballauff and coworkers are limited to water-soluble monomers in 

aqueous condition.27-29 The use of crosslinked PS core particles makes the 

photopolymerization also possible for water insoluble monomers in organic solvents.  

The increase with time of PS-MAGlc particle size under UV-irradiation was studied by 

means of dynamic light scattering (DLS), whereas cryogenic transmission electron 

microscopy (cryo-TEM) was the method of choice to study the morphology of the brushes in 

situ. All data discussed herein, demonstrate the successful preparation of glucose-displaying 

polymer brushes by photopolymerization. 

Furthermore, we investigated the use of a protected glycomonomer, 

tetraacetylglucosamine (tetAcGlc), and a controlled radical polymerization technique, 
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namely atom transfer radical polymerization (ATRP), to create spherical polymer brushes 

with well-defined poly-(N-acetylglucosamine) arms. Using the “grafting from” approach, 

chains were grown from a crosslinked polystyrene core covered with a thin layer of ATRP 

initiator (Scheme 2). The subsequent deprotection of the sugar units led to water soluble 

spherical brushes consisting of poly-(N-acetyl-D-glucosamine) chains.  

Scheme 2. Synthesis of the glucosamine-containing polymer brushes via emulsion polymerization and 
subsequent ATRP. After deprotection of the sugar moieties, hydrophilic sugar particles were obtained. 

 

One motivation for the preparation of these sugar-containing polymer brushes was 

to investigate whether these brushes could act as carriers for catalytically active gold 

nanoparticles. In general, gold nanoparticles are of special interest because of their potential 

applications in electronic, optical and biomedical materials.30-35 

Apart from this, glycopolymers are of great interest because of binding interactions 

between carbohydrates and lectins. Interactions between saccharides and proteins are 

usually weak but can be markedly increased by displaying multiple saccharides in close 

proximity to each other, yielding multivalent binding sites, commonly known as the “glyco-

cluster effect”.36 Therefore, we were interested in developing polymerization methodology 

capable of producing poly-(N-acetylglucosamine) chains as glycomimetics, and subsequently 

in investigating their binding behavior to wheat germ agglutinin (WGA) using turbidity 

measurements and surface plasmon resonance (SPR) spectroscopy. 
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3.2 Experimental Section 

Materials.  

Bovine Serum Albumin (BSA; 66 kDa, 96%, Aldrich), Wheat Germ Agglutinin (WGA; 36 kDa, 

Aldrich), Peanut Agglutinin (PNA; 110 kDa, Aldrich), 4-(2-hydroxyethyl)piperazine-1-

ethansulfonic acid (HEPES, 99%, Aldrich), 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-D-

glucopyranose (99%, Glycon), 1,2:5,6-di-O-isopropylidene-D-glucofuranose (Aldrich), 

methacrylic anhydride (Aldrich), trimethylsilyl trifluoromethanesulfonate (98%, Aldrich), CuCl 

(99%, Acros), 10-camphorsulfonic acid (98%, Aldrich), hydroxyethyl methacrylate (98%, 

Acros), sodium dodecyl sulfate (SDS; Fluka) and peroxodisulfate (KPS; Fluka) were used 

without further purification. Styrene (BASF) was destabilized by Al2O3 column and stored in 

the refrigerator. N,N,N´,N´´,N´´-pentamethyldiethylenetriamine (PMDETA; 99%, Aldrich), 

1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA; 97%, Aldrich), divinylbenzene 

(DVB, Aldrich)  and ethyl 2-bromoisobutyrate (EBiB; 98%, Aldrich) were distilled and 

degassed. CM-5 Sensor chip and the amine coupling kit containing NHS, EDC and 

ethanolamine-hydrochloride for interaction studies, were purchased from Biacore AB. Tris(2-

(dimethylamino)ethyl)amine (Me6 TREN) was synthesized according to the method described 

by Ciampolini et al.37 The synthesis of 2-[p-(2-hydroxy-2-methylpropiophenone)]-

ethyleneglycol methacrylate (HMEM) has been described previously.38 The sugar-based 

functional monomer MAGlc was synthesized by deprotection of 3-O-methacryloyl-1,2:5,6-di-

O-isopropylidene-D-glucofuranoside (MAIGlc) as reported by Teunis.39 The 2-step synthesis 

of the protected glycomonomer tetAcGlc was carried out according to literature: after 

formation of the intermediate 2-Methyl-2-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-D-glucopyrano)-

[2,1-d]-2-oxazoline,40 the final product could be achieved by a ring opening reaction with 

hydroxyethyl methacrylate.41 The synthesis of methacrylic inimer 2-(2-

bromoisobutyryloxy)ethyl methacrylate (BIEM) was carried out according to the method 

described earlier.42, 43  

Characterization.  

Dynamic light scattering (DLS) measurements were performed in sealed cylindrical scattering 

cells (d = 10 mm) at a scattering angle of 90° on an ALV DLS/SLS-SP 5022F equipment 
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consisting of an ALV-SP 125 laser goniometer with an ALV 5000/E correlator and a He-Ne 

laser with the wavelength λ = 632.8 nm. The CONTIN algorithm was applied to analyze the 

obtained correlation functions. Apparent hydrodynamic radii were calculated according to 

the Stokes-Einstein equation. Prior to the light scattering measurements the sample 

solutions were filtered using Millipore PTFE filters with a pore size of 5 μm.  

Gel permeation chromatography (GPC) measurements were performed on a set of 30 

cm SDV-gel columns of 5 µm particle size having a pore size of 102, 103, 104 and 105 Å with 

refractive index and UV (λ = 254 nm) detection. GPC was measured at an elution rate of 1 

mL/min with THF as solvent. GPC with a multiangle light scattering detector (MALS-GPC) was 

used to determine the absolute molecular weights. THF was used as eluent at a flow rate of 

1.0 mL/min: column set, 5µm PSS SDV-gel 103, 105 and 106 Å, 30 cm each; detectors, Agilent 

Technologies 1200 Series refractive index detector and Wyatt HELEOS MALS detector 

equipped with a 632.8 nm He-Ne laser. The refractive index increments of the different 

polymers in THF at 25 °C were measured using a PSS DnDc-2010/620 differential 

refractometer. 

NMR-spectroscopy: 1H and 13C NMR spectra were recorded on a Bruker 300 AC 

spectrometer using CDCl3 or DMSO-d6 as solvent and internal solvent signal. 

Fourier-Transform Infrared Spectroscopy (FT-IR) was carried out on a Spectrum 100 

FT-IR spectrometer from Perkin Elmer. For measurements the U-ATR unit was used. The 

dried samples were directly placed on top of the U-ATR unit for measurements.   

Elemental analysis was performed by Mikroanalytisches Labor Pascher, Remagen, 

Germany.  

Field-emission scanning electron microscopy (FESEM) was performed using a LEO 

Gemini microscope equipped with a field emission cathode.  

UV/vis spectroscopy was performed on a Lambda 25 spectrometer of Perkin Elmer.  

Transmission electron microscopy (TEM) images were taken with a Zeiss CEM902 

EFTEM electron microscope operated at 80 kV or a Zeiss EM922 OMEGA EFTEM electron 

microscope operated at 200 kV. Both machines are equipped with an in-column energy 
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filter. Samples were prepared through deposition of a drop of micellar solution 

(concentration 0.1 g/L) onto the carbon coated TEM grids. Afterwards the remaining solvent 

was removed with a filter paper. 

For Cryogenic Transmission Electron Microscopy (Cryo-TEM) studies, a drop of the 

sample solution (c ~ 0.5 wt.-% in water) was placed on a lacey carbon-coated copper TEM 

grid (200 mesh, Science Services, München, Germany), where most of the liquid was 

removed with blotting paper, leaving a thin film stretched over the grid holes. The 

specimens were shock vitrified by rapid immersion into liquid ethane in a temperature 

controlled freezing unit (Zeiss Cryobox, Zeiss NTS GmbH, Oberkochen, Germany) and cooled 

to approximately 90 K. The temperature was monitored and kept constant in the chamber 

during all the preparation steps. After freezing the specimens, they were inserted into a 

cryo-transfer holder (CT3500, Gatan, München, Germany) and transferred to a Zeiss EM922 

OMEGA EFTEM instrument. Examinations were carried out at temperatures around 90 K. 

The transmission electron microscope was operated at an acceleration voltage of 200 kV. 

Zero-loss filtered images (Δ E = 0 eV) were taken under reduced dose conditions (100 – 1000 

e ∙ nm -2). All images were registered digitally by a bottom mounted CCD camera system 

(Ultrascan 1000, Gatan), combined and processed with a digital imaging processing system 

(Gatan Digital Micrograph 3.9 for GMS 1.4). 

Surface Plasmon Resonance (SPR) analysis were performed according to literature 

using a BIAcore 2000 (Biacore AB).44 After chip activation with 0.1 M NHS and 0.4 M of EDC, 

the lectin WGA was directly immobilized onto the chip at a concentration of 0.5 mg ∙ mL -1 in 

sodium acetate buffer (10mM, pH = 5). Upon immobilization, the chip was capped by 

exposure to 1M ethanolamine. After measurements the chip was regenerated by the 

injection of 5µL of H3PO4 (50mM) followed by HEPES-buffer. 

Synthesis. 

Synthesis of glucose-containing polymer brushes via photo-induced free-radical 

polymerization. Non-crosslinked PS cores or crosslinked PS cores covered with a thin layer of 

photo-initiator were prepared by conventional emulsion polymerization. In a typical run, 

2.07g SDS was dissolved in 820 g water under stirring. Then, 208 g styrene was added (in the 

case of preparation of crosslinked PS core, 6.48 g DVB was added as crosslinker). The 
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polymerization was started by adding the initiator (0.44g KPS dissolved in 20g water in 

advance) to the solution. The reaction was run at 80oC for one hour and an additional hour 

at 70oC. 10.64 g HMEM dissolved in 9 g acetone was added under starved conditions at 70oC. 

The slow addition (0.5 mL/min) ensured that the monomer HMEM does not form new 

particles. After the last addition, the latex was cooled down to room temperature and 

purified by serum replacement against the 10-fold volume of pure water. The sugar-

containing brush was prepared by photopolymerization. Diluted PS core solution (1~2 wt.-%) 

was mixed with defined amount of functional monomer MAGlc (30 mole percent (mol-%) 

with regard to the amount of styrene) under stirring. The reactor (Heraus Noblelight TQ 150 

Z3) was degassed by repeated evacuation and subsequent addition of nitrogen at least 5 

times. Photopolymerization was done by use of UV/vis radiation (wavelengths 200-600) at 

room temperature for one hour. Vigorous stirring ensured homogeneous conditions. To 

remove possible coagulum the latex was filtered over glass wool. The suspension was 

purified by exhaustive ultrafiltration against deionized water. 

ATRP towards linear poly(tetraacetylglucosamine) (PtetAcGlc). All polymerizations 

were carried out in a round-bottom flask sealed with a septum. A representative example is 

as follows: a mixture of CuCl (1.08 mg, 0.0109 mmol), ethyl 2-bromoisobutyrate (2.12 mg, 

0.0109 mmol) and tetAcGlc (0.5 g, 1.09 mmol) in DMSO (2.0 g) were degassed for several 

minutes. After addition of HMTETA (2.51 mg, 0.0109 mmol) the color of the solution turned 

into green, indicating the dissolution of CuCl. At timed intervals, samples of the reaction 

solution were withdrawn to monitor the reaction kinetics, whereas the conversion was 

detected by 1H-NMR. The solution was passed through a silica column and the polymer 

subsequently precipitated from THF into diethylether.  

Synthesis of crosslinked N-acetylglucosamine brushes via ATRP. In a typical run, 0.40 g 

SDS was dissolved in 250 g water under stirring. Then 20.16 g styrene mixed with 1.30 g DVB 

was added. The polymerization was started by adding the initiator (0.30 g KPS dissolved in 

15g water in advance) to the solution. The reaction was run at 80oC for one hour. 2.70 g 

inimer (BIEM) dissolved in 7.30 g acetone was added under starved conditions at 70oC. The 

slow addition (0.5 mL/min) ensured that the inimer does not form new particles. After the 

last addition, the latex was cooled down to room temperature, purified by serum 

replacement against the 10-fold volume of pure water, dialysed against dioxane and freeze-
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dried. Elemental analysis revealed a bromine content of 1.95 wt.-%. For the following ATRP, 

55.5 mg of crosslinked PS-inimer cores and 0.758 g of tetAcGlc (1.65 mmol) were added to a 

round bottom flask containing 3 g DMSO and placed briefly in a sonic bath to create a 

homogenous dispersion. After addition of 0.57 mg (0.0029 mmol) ethyl 2-bromoisobutyrate 

as sacrificial initiator and 1.63 mg (0.016 mmol) CuCl the mixture was degassed for 15 

minutes, followed by addition of HMTETA (3.79 mg, 0.016 mmol). After 90 minutes, the 

conversion was determined by 1H-NMR and the resulting brushes were separated from free 

polymer in the solution by repeated ultracentrifugation. The free polymer was collected, 

freeze-dried and analyzed by GPC. Elemental analysis of the glycopolymer grafted 

nanospheres revealed an oxygen content of 33.4 wt.-%. 

Deprotection of protected poly-(N-acetylglucosamine) chains. Deprotection of linear 

PtetAcGlc and protected sugar-containing brushes were performed according to literature.45 

Under these conditions the ester bond does not undergo hydrolysis. The nanospheres were 

finally cleaned by serum replacement against purified water (membrane: cellulose nitrate 

with 100 nm pore size supplied by Schleicher & Schuell).  

Formation of gold nanoparticles. The preparation of Au nanoparticles in an aqueous solution 

was carried out by the chemical reduction of metal salt – brush mixture with sodium 

borohydride. For a typical experiment, 0.011 g HAuCl4, dissolved in 5 ml water, was added to 

aqueous suspension of brushes (0.1 g brushes diluted with 20 g of water), and the mixture 

was stirred for 30 minutes under N2. Thereafter, sodium borohydride (0.022 g dissolved in 5 

g water) was quickly added to the solution under vigorous stirring for one hour. Finally, the 

Au nanocomposite particles were cleaned by serum replacement against purified water 

(membrane: cellulose nitrate with 100nm pore size supplied by Schleicher & Schuell). 

Catalytic reduction of 4-Nitrophenol. 0.5 ml sodium borohydride solution (60 mmol/l) 

was added to 2.5 ml 4-nitrophenol solution (0.12 mmol/l) contained in a glass vessel. After 

that a given amount of the Au composite particles was added. Immediately after the 

addition of the composite-particles, UV spectra of the sample were taken every 30 seconds 

in the range of 250-550 nm.  

Turbidity measurements. The lectin recognition activity of linear poly-(N-

acetylglucosamine) chains was evaluated by changes in the turbidity of solution with time at 
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λ = 600 nm and room temperature after the addition of protein solutions (0.5 mg/mL) to the 

polymer solution (0.5 mg/mL) in HEPES-buffer. 

3.3 Results and Discussion 

Synthesis of glucose-containing polymer brushes via photo-induced free-radical 

polymerization. The synthesis of PS core particles by emulsion polymerization, and 

polyelectrolyte brushes by photopolymerization has been previously reported.26, 38 Here, we 

report the surface modification of latex particles by grafting MAGlc chains to form a 

spherical brush. A two-step emulsion polymerization implements a photo-initiator function 

on the particle surface. After photolysis of the HMEM groups, the radicals formed initiate the 

polymerization of the shell, which was confirmed by the increase in particle size via dynamic 

light scattering (Figure 1). Since the radius of the PS core particles is known, DLS leads 

directly to the thickness L of the brush layer. From Table 1, when 30 mol-% monomer was 

used for photopolymerization, L = 60.9 nm and 91.7 nm have been obtained for the non-

crosslinked PS-MAGlc brush particles and crosslinked PS-DVB-MAGlc brush particles, 

respectively. This indicates the formation of polymer brushes on the core surface. Due to the 

free radical mechanism the total yield after the photopolymerization is slightly less than 50% 

due to the generation of one surface-bound and one free radical. 

 

Figure 1. Increase of the particle size of non-crosslinked PS-MAGlc brushes (left) and crosslinked PS-DVB-MAGlc 
brushes (right) with UV irradiation time, as measured by DLS at 25oC. 
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Table 1. Characterization of the sugar-containing polymeric brushes. 

Labela) PS 

[g] 

MAGlc 

[g] 

Water 

[g] 

Rcore
 b)

 

[nm] 

L b) c) 

[nm] 

PS-MAGlc 1.5 1.07 167 52.0 60.9 

PS-DVB-MAGlc 2.9 2.14 280 76.1 91.7 

a) Solid content for PS core dispersion is 8.09 wt.-% and for crosslinked PS core is 2.16 wt.-%. b) Rcore and L are 
measured by DLS at 25oC and at an angle of 90o. c) Thickness of the brush layer. 

Figure 2 presents typical Field-emission scanning electron microscopy (FESEM) and 

cryo-TEM images for the sugar-containing latex particles. From the FESEM image, it can be 

clearly seen that practically monodisperse PS-MAGlc particles are prepared by 

photopolymerization. The two dimensional assemblies are caused by capillary forces during 

drying of the suspensions. Moreover, the dark corona around the spherical PS core particles 

indicates the formation of polymer brushes on the PS core surface. Individual polymer chains 

do not provide sufficient contrast to monitor them individually. The cryo-TEM micrograph 

shows bundles that arise from “frozen” fluctuations of the grafted chains. The polymer 

density decreases with R-2 as does the contrast.46 

 

Figure 2. FESEM image (left) and cryo-TEM image (middle) of MAGlc brushes anchored to non-crosslinked and 
crosslinked (right) PS latex particles. The scale bars represent 100nm. 

The FT-IR spectra of the PS core particles and the resulting sugar containing polymer 

brush particles are shown in Figure 3. The characteristic absorptions bands at 3 400 cm−1 

(due to stretching vibrations of hydroxyl groups of glucose) and at 1 720 cm−1 (carbonyl 

group absorption from functional monomer) can be observed for the resulting brush 

particles, which demonstrates the generation of sugar-containing brushes onto the PS core 

particles.  
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Figure 3. FT-IR spectra of (a) crosslinked PS-DVB-MAGlc, (b) non-crosslinked PS-MAGlc and (c) crosslinked PS-
DVB-HMEM particles 

The shown data reveal the successful preparation of spherical glycopolymer brushes 

consisting of crosslinked or non-crosslinked polystyrene cores and glucose-containing shells 

via photo-induced free-radical polymerization. Nevertheless, the chosen free-radical 

polymerization technique to build up the shell exhibits two disadvantages: the uncontrolled 

mechanism and formation of two radicals, which results in broad molecular weight 

distributions and loss of 50 % of the formed polymer. To overcome these problems, we also 

investigated the use of ATRP for the preparation of the glycopolymer displaying shell. 

Synthesis of N-acetylglucosamine-containing polymer brushes via Atom Transfer 

Radical Polymerization. To find a suitable system for the ATRP of the protected 

glycopolymer brushes, we first investigated the effect of different ligands on the ATRP 

towards linear poly-(tetraacetylglucosamine) (PtetAcGlc). The results are summarized in 

Table 2 and Figure 4. For all polymerizations, ethyl 2-bromoisobutyrate (EBIB) was used as 

initiator which possesses the same initiating group as the inimer BIEM that was used for the 

synthesis of the latex particles. The solution polymerization of the protected glycomonomer 

was conducted using copper-mediated ATRP. When tetAcGlc was polymerized using 

CuCl/Me6 TREN at room temperature, the conversion reached 90% (as determined by 1H-

NMR spectroscopy) after 45 minutes. The number-average molecular weight of PtetAcGlc as 
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determined by means of GPC using PtBMA standards is Mn = 66 200 g/mol and the 

polydispersity index is Mw/Mn = 1.29. Comparing the theoretical molecular weight, Mn,th = 41 

300 g/mol with that determined by GPC, an initiator efficiency Ieff = 0.62 can be calculated.  

Using the non-branched ligand PMDETA led to a narrower molecular weight distribution (PDI 

= 1.16) and increased initiator efficiency (Ieff = 0.81) after 5 hours and a conversion of 52%. 

As the activity of N-based ligands in ATRP decreases with the number of coordinating sites,47 

the CuCl/HMTETA catalyst system showed a higher polymerization rate than CuCl/PMDETA 

which led to a conversion of 93% after 90 minutes. With a number-average molecular weight 

Mn = 49 400 g/mol, a polydispersity index Mw/Mn = 1.09 and an initiator efficiency Ieff = 0.86 

HMTETA was found to be the most suitable ligand for the polymerization of the protected 

glycomonomer. The use of a less polar solvent (Anisole) led to a lower polymerization rate 

even at elevated temperature. Furthermore, the solution became slightly turbid indicating 

reduced solubility of the formed polymer.  

Table 2. Effects of catalyst and ligand on homopolymerization of tetAcGlc. 

Run a) Ligand solvent T 

[oC] 

t 

[min] 

convb) 

[%] 

Mn, GPC
c)

 (Mw/Mn) 

[g/mol] 

Ieff 
d) 

1 Me6 TREN DMSO 25 45 90 66 200 (1.29) 0.62 

2 PMDETA DMSO 25 300 52 29 300 (1.16) 0.81 

3 HMTETA Anisole 60 180 31 15 000 (1.19) 0.98 

4 HMTETA DMSO 25 90 93 49 400 (1.09) 0.86 

a) Initiator: EBiB. Catalyst: CuCl. [tetAcGlc]o:[I]o:[cat]o:[ligand]o = 100:1:1:1. [M]0 ~ 0.2 g ∙ mL -1.  b) Monomer 
conversion as determined by means of 1H-NMR. c) Determined by GPC using THF as eluent with PtBMA 
standards. d) Initiator efficiency comparing the theoretical molecular weight and the determined molecular 
weight by GPC with PtBMA standards. 
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Figure 4. GPC traces of PtetAcGlc obtained by ATRP by the use of Me6 TREN (run 1, table 2, -.-.), HMTETA in 
DMSO (run 4, -), PMDETA (run 2, …) and HMTETA in Anisole (run 3, ---). 

Kinetic studies on the solution polymerization of tetAcGlc by CuCl/HMTETA (run 4, 

table 2) in DMSO are summarized in Figure 5-7. Figure 5 shows first-order kinetics even to 

high monomer conversion which indicates the absence of undesired side reactions. As can 

be seen in Figure 6, the polymerization exhibits a linear molecular weight increase with 

conversion. The difference between the theoretical and the experimental molecular weight 

can be assigned to the PtBMA calibration of the GPC. The polydispersity indices are low (PDI 

< 1.2) and decrease with conversion of monomer yielding very well-defined chains (PDI < 

1.1) at conversions Χp > 90%. Monomodal SEC traces were obtained for the kinetic run 

(Figure 7). Even at high conversion no high molecular weight shoulder occurred, which 

would indicate a bi-molecular termination reaction. 
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Figure 5. First-order kinetic plot for the polymerization of tetAcGlc (run 4, table 2) in DMSO at RT. 

 

Figure 6. Evolution of molecular weight (filled squares) and polydispersity index (open squares) with 
conversion. The dashed line shows theoretical molecular weights. 
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Figure 7. Gel permeation chromatographs of PtetAcGlc evolution over the course of the kinetic run (run 4, 
table 2). (-) : χp = 93%, (…) : χp = 83%, (---) : χp = 58%, (-.-.) : χp = 21%. 

To prepare spherical sugar-containing polymer brushes, we chose the same catalytic 

system (CuCl/HMTETA) as for the successful ATRP of linear PtetAcGlc. In contrast to prior 

experiments, a certain amount of the initiator EBiB was replaced by surface-bound initiator 

on the latex particles. The initial ratio of all compounds were set as [tetAcGlc]o:[surface 

bound initiator+EBiB]o:[cat]o:[ligand]o = 100:1:1:1. Analogous to the synthesis of linear 

PtetAcGlc, the polymerization reached 95% after 90 minutes. Given that free polymer in 

solution and grafted chains have comparable molecular weights and polydispersities,48-52 the 

resulting free polymer in solution could be easily characterized by GPC and hence no 

cleavage of the arms was necessary. After separation of the free polymer from glycopolymer 

brushes by repeated ultracentrifugation, the number-average molecular weight determined 

by GPC using PtBMA standards is Mn = 49 800 g/mol and the polydispersity index is Mw/Mn = 

1.12. Figure 8 shows FESEM images for pure PS-DVB particles and glycopolymer brushes, 

respectively. The rough surface and the increase of diameter can be attributed to grafted 

PtetAcGlc chains. 
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Figure 8. SEM image of pure PS-DVB nanospheres (left) and protected glycopolymer brushes (right) on Si-
wafers. The scale bars represent 200 nm. 

To calculate the grafting density of the sugar arms on the spheres, the absolute 

average molecular weight and the corresponding degree of polymerization have to be 

determined. MALS-SEC measurement of the free polymer led to an absolute Mn = 96 700 

g/mol and corresponding degree of polymerization DP = 210. Compared to the theoretical 

degree of polymerization, DPtheo = 95, the determined DP leads to an initiator efficiency of 

45%. Elemental analysis of the poly-(tetraacetylglucosamine) covered spheres revealed an 

oxygen content of 33.4 weight percent (wt.-%). As the oxygen content in the glycomonomer 

is found to be 38.3 wt.-%, a sugar-PS composition of 87.2 / 12.8 can be calculated. Given the 

absolute molecular weight of the sugar chains (96 700 g/mol), the amount of grafted sugar, 

the radius of the PS-particle (50 nm) and hence the surface area (3.14 ∙ 104 nm2), 1 g of 

glycopolymer grafted spheres contain 3.2 ∙ 10 14 spheres and 5.4 ∙ 10 18 glycopolymer chains 

which leads to a grafting density of 0.54 chains per nm2 surface area. 

Deprotection of the sugar units under basic conditions via NaOMe led to water 

soluble brushes which were studied by FT-IR spectroscopy, as shown in Figure 9. After 

grafting PtetAcGlc chains from the particle surface, peaks at 1 750 cm-1 and 3 400 cm-1 

appeared, which can be attributed to carbonyl- and –NH-CO-bonds respectively. After 

deprotection of the sugar moieties, a higher absorption band at 3 400 cm-1, due to stretching 

vibrations of the hydroxyl groups of the sugar, can be observed. DLS measurements show an 

increase of the radius of the nanospheres from 50 nm to 102 nm after grafting of the 

polymer chains and deprotection of the sugar moieties (Figure 10).  
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Figure 9. FT-IR spectra of (a) water soluble glucosamine nanospheres, (b) protected glycopolymer brushes and 
(c) PS-DVB particles. 

 

Figure 10. Intensity weighted distribution of hydrodynamic radii of PS-DVB particles in DMSO (…) and 
deprotected sugar-brushes in water (-). 

Spherical brushes as carriers for catalytically active gold nanoparticles. It is known 

that spherical polycation brushes can act as carriers for catalytically active metal 

nanoparticles.53 Here, we investigated the use of non-ionic chains of a bioinspired polymer 

(poly-(N-acetylglucosamine)) for the synthesis of gold nanocomposite particles. The addition 
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of HAuCl4 to an aqueous solution of sugar containing polymer brushes and subsequent 

reduction of the AuCl4- ions by NaBH4 led to gold nanoparticles with an average diameter of 

6.3 nm (Figure 11). This is confirmed by the change of color of the solution from yellowish to 

violet. The stabilizing of Au nanoparticles is mainly due to the fact that the hydroxyl groups 

on the surface of the glycopolymer brushes have a high affinity for metal nanoparticles. In 

addition, the polymer brush will prevent the release and aggregation of the immobilized Au 

nanoparticles by steric hindrance, and thus exert control of the growth process by diffusion 

control. For the evaluation of the catalytic activity of the gold nanoparticles, we chose the 

reduction of p-nitrophenol by excess sodium borohydride, which is a frequently used model 

reaction (Figure 12).54-56 This reaction can be easily monitored by UV/vis spectroscopy. The 

characteristic absorption peak of p-nitrophenol at 400 nm disappeared, whereas a new peak 

at 290 nm (due to p-aminophenol) appeared. In addition, the reaction follows first order rate 

kinetics with regard to the p-nitrophenol concentrations as the concentration of sodium 

borohydride was adjusted to largely exceed the concentration of p-nitrophenol. Thus, a 

linear relation between ln(ct/c0) versus time t has been obtained as shown in the inset of 

Figure 12. The apparent rate constant kapp of 0.048 min-1 is obtained from the curve of 

ln(ct/c0) versus time t by linear fit.  This demonstrates the capability of the sugar-containing 

polymer brushes to act as a biocompatible carrier for catalytically active gold nanoparticles.  

 

Figure 11. TEM image of gold nanoparticles immobilized on glucosamine brushes. The scale bars represent 100 
nm. 
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Figure 12. Catalytic reduction of p-nitrophenol in the presence of gold nanocomposite particles. 

Recognition properties of N-acetylglucosamine chains towards lectins. Sugar-

binding and cell-agglutinating proteins, so called lectins, are omnipresent in all kind of 

organisms. In our investigation of the binding activity of the prepared N-acetylglucosamine 

brush towards lectins, wheat germ agglutinin (WGA) played an important role. N-

acetylglucosamine is the receptor sugar for WGA, whereas preferential binding to dimers 

and trimers of this sugar occur. Both turbidity measurements and biosensor analysis were 

used here to investigate the binding behavior of WGA to N-acetylglucosamine chains. For 

turbidity measurements, linear poly-(N-acetylglucosamine) chains were mixed with different 

protein solutions. Emerging protein-saccharide interactions cause the formation of 

aggregates due to the multiple binding sites of proteins and therefore a decrease in 

transmission is observed. As a control experiment, peanut agglutinin (PNA) and bovine 

serum albumin (BSA) were mixed with the polymer solution and displayed no decrease in 

transmission (Figure 13). In contrast to BSA and PNA, WGA specifically binds to multiple N-

acetylglucosamine residues57 and therefore is able to precipitate the polymer. Right after 

mixing the deprotected polymer (Table 2, run 4) and protein in solution, the transmission 

dropped to 70% due to the fast formation of aggregates and further decreased to 20% 

within 25 min. 
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Figure 13. Interactions of poly-(N-acetylglucosamine) chains with WGA (solid line), BSA (dashed line) and PNA 
(dotted line). 

Turbidity measurement is a simple method to detect protein-saccharide interaction, 

but for more detailed investigation biosensor analysis is the method of choice. Surface 

plasmon resonance (SPR) spectroscopy is often used for the study of lectin-carbohydrate 

interactions,58 whereas usually a lectin is immobilized on the sensor chip surface and flushed 

with a carbohydrate solution. Here, after immobilizing WGA on the surface, an aliquot of the 

polymer solution (20 µL) was injected and the change in refractive index recorded. The 

polymer was allowed to associate to the bound protein for 2 min, followed by a dissociation 

phase of 5 min where the flow channel was flushed with buffer. Finally, the chip was 

regenerated by injection of H3PO4.   

  To determine the minimum concentration of poly-(N-acetylglucosamine) that could 

be detected in SPR binding experiments, a dilution series was injected over the sensor 

surface (Figure 14). It can be seen, that even at the lowest concentration (0.1 µM) of injected 

linear deprotected glycopolymer (Table 2, run 4) a SPR signal could be detected. 

Furthermore, it is worth mentioning that dissolution only takes place for the two highest 

concentrations (10 mM and 1 mM), indicating that more dilute solutions of poly-(N-

acetylglucosamine) were completely bound by the lectin. 
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Figure 14. (a) Biacore sensograms of the interaction between linear poly-(N-acetylglucosamine) chains with 
WGA at different concentrations of the injected polymer solutions. Curves from top to bottom: 10 mM (0.33 
wt.-%), 1 mM, 100 µM, 10 µM, 1 µM and 0.1 µM. 

 

Figure 15. (a) Biacore sensograms of the interaction between glycopolymer brushes with WGA at different 
concentrations of the injected brush solutions. Curves from top to bottom: 0.33 wt.-%, 0.033 wt.-% and 0.0033 
wt.-%. (b) Biacore sensograms of the interaction between linear poly-(N-acetylglucosamine) chains (top curve), 
glycopolymer brushes (middle curve) and N-acetylglucosamine sugar unimer (bottom curve) with WGA at c = 
0.33 wt.-%. 

Figure 15 (a) shows the sensograms of the deprotected glycopolymer brushes with 

WGA at three different concentrations. Figure 15 (b) compares the association behavior of 

linear poly-(N-acetylglucosamine), glycopolymer brush and N-acetylglucosamine sugar 

unimer. In comparison to linear glycopolymers, spherical brushes show a reduced adsorption 
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to the immobilized lectin, which can be attributed to unavailability of sugar residues next to 

the core, due to steric hindrance, and the reduction of the total mass of sugar-units due to 

introduction of the polystyrene core. Nevertheless both show adsorptions magnitudes 

higher than the unimer, which can be attributed to the afore mentioned “glyco-cluster” 

effect.  

To visualize the binding affinity of WGA to the spherical brushes, transmission 

electron microscopy was performed. Therefore a solution of 0.1 wt.-% of brush in water was 

prepared and vigorously stirred. Immediately after addition of the protein solution (0.5 wt.-

% compared to spherical brushes) a drop of the brush-protein solution was placed on a TEM-

grid. Figure 16 (a, b) shows typical TEM images of the formed aggregates. Even with the 

short reaction time and the small amount of lectin, mainly large aggregates can be found, 

indicating again the strong affinity of WGA to bind to the sugar moieties. In Figure 16 (c) 

some of only few loose brush-protein complexes can be seen. The contrast of the protein 

was increased by staining with methyl iodide.  

 

Figure 16. TEM-images of immobilized WGA on the glycopolymer brush surface. (a) unstained and (b) stained 
WGA-protein aggregate and (c) loose complexes. Scale bars represent 500 (a), 1000 (b) and 200 nm (c). 

To determine the amount of protein that can be precipitated by glucosamine-

containing nanospheres, UV/vis spectroscopy was performed. Therefore WGA (5.36 mg) in 

HEPES-buffer (4 mL) was mixed with nanospheres (0.55 mg) and stirred for 5 h. Subsequent 

separation of the spheres by ultracentrifugation gave a transparent solution which was 

analyzed by UV/vis spectroscopy. Comparison of UV/vis spectra recorded before and after 

treatment with sugar-coated spheres showed a decrease of peak height at λ = 276 nm of 5.2 

percent which can be attributed to the adsorbed protein on glycopolymer nanospheres. The 

amount of protein left in solution could therefore be calculated to be 5.08 mg (Δm = 0.28 
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mg) which means, that 1mg of glycopolymer brush is able to precipitate 0.5 mg of wheat 

germ agglutinin. 

3.4 Conclusions 

We present the successful preparation of glycopolymer-displaying spherical brushes by both 

conventional and controlled radical polymerization. Immobilization of gold nanoparticles led 

to metal-brush composite particles that were able to catalyze the reduction of nitrophenol 

to aminophenol. Investigation of the binding behaviour of these brushes towards proteins 

revealed selective binding to wheat germ agglutinin (WGA). A much higher binding affinity of 

WGA to glycopolymer chains in comparison to the sugar unimer N-acetylglucosamine was 

observed. Due to the strong and selective binding, potential application for these brushes 

could be the separation of WGA from other proteins by precipitation of the lectin and 

subsequent release by breaking up the sugar-lectin complex by H3PO4, as indicated by our 

biosensor analysis. 
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Abstract 

We report the synthesis and characterization of sugar-containing microspheres consisting of 

poly(divinylbenzene) (PDVB) cores onto which chains of galactose- or mannose-bearing 

polymers have been grafted. PDVB particles prepared by distillation polymerization with a 

diameter of 2.4 µm containing residual surface vinyl groups were used as starting material. 

“Grafting from”, “grafting through” and “grafting to” techniques were performed and special 

interest was laid towards the resulting grafting densities. The surface modification via 

“grafting from” was conducted by reversible addition fragmentation chain transfer (RAFT) 

polymerization directly from the surface, whereas thiol-ene chemistry was used to affix 

glycopolymer chains onto the particle surface. The resulting sugar-covered microspheres 

were analyzed towards their protein recognition activity with a series of lectins. 

Keywords: reversible addition fragmentation chain transfer (RAFT) polymerization; 

glycopolymer; microspheres; thiol-ene reaction 

4.1 Introduction 

Carbohydrates are involved in a multitude of biological functions in living systems. 

Glycopolymers, synthetic polymers carrying carbohydrate moieties, have been widely 

investigated for medical and pharmaceutical applications, like drug delivery,1, 2 cell culture 

substrates,3, 4 macromolecular drugs5, 6 and surface modifiers.7, 8 The plurality of potential 

applications has prompted researchers to develop various synthetic strategies for the 

preparation of sugar-containing polymers with controlled functionalities and architectures.9-

11 There are several studies on the preparation of well-defined glycopolymers by living 

polymerization, such as anionic,12 cationic,13 ring-opening metathesis10, 14 and radical 

polymerization. The latter include Nitroxide-Mediated Radical Polymerization (NMP),15 

Reversible Addition Fragmentation Transfer Polymerization (RAFT),16 and Atom Transfer 

Radical Polymerization (ATRP).17  

In the last decades, much attention has been devoted to the generation of sugar-

coated particles using the macromonomer technique,18 conjugation of sugars on reactive 

particles,19, 20 emulsion polymerization21, 22 and grafting of glycopolymer chains onto 

particles.23-25 But up to now, grafting glycopolymers from microspheres cannot be found in 
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the literature, whereas the research on core-shell microspheres covered with functional 

material is increasing continuously. Crosslinked microspheres based on poly(divinylbenzene) 

(PDVB) are highly attractive because of their residual double bonds on the surface of the 

particle26 which can be easily used to attach single molecules or polymer chains to the 

surface by various grafting approaches.27-33 Recently thiol-ene chemistry was used to affix 

gluco- and galactothiose unimers to microspheres and saccharide-lectin interactions of the 

resulting particles were investigated.29, 31 As interactions between saccharides and proteins 

can be strongly increased by the “glyco-cluster effect” due to the multivalent effect of 

clustered saccharides,34 we were interested in creating a dense shell of glycopolymer around 

the microspheres to maximize this effect.  

As mentioned before, one can use two different techniques, namely “grafting from” 

and “grafting to”, to create core-shell microspheres. Controlled radical polymerization 

methods like ATRP and RAFT were used to graft polystyrene from PDVB microspheres,28, 35 

whereas RAFT-hetero Diels-Alder cycloaddition (RAFT-HDA),36 thiol-ene reaction30 and 

copper-catalyzed Huisgen 1,3-dipolar cycloaddition of azides and alkynes (CuAAC)30 were 

performed to graft polymer chains onto the surface of the particles.  

In this paper, we report the synthesis of two glycopolymer-containing core-shell 

microspheres by grafting either 6-O-methacryloyl mannose (MAMan) (Scheme 1, path a) or 

6-O-methacryloyl-1,2;3,4-di-O-isopropylidene-galactopyranose (MAIGal) (Scheme 1, path b) 

from the particle surface. In the case of the MAIGal, three different grafting approaches 

were utilised, with special emphasis being put on the resulting grafting densities. “Grafting 

from” was conducted via prior attachment of the RAFT agent cumyl dithiobenzoate (CDB) to 

the spheres and subsequent polymerization of the glycomonomer MAIGal, whereas “grafting 

through” included the simultaneous addition of chain transfer agent and monomer to the 

p(DVB) spheres. Grafting PMAIGal chains onto the spheres was conducted by aminolysis of 

poly(MAIGal)-dithiobenzoate RAFT agent and subsequent  thiol-ene reaction with residual 

double bonds on the particle surface.  

After deprotection of the sugar moieties, we furthermore investigated the binding 

behavior of the water soluble mannose- and galactose-containing glycopolymers with a 

series of lectins by turbidity measurements. 



Chapter 4                                        Surface Modification of Polymeric Microspheres using Glycopolymers 
 

71 
 

Scheme 1.  Synthesis of glycopolymer-grafted DVB microspheres. 

 

4.2 Experimental Section  

Materials  

4-(2-hydroxyethyl)piperazine-1-ethansulfonic acid (HEPES, 99.5%, Aldrich), hexylamine 

(99.5%, Aldrich), Bovine serum albumin (Aldrich), Ricinus communis agglutinin (RCA120, 

Aldrich), Concanavalin A (Con A, Aldrich) ), Lens culinaris agglutinin (lentil, Adrich) and 

Pealectin-I (PSA, Adrich) were all used without further purification. 2,2′-Azobis(2-

methylpropionitrile) (AIBN, Aldrich, 98%) was recrystallized twice from methanol prior to 

use. Glycomonomers 6-O-methacryloyl-1,2:3,4-Di-O-isopropylidene-galactopyranose 

(MAIGal)37 and 6-O-methacryloyl mannose,38 as well as Cumyl dithiobenzoate (CDB)39 and 4-

(Cyanopentanoic acid)-4-dithiobenzoate (CPADB)40 RAFT agents were synthesized according 

to literature. PDVB microspheres with a diameter of 2.4 µm were prepared by distillation 

polymerization of divinylbenzene (Aldrich, 80% divinylbenzene isomers and 20% ethyl 

styrene isomers) according to literature.41  

Characterization  

Gel permeation chromatography (GPC) measurements for the characterization of PMAIGal 

were performed on a set of 30 cm SDV-gel columns of 5 µm particle size having a pore size of 

102, 103, 104 and 105 Å with refractive index and UV (λ = 254 nm) detection. GPC was 

measured at an elution rate of 1 mL/min with THF as solvent. SEC with multiangle light 

scattering detector (MALS-GPC) was used to determine the absolute molecular weights. THF 

was used as eluent at a flow rate of 1.0mL/min: column set, 5µm PSS SDV-gel 103, 105 and 

106 Å, 30 cm each; detectors, Agilent Technologies 1200 Series refractive index detector and 
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Wyatt HELEOS MALS detector equipped with a 632.8 nm He-Ne laser. The refractive index 

increments of the different PMAIGal polymers in solution at 25 °C were measured to be 

dn/dc = 0.72 - 0.74 mg/mL using a PSS DnDc-2010/620 differential refractometer. GPC 

measurements for the characterization of PMAMan were performed in N,N-

dimethylacetamide (DMAc) (0.05 wt% LiBr, 0.05% BHT) at 40° C (1mL/min flow rate) using a 

Shimadzu modular system comprising a DGU-12A solvent degasser, a LC-10AT pump, a CTO-

10A column oven and a RID-10A refractive index detector. The system was equipped with a 

5.0 mm bead-size guard column (50 x 7.8 mm) followed by four 300 x 7.8 mm linear 

Phenomenex columns (105, 104, 103 and 500 Å). The calibration curve was generated with 

narrow polydispersity polystyrene standards ranging from 500 to 106 g/mol. 

NMR-spectroscopy: 1H and 13C NMR spectra were recorded on a Bruker 300 AC 

spectrometer using CDCl3 or DMSO-d6 as solvent and internal solvent signal. 

Fourier-Transform Infrared Spectroscopy (FT-IR) was carried out on a Spectrum 100 

FT-IR spectrometer from Perkin Elmer. For measurements the U-ATR unit was used. The 

dried samples were directly placed on top of the U-ATR unit for measurements.   

Elemental analysis was performed by Mikroanalytisches Labor Pascher, Remagen, 

Germany.  

Field-emission scanning electron microscopy (FESEM) was performed using a LEO 

Gemini microscope equipped with a field emission cathode.  

Turbidity measurements. UV/vis spectroscopy was performed on a Lambda 25 

spectrometer of Perkin Elmer. The lectin recognition activity of glycopolymer chains was 

evaluated by changes in the turbidity of solution with time at λ = 600 nm and room 

temperature after the addition of polymer solutions (1 mg/mL) to the protein solution (1 

mg/mL) in HEPES-buffer. 

MALDI-TOF mass spectrometric analysis was performed on a Bruker Reflex III 

equipped with a 337 nm N2 laser in the linear mode and 20 kV acceleration voltage. Samples 

were prepared from THF solution by mixing matrix (trans-3-(3-indoyl)-acrylic acid; 20 g/L) 

and the sample (1 mg) in a ratio of 20:5. The number-average molecular weight, Mn, of the 

sample was determined in the linear mode. 
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Synthesis 

RAFT homopolymerization of MAMan glycomonomer. In a round bottom flask 1.0 g (4.028 

mmol) MAMan, 5.59 mg (0.020 mmol) CPADB and 0.66 mg (0.004 mmol) AIBN were 

dissolved in 10 mL DMAc, sealed with a septum and degassed by bubbling with nitrogen for 

several minutes. After placing the reaction vessel in a 70 °C oil bath, samples of the solution 

were removed to monitor the reaction kinetics. An aliquot of the solution was analyzed by 

GPC to determine the molecular weight, whereas the monomer conversion was calculated 

via 1H-NMR spectroscopy. Polymer purification was performed by precipitating the polymer 

in methanol, followed by freeze-drying from water. 

Grafting of MAMan from microspheres via simultaneous addition of glycomonomer 

and CTA. In a round bottom flask 100 mg microspheres, 1.0 g (4.028 mmol) MAMan, 5.59 mg 

(0.020 mmol) CPADB and 0.66 mg (0.004 mmol) AIBN were dissolved in 10 mL DMAc, sealed 

with a septum, degassed by bubbling with nitrogen for several minutes and the vessel placed 

in a 70 °C oil bath for 4h. The resulting grafted microspheres were isolated by filtration 

through a 0.45 µm membrane, washed extensively with water and dried in a vacuum oven. 

Polymers in solution were also collected, precipitated in methanol and subsequently freeze-

dried from water.  

RAFT homopolymerization of MAIGal glycomonomer. In a round bottom flask 1.0 g 

(3.05 mmol) MAIGal, 4.21 mg (0.015 mmol) CDB and 0.83 mg (0.005 mmol) AIBN were 

dissolved in 10 mL DMF, sealed with a septum and degassed with nitrogen for several 

minutes. After placing the reaction vessel in a 60 °C oil bath, samples of the solution were 

withdrawn to monitor the reaction kinetics. An aliquot of each solution was analyzed by GPC 

to determine the molecular weight, whereas the monomer conversion was calculated via 1H-

NMR spectroscopy. Polymer purification was performed by precipitating the polymer in 

methanol, followed by freeze-drying from dioxane. 

Grafting of MAIGal from microspheres via simultaneous addition of glycomonomer 

and CTA (Approach 1). 100 mg of PDVB-microspheres were placed in a round bottom flask 

and well dispersed in 10 mL DMF by briefly applying ultrasound and subsequent stirring for 

2h. After the addition of 1.0 g (3.0 mmol) MAIGal, 4.0 mg (0.15 mmol) CDB and 0.82 mg 

(0.005 mmol) AIBN, the vessel was sealed with a septum, degassed with nitrogen for several 
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minutes and put in a 60°C oil bath. After 15h and 95% conversion, determined by 1H-NMR, 

the resulting grafted microspheres were isolated by filtration through a 0.45 µm membrane, 

washed extensively with THF and dried in a vacuum oven. Polymers in solution were also 

collected, the solution concentrated, precipitated in methanol and subsequently freeze-

dried from dioxane.  

Grafting of MAIGal from microspheres via prior surface modification with CTA 

(Approach 2). 300 mg of PDVB-microspheres were dispersed in 30 mL toluene, followed by 

the addition of 30 mg (0.11 mmol) of CDB and 6 mg (0.37 mmol) of AIBN. The vessel was 

sealed, degassed with nitrogen for several minutes and placed in a 60 °C oil bath for 48 h. 

The resulting slightly pink microspheres were isolated by filtration through a 0.45 µm 

membrane, washed extensively with THF and dried in a vacuum oven. 50 mg of modified 

microspheres were well dispersed in 5 mL DMF by briefly applying ultrasound and 

subsequent stirring for 2h. After the addition of 0.5 g (1.5 mmol) MAIGal, 2.0 mg (0.075 

mmol) CDB and 0.41 mg (0.003 mmol) AIBN, the vessel was sealed with a septum, degassed 

with nitrogen for several minutes and put in a 60 °C oil bath. After 9h and 66% conversion, 

determined by 1H-NMR spectroscopy, the resulting grafted microspheres were isolated by 

filtration through a 0.45 µm membrane, washed extensively with THF and dried in a vacuum 

oven. Polymers in solution were also collected, the solution concentrated, precipitated in 

methanol and subsequently freeze-dried from dioxane. 

Grafting of PMAIGal onto microspheres via aminolysis and subsequent thiol-ene 

reaction (Approach 3). 300 mg (0.0032 mmol) PMAIGal (Mn = 94 700 g/mol; PDI = 1.07), 30 

mg PDVB-microspheres and 10 mL DMF were added to a round bottom flask. After the 

addition of 3.2 mg (0.032 mmol) hexylamine and 1.64 mg (0.01 mmol) AIBN the solution was 

degassed with nitrogen and stirred for 15 h at 60°C. The resulting grafted microspheres were 

isolated by filtration through a 0.45 µm membrane, washed extensively with THF and dried 

in a vacuum oven. 

Deprotection of sugar moieties towards water soluble PMAGal chains was performed 

according to literature.42   
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4.3 Results and Discussion 

Synthesis of mannose-containing microspheres. The chemo-enzymatic synthesis of 6-O-

methacryloyl mannose and the formation of homopolymers and diblocks thereof has been 

described earlier.38, 43, 44 Without the use of protecting group chemistry, RAFT polymerization 

seems to be the polymerization technique of choice to yield well-defined unprotected 

glycopolymers. In our case the previously used water/ethanol mixtures as the reaction 

medium were inappropriate to create a homogenous dispersion of the microsphere, which 

was overcome by changing the solvent to DMF. Kinetic studies on the solution 

polymerization of linear MAMan by the use of CPADB as chain transfer agent and AIBN as 

initiator at 70 °C are summarized in Figure 1-3. Figure 1 shows first-order kinetics even to 

rather high monomer conversion which indicates the absence of undesired side reactions 

and a short induction period of about 10 minutes. Furthermore, a linear increase of 

molecular weight with conversion is observed (Figure 2). The difference between the 

theoretical and the experimental molecular weight can be assigned to the PS-calibration of 

the GPC. As can be seen in Figure 3, monomodal SEC traces were obtained for the kinetic 

run, showing no high molecular weight shoulder, i-e. no bi-molecular termination reactions 

occurred, even at high conversion.  

 

Figure 1. First-order kinetic plot for the polymerization of MAMan in DMF at 70°C. 
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Figure 2. Evolution of molecular weight (filled squares) and polydispersity index (open squares) with 
conversion. Dashed line shows theoretical molecular weights. 

 

Figure 3. Gel permeation chromatographs of PMAMan as a function of monomer conversion χp. (-) : χp = 72%, 
(…) : χp = 55%, (- - -) : χp = 18%, (-.-.) : χp = 9%. 

To prepare spherical mannose-containing micropheres we chose the same system 

(CPADB/AIBN/70°C) as for the successful RAFT polymerization of linear PMAMan. 

Microsphere core poly(divinylbenzene) particles were prepared by distillation 

polymerization, having diameters of 2.4 µm and a thin layer consisting of lightly crosslinked 
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PDVB.28 The free vinyl groups within this layer enable the surface modification via grafting 

techniques. “Grafting through” these spheres was conducted by adding glycomonomer, 

RAFT agent and initiator to the dispersed particles in DMF and heating to 70 °C to start the 

dissociation of the initiator. During polymerization, growing polymer chains are affixed to 

the particle surface by copolymerizing with the latent styryl-groups on the spheres, followed 

by mannose glycomonomer adding to the chain end and extending the brush chain from the 

surface. After separating the free polymer from the spheres, the successful grafting is 

optically evident by the color change of the microspheres from white to pink, indicative of 

the RAFT agent used, as well as the successful suspension of the hydrophilic sugar grafted 

spheres in comparison to the initial PDVB particles, which accumulate on the water surface. 

For the calculation of the grafting density the absolute molecular weight of the polymer 

chains was determined. Given that free polymer in solution and grafted chains have 

comparable molecular weights and polydispersities,45-49 characterization of the formed 

PMAMan in solution was performed by MALDI-ToF MS. Figure 4 shows the corresponding 

trace with a number average molecular weight Mn = 42 300 g/mol. Elemental analysis of the 

mannose covered spheres revealed an oxygen content of 2.77 wt%. As the oxygen content in 

the glycomonomer is found to be 45.1 wt%, a sugar-PDVB composition of 6.1 / 93.9 and a 

corresponding weight increase of 6.5 percent can be calculated. Given the absolute 

molecular weight of the sugar chains, the amount of grafted sugar, the radius of the PDVB-

particle and hence the surface area (17.5 ∙ 10 6 nm2), 1g of glycopolymer grafted spheres 

contain 1.16 ∙ 1011 spheres and 8.69 ∙ 1017 PMAMan chains which leads to a grafting density 

of 0.43 chains per nm2 surface area. Scanning electron microscopy (SEM) was used to 

visualize the particles before (Figure 5, left) and after (Figure 5, right) grafting glycomonomer 

from the surface. A much rougher surface can be observed in the case of the mannose 

covered microspheres.  
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Figure 4. MALDI-TOF MS trace of unbound PMAMan chains in solution showing a number average molecular 
weight Mn = 42 300 g/mol. 

 

Figure 5. Scanning electron microscopy images of blank (left) and MAMan grafted (right) microspheres. The 
surface of glycopolymer grafted microspheres is distinctly coarser compared to the blank microspheres. 

  Finally, lectin interaction studies of mannose-containing polymer were performed. 

Turbidity measurements with linear PMAMan chains and different lectins were conducted to 

display any occurring interactions. Due to the multiple binding sites of the lectins, a positive 

recognition of the sugar molecules leads to the formation of aggregates and therefore to an 

increase in turbidity. It is known, that mannose-containing glycopolymer chains, which were 

esterified in the 1-carbon position, show a positive recognition towards Con A.50-52  
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Here, we tested three different proteins (Concanavalin A, Lens culinaris agglutinin 

and Pealectin-I) that bind specifically to mannose moieties. Unfortunately none of these 

proteins showed a positive recognition towards PMAMan chains (data not shown). It has 

been reported that free hydroxy groups in the 3-, 4- and 6-carbon position of mannose are 

necessary for adequate binding towards Con A.53, 54 However, no such requirement is 

provided regarding the other two mannose-binding lectins. Since the turbidity experiments 

show no binding between PMAMan and either pea or lentil lectins, it is evident that the 

esterification of the 6-carbon position of the mannose molecule to form the glycomonomer 

has inhibited its binding with these lectins as well. 

Synthesis of galactose-containing microspheres. As the used mannose glycopolymer 

showed no binding towards the selected proteins, we investigated the use of another 

glycomonomer based on a protected galactose unit for the preparation of sugar-containing 

microspheres (Scheme 1). Kinetic studies for the solution polymerization of linear PMAIGal 

with CDB as RAFT agent and AIBN as initiator are depicted in Figure 6-8. They show the 

characteristic behavior of a controlled radical polymerization such as linear molecular weight 

increase with conversion, absence of undesired side reactions and monomodal SEC traces 

even at high conversion. The rather long inhibition time can be attributed to impurities in 

the system.55 

 

Figure 6. First-order kinetic plot for the polymerization of MAIGal in DMF at 70 °C. 
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Figure 7. Evolution of molecular weight (filled squares) and polydispersity index (open squares) with conversion 
for the polymerization of MAIGal. Dashed line shows theoretical molecular weights. 

 

Figure 8. Gel permeation chromatographs of PMAIGal evolution over the course of the kinetic run. (-) : χp = 
92%, (-.-.) : χp = 52%, (…) : χp = 22%, (---) : χp = 6%. 

For the preparation of the galactose covered spheres we performed three different 

approaches to affix glycopolymer chains to the particle surface. Approach 1 was conducted 

in a similar way to the preparation of the mannose containing microspheres. To the 

dispersed PDVB-particles in DMF, glycomonomer, chain transfer agent and initiator were 

added, the mixture was degassed and put in an oil bath to start the polymerization. After 
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15h the reaction was stopped and the free polymer in solution was separated from the 

galactose-covered spheres by filtration and analyzed by SEC (Figure 9). 

 

Figure 9. SEC-traces of the soluble part of PMAIGal prepared by Approach 1 (-), Approach 2 (-.-.) and Approach 
3 (---). 

 

Table 1. Molecular weights and polydispersity indices of the soluble part of PMAIGal prepared by the different 
approaches. 

Approach 103 Mn [g/mol] a PDI a 103 Mn, abs [g/mol] b 

1 65.1 1.14 110.7 

2 42.8 1.17 68.5 

3 56.1 1.14 94.7 

a Determined by GPC using THF as eluent with PtBMA standards. b Determined by GPC using MALS detector.  

Elemental analysis of the purified glycopolymer-covered microspheres led to a sugar-

PDVB composition of 8.1 / 91.9 and a corresponding weight increase of 8.8 percent. The 

absolute number average molecular weight, Mn = 110 700 g/mol, of the formed polymer 

chains in solution was determined by MALS-SEC with THF as the eluent. The absolute 

molecular weights of the different approaches are summarized in Table 1.Given the 
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molecular weight of the chains and the amount of grafted sugar, a grafting density of 0.22 

chains per nm2 was calculated. 

Approach 2, a “grafting from” approach, towards galactose–grafted spheres 

consisted of prior modification of the particle surface by attaching the chain transfer agent 

(Scheme 2). Therefore microspheres were dispersed in toluene and kept at 60 °C for 2 days 

after the addition of CDB and AIBN. After purification of the particles via filtration, the 

successful modification is indicated by a color change from white to pink. Subsequent 

grafting from these spheres yielded sugar coated particles, and the use of sacrificial chain 

transfer agent enabled the facile characterization of the formed polymer chains. The 

absolute number-average molecular weight, Mn = 68 500 g/mol, of these chains was again 

determined by MALS-SEC. Given a sugar-PDVB composition of 7.9 / 92.1 and a 

corresponding weight increase of 8.6 percent, determined by elemental analysis, calculation 

of the grafting density led to a surface coverage of 0.35 chains per nm2. That means, the 

prior modification of the particles led to a 1.6 times higher grafting density compared to the 

first approach. As in Approach 1, grafted chains on the surface increase the steric hindrance 

and therefore hamper the diffusion of other polymer chains to the reactive sites of the 

particles, a minor grafting density in comparison to Approach 2 can be expected since the 

glycomonomer can diffuse more easily to the growing chains.  

Scheme 2. Synthesis of galactose containing microspheres by attaching the chain transfer agent to the surface, 
subsequent grafting MAIGal chains and deprotection of the sugar moieties. 

 

 

In Approach 3 a strict “grafting to” technique was conducted. As mentioned earlier, 

there are several ways to graft polymers onto surfaces like RAFT-HDA or CuAAC. In both 

cases a modification of the particle surface is required for the subsequent click reaction. A 
i ii 

i ii 
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facile method to graft onto PDVB microspheres without prior surface functionalization is to 

use thiol-ene chemistry. In the presence of primary or secondary amines, RAFT agents 

undergo aminolysis to form a thiol end group, which is indicated by the disappearance of the 

characteristic color of the CTA.56 The resulting functional group is able to undergo a thiol-ene 

reaction with vinyl groups within the slightly crosslinked poly(divinylbenzene) layer. Here, 

MAIGal chains were conjugated to spheres in the presence of hexylamine and AIBN in DMF. 

Prior solution polymerization of linear MAIGal polymer yielded chains with an absolute 

number average molecular weight Mn = 94 700 g/mol, as determined by MALS-SEC. After 

grafting these chains onto the particle surface, a sugar-PDVB composition of 6.3 / 93.7 and 

corresponding weight increase of 6.7 percent could be determined by elemental analysis. 

The resulting grafting density of 0.20 chains per nm2 is lower than the one achieved by 

Approach 1, in which during the early stage of the polymerization shorter chains link to the 

surface.  

 Deprotection of the sugar moieties via treatment with trifluoroacetic acid/water led 

to glycopolymer covered spheres that could easily be dispersed in water due to the 

hydrophilic side chains. Furthermore, deprotection led to sugar units along the chains´ 

backbone that should be able to interact with lectins. Therefore, the protein recognition 

activity of the deprotected galactose chains, which were formed in solution and separated 

from the microspheres, was investigated by turbidity measurements (Figure 10). For each 

run, linear glycopolymer chains were mixed with a protein solution, where emerging 

protein-saccharide interactions cause the formation of aggregates due to the multiple 

binding sides of proteins and therefore a decrease in transmission occurs. As a control 

experiment, Concanavalin A (Con A) and Bovine serum albumin (BSA) were mixed with the 

polymer solution and displayed no decrease in transmission. In contrast to BSA and Con A, 

Ricinus communis agglutinin (RCA120) specifically binds to galactose residues and therefore 

should result in precipitating the polymer from the solution and lead to a turbidity increase. 

As can be seen from Figure 10, the aggregate formation occurred fast and the transmission 

further decreased to 40% within 30 minutes. 
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Figure 10. Interactions of poly-galactose chains with RCA120 (-), BSA (…) and Con A (---). 

To determine the amount of protein that can be precipitated by galactose 

microspheres, UV/vis spectroscopy was performed. RCA120 (1.95 mg) in HEPES-buffer (2 mL) 

was mixed with microspheres (3.89 mg, prepared by Approach 2) and stirred over night. 

Subsequent separation of the spheres by ultracentrifugation gave a transparent solution 

which was analyzed by UV/vis spectroscopy (Figure 11). The solid line represents the lectin in 

solution before addition of the spheres. After treatment with sugar-coated spheres and 

separation of the microsphere-lectin aggregates, the decrease of peak height at λ = 280 nm 

corresponds to the adsorbed protein on galactose particles. The amount of protein left in 

solution could therefore be calculated to be 1.57 mg (Δm = 0.38 mg) which led to a weight 

increase of the sugar particles of 9.8 percent. Given a sugar-PDVB composition of 6.1 / 93.9, 

after deprotection of the glycopolymer-grafted microspheres obtained by Approach 2, and 

absolute number average molecular weights, Mn = 51 780 and 120 000 g/mol, of the sugar 

chains and lectin, one grafted glycopolymer chain is capable of binding to 0.7 molecules of 

RCA120. Assuming that the grafted polymer chains are saturated with lectin after being 

exposed to the solution overnight, this result would support that multiple galactose moieties 

on both a single and neighboring grafted polymer chain are binding to a single RCA120 

molecule. Diehl and Schlaad29 reported the synthesis of microspheres covered with 

galactose unimers by thiol-ene reaction of thio-galactose to poly(2-[isopropyl/3-butenyl]-2-

oxazoline) microspheres. 10 mg of these microspheres contained 2,8 µmol of galactose and 
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were able to precipitate 2 nmol of RCA. The high amount of grafted galactose can be 

explained by the high surface area due to the rough surface of the particles. Our 

glycopolymer-grafted microspheres contain 2.5 µmol of galactose and bind 8.1 nmol. The 

strong increase in binding affinity can be ascribed to the “glyco-cluster” effect. Even though 

galactose units next to the core are not accessible for binding, the overall amount of bound 

lectin is four times larger. SEM-images of the galactose- and the lectin-galatose-covered 

microspheres can be seen in Figure 12.  

 

Figure 11. UV/vis spectra of RCA120 in solution before (-) and after treatment with galactose microspheres (---).   

 

Figure 12. Scanning electron microscopy images of galactose-grafted microspheres (left) and protein-
microsphere agglomerates (right). 
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4.4 Conclusion 

The preparation and characterization of glycopolymer-grafted microspheres was successful. 

Using reversible addition fragmentation chain transfer polymerization, we synthesized both 

mannose and galactose covered PDVB-particles with high grafting densities (0.20 – 0.43 

chains / nm2) corresponding to 3.5 – 7.5 ∙ 106 chains / sphere. Protein recognition activity of 

mannose-containing polymer towards different lectins was absent, apparently due to the 

loss of the free hydroxy group at the 6-carbon position of the sugar molecule after enzymatic 

linkage to the methacrylic unit, no sugar-protein complex can be formed. However, 

galactose-grafted microspheres revealed a strong binding of the glycopolymer towards the 

lectin RCA120. On average, each glycopolymer chain binds 0.7 RCA120 molecules. In 

comparison to recently reported galactose covered microspheres, the use of glycopolymers 

instead of sugar unimers could increase the binding affinity towards RCA120 dramatically, due 

to the “glyco-cluster effect”. 
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Abstract 

The synthesis and characterization of acetylglucosamine-displaying microspheres consisting 

of poly(divinylbenzene) (PDVB) cores onto which chains of linear and branched glycopolymer 

chains were grafted via atom transfer radical polymerization (ATRP) and self-condensing 

vinyl copolymerization (SCVCP), respectively, are reported. PDVB particles with a diameter of 

1.5 µm exhibit a layer of lightly cross-linked PDVB in the periphery of the particle and 

therefore enable a “grafting through” approach due to the residual vinyl groups on the 

surface. The incorporation of the hydrophobic initiator-monomer (inimer) 2-(2-

bromoisobutyryloxy)ethyl methacrylate (BIEM) led to compact and branched structures in 

the shell of the core-shell particles, whereas the ratio of BIEM to 1-methacryloyloxyethyl 2-

acetamido-2-deoxy-3,4,6-triacetylglucopyranoside (tetAcGlc) affected the surface coverage. 

Lectin-binding experiments indicated a strong affinity of wheat germ agglutinin (WGA), a 

glucosamine-specific lectin, toward the hyperbranched glycopolymer covered spheres, 

increasing with the degree of branching.  

 Keywords: Atom transfer radical polymerization (ATRP), glycopolymer, 

microspheres, hyperbranched, lectin. 

 

5.1 Introduction 

In the past decades enormous emphasis has been put on the synthesis and characterization 

of synthetic polymers displaying carbohydrate moieties, well-known as glycopolymers. 

Extensive reviews were published on synthetic strategies toward all kinds of architectures 

via conventional and controlled radical polymerization, ionic and ring-opening 

polymerization.1-3 Complex three-dimensional structures could be achieved by “arm-first“ or 

“core-first” approaches yielding glycostars,4-8 glycopolymer-covered nanoparticles9, 10 or 

glycodendrimers. The latter were synthesized by attaching mono- or oligosaccharide units to 

the dendritic surface in the final synthetic step.11-14 In addition to the efforts to achieve 

perfectly branched glycodendrimers, more facile synthetic strategies were performed to 

have access to imperfect dendrimer analogues. The synthesis of highly branched 

glycopolymers was achieved by the one-pot reaction of an acrylic or methacrylic AB* 
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initiator-monomer (inimer) and glucose-containing monomers via self-condensing vinyl 

copolymerization (SCVCP) toward free and surface-grafted hyperbranched glycopolymers.15-

19 Additionally, self-condensing ring-opening copolymerizations (SCROCP) of anhydro- and 

dianhydro-sugars led to branched glycopolymers with controlled molecular weights and low 

polydispersity indices.20 Furthermore, the copolymerization of a functional glycomonomer 

and a cross-linker such as divinylbenzene or ethylene glycol dimethacrylate in the presence 

of a chain transfer agent, the so-called “Strathclyde methodology”, was performed 

successfully.21 

 In this paper, we report the synthesis and characterization of hyperbranched 

acetylglucosamine-containing polymers via SCVCP of an initiator monomer 2-(2-

bromoisobutyryloxy)ethyl methacrylate (BIEM) and the protected methacrylic 

acetylglucosamine-displaying glycomonomer 1-methacryloyloxyethyl 2-acetamido-2-deoxy-

3,4,6-triacetylglucopyranoside (tetAcGlc) (Scheme 1). As the inimer BIEM carries both a 

methacrylic unit and an initiator group for atom transfer radical polymerization (ATRP), it 

operates simultaneously as initiator and monomer. Deprotection of the sugar moieties leads 

to hyperbranched polymers with a high density of hydroxy groups. Furthermore, this 

approach was adapted to create core-shell particles consisting of poly(divinylbenzene) 

(PDVB) microspheres onto which hyperbranched polymers have been grafted (Scheme 2). 

One aim of this study was to investigate whether the composition of the hyperbranched 

glycopolymers affects the binding behavior toward the lectin wheat germ agglutinin (WGA) 

and whether the branched polymer might be superior in binding affinity compared to linear 

glycopolymers prepared via ATRP. Lectins, sugar binding proteins, bind reversibly and highly 

specifically to carbohydrates. These interactions are usually weak but can be markedly 

increased by displaying multiple saccharides in close proximity to each other, yielding 

multivalent binding sites, commonly known as the “glyco-cluster effect”.22 Introducing 

branch points toward a complex three-dimensional sugar-containing structure might 

therefore influence the multivalency effect. 
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Scheme 1. General Route toward branched glycopolymers via self-condensing vinyl copolymerization. 

 

Scheme 2. Synthesis of linear (path a) and hyperbranched (path b) glycopolymer covered microspheres. 

 

 

5.2 Experimental Section 

Materials 

Wheat germ agglutinin (WGA; 36 kDa, Aldrich), 4-(2-hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES, 99%, Aldrich), 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-D-

glucopyranose (99%, Glycon), trimethylsilyl trifluoromethanesulfonate (98%, Aldrich), CuCl 

(99%, Acros), 10-camphorsulfonic acid (98%, Aldrich) and hydroxyethyl methacrylate (98%, 

Acros) were used without further purification. 1,1,4,7,10,10-hexamethyltriethylene-

tetramine (HMTETA; 97%, Aldrich), divinylbenzene (DVB, Aldrich)  and ethyl 2-

bromoisobutyrate (EBIB; 98%, Aldrich) were distilled prior to use. The two-step synthesis of 

the protected glycomonomer tetAcGlc was carried out according to the literature.23, 24 The 

synthesis of methacrylic inimer 2-(2-bromoisobutyryloxy)ethyl methacrylate (BIEM) was 

performed according to the method described earlier.25, 26 PDVB microspheres were 

prepared by distillation polymerization of divinylbenzene (Aldrich, 80% divinylbenzene 
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isomers and 20% ethylstyrene isomers) according to the literature.27 The average particle 

size was determined by measuring the diameters in TEM images (1.5 ± 0.2 µm). 

Characterization 

Gel permeation chromatography (GPC) measurements were performed on a set of 30 cm 

SDV-gel columns of 5 µm particle size having a pore size of 102, 103, 104 and 105 Å with 

refractive index and UV (λ = 254 nm) detection. GPC was measured at an elution rate of 1 

mL/min with THF as solvent. SEC with multiangle light scattering detector (MALS-GPC) was 

used to determine the absolute molecular weights. THF was used as eluent at a flow rate of 

1.0 mL ∙ min -1; column set, 5 µm PSS SDV-gel 103, 105 and 106 Å, 30 cm each; detectors, 

Agilent Technologies 1200 Series refractive index detector and Wyatt HELEOS MALS detector 

equipped with a 632.8 nm He-Ne laser. The refractive index increments of the different 

polymers in THF at 25 °C were measured using a PSS DnDc-2010/620 differential 

refractometer. 

NMR spectroscopy: 1H NMR spectra were recorded on a Bruker 300 AC spectrometer 

using DMSO-d6 as solvent. 

Fourier-Transform Infrared Spectroscopy (FT-IR) was carried out on a Spectrum 100 

FT-IR spectrometer from Perkin Elmer. The dried samples were directly placed on top of a U-

ATR unit for measurements. 

Elemental analysis was performed by Mikroanalytisches Labor Pascher, Remagen, 

Germany. The oxygen content of bare particles (1.1 wt.-%) was subtracted to yield the 

absolute values for the grafted particles. 

Field-emission scanning electron microscopy (FESEM) was performed using a LEO 

Gemini microscope equipped with a field emission cathode. 0.1 g/L polymer solutions were 

dropped on the sample carrier and the solvent evaporated. 

UV/vis spectroscopy was performed on a Lambda 25 spectrometer of Perkin Elmer.  
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Polymerizations 

All polymerizations were carried out in round-bottom flasks sealed with a plastic cap. A 

representative example for the SCVCP of (γ = [tetAcGlc]0 / [BIEM]0 = 1) in solution is as 

follows: a mixture of  tetAcGlc (249 mg, 0.54 mmol), BIEM (151 mg, 0.54 mmol), CuCl (1.0 

mg, 0.01 mmol) and DMSO (4 mL) was deoxygenized for several minutes by purging with 

nitrogen. After addition of HMTETA (2.3 mg, 0.01 mmol), samples of the reaction were 

withdrawn at timed intervals to monitor the reaction kinetics. The conversion was detected 

by 1H-NMR and the reaction was quenched at ~ 95 % conversion. The solution was passed 

through a silica column and the polymer finally precipitated from THF into diethyl ether. The 

setup was adopted for the preparation of copolymer-covered microspheres. In all 

experiments, the microspheres (50 wt.-% with respect to the total amount of comonomers) 

were added to tetAcGlc, BIEM, CuCl and DMSO and the mixture degassed. After addition of 

HMTETA the mixture was stirred for 10 days at room temperature, and the resulting grafted 

microspheres were isolated by filtration through a 0.45 µm membrane, washed extensively 

with THF and dried in a vacuum oven. For the synthesis of linear grafted glycopolymer 

microspheres ethyl 2-bromoisobutyrate (EBIB) was used to initiate the polymerization of 

tetAcGlc with a monomer to initiator to catalyst ratio of [tetAcGlc]0 / [EBIB]0 / [catalyst]0 = 

40:1:1. 

Deprotection of free and surface grafted hyperbranched glycopolymers was 

performed according to the literature under basic conditions via NaOMe in a 1:1 mixture of 

CHCl3 and MeOH.28 

5.3 Results and Discussion 

Synthesis of Hyperbranched Glycopolymers via SCVCP in Solution. To find a suitable 

catalyst system for the synthesis of linear and surface-grafted PtetAcGlc, we previously 

investigated the effect of the ATRP catalyst system on the homopolymerization of 

tetAcGlc.29 CuCl as catalyst and HMTETA as ligand were found to be the system of choice for 

the preparation of well-defined glucosamine-displaying glycopolymers. On the basis of these 

results, self-condensing vinyl copolymerizations of tetAcGlc and BIEM in solution were 

performed using different ratios of glycomonomer to inimer,γ. From γ = 15, corresponding to 
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15 glycomonomers per inimer, the amount of inimer was steadily increased until an equal 

ratio of tetAcGlc and BIEM (γ = 1), yielding a library of branched to hyperbranched polymers. 

The copolymerizations were carried out at room temperature in DMSO while keeping the 

comonomer to catalyst ratio constant.  

Figure 1 shows first-order kinetics of the prepared branched glycopolymers. Although 

the initial concentration of BIEM in solution decreases with increasing γ, the apparent rate of 

polymerization kapp increases. Although more initiator groups were introduced with 

decreasing γ, the lower kapp might indicate a fast formation of macroinimers but slow 

condensation of these macroinimers among each other. Furthermore, the increase of the 

[initiator]0 / [catalyst]0 ratio by decreasing γ might cause the lower kapp. 

For comparison, the results of an earlier reported polymerization toward linear 

PtetAcNGlc via ATRP with a monomer to initiator ratio [tetAcGlc]0/[EBIB]0 = 100 were 

added.29 The fast homopolymerization of tetAcGlc corroborates the assumption that a slow 

condensation of the macroinimers is responsible for the decrease of kapp. The experimental 

results are summarized in Table 1. 

The molecular weights and molecular weight distributions of the copolymers were 

characterized by conventional GPC and GPC/viscosity and are shown in Table 1.  All samples 

show relatively low polydispersities, whereby the elution curves (Figure 2) shift to higher 

molecular weights with decreasing amount of BIEM in the feed. Furthermore, the GPC traces 

show two populations indicating the presence of macroinimers and condensation products 

thereof. 
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Table 1. Self-condensing vinyl copolymerisation of BIEM and tetAcGlc at different comonomer ratios,γ. 

γ a) [Initiator]0 / 

[catalyst]0 

[Initiator]0 / 

[mmol∙ L-1] 

Reaction 

time [h] 

kapp 

[min-1] 

Mn (Mw/Mn) b) 

[g mol-1] 

Mn (Mw/Mn) c) 

[g mol-1] 

α d) 

1 50 135 20 0.003 5 000 (1.45) 9 900 (1.32) 0.22 

2 33 84 12 0.005 5 500 (1.43) 10 600 (1.24) 0.25 

5 17 39 4 0.016 7 000 (1.38) 12 400 (1.27) 0.26 

15 6 14 2 0.044 11 000 (1.29) 19 500 (1.23) 0.31 

Linear e) 1 5 2.5 0.026 49 900 (1.09) - 0.47 f) 

a)  γ = [tetAcGlc]0 / [BIEM]0. Copolymerisation at room temperature with CuCl and HMTETA at a constant 
comonomer to catalyst ratio: µ = ([tetAcGlc]0 + [BIEM]0)/[catalyst]0 = 100. Reactions were stopped at ~ 95 % 
conversion. b) Determined by GPC using THF as eluent with PtBMA standards. c) Determined by GPC/viscosity 
measurements. d) Mark-Houwink exponent as determined by GPC/viscosity measurement. e) The synthesis of 
linear PtetAcGlc, [tetAcGlc]0/[EBIB]0 = 100, was reported earlier.29 f) Determined from a mixture of PtetAcGlc 
with different molecular weights. 

 

 

Figure 1. First-order kinetic plots for the SCVCP of BIEM and tetAcGlc at different comonomer ratios γ. Filled 
squares: γ = 15; filled triangles: γ = 5; open squares: γ = 2; and filled circles: γ = 1. The ATRP of linear PtetAcGlc 
with a monomer to initiator ratio [tetAcGlc]0/[EBIB]0 = 100 was reported earlier (open circles).29 
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Figure 2. GPC traces of branched glycopolymers obtained at different comonomer ratios. Curves from top to 
bottom: γ = 15, γ = 5, γ = 2, and γ = 1. 

Mark-Houwink plots and contraction factors g´ = [µ]branched / [µ]linear as a function of 

the molecular weight are shown in Figure 3. The decrease of g´ with increasing molecular 

weight and the decrease of α with decreasing comonomer ratio γ indicate compact and 

branched structures. The dependence of the Mark-Houwink exponent α on the theoretical 

fraction of branch points is depicted in Figure 4. In contrast to the Mark-Houwink exponent 

of a mixture of linear PtetAcGlc, α = 0.47, indicating a random coil conformation, the 

exponents of the synthesized branched polymers are in the range of 0.22 – 0.31. The 

decrease of the Mark-Houwink exponent α from γ = 15 to γ = 1 confirms the increase of 

branch points within the polymer and therefore compact structures. 
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Figure 3. (left) Mark-Houwink plots and (right) contraction factors g´ = [µ]branched / [µ]linear for the obtained 
polymers. Filled squares: linear poly(tetAcGlc); open circles: γ = 1; filled triangles: γ = 2; open squares: γ = 5; 
open triangles: γ = 15. 

 

Figure 4. Dependence of the Mark-Houwink exponent α on the comonomer ratio γ. Filled square: mixture of 
linear PtetAcGlc with different molecular weights. 

Deprotection of the sugar moieties was performed according to the literature28 under 

basic conditions via NaOMe in a 1:1 mixture of CHCl3 and MeOH and led to water-soluble 

polymers in the whole range of γ = 1 to γ = 15. FT-IR spectra of the linear and hyperbranched 

glycopolymers before and after deprotection are shown in Figure 5. In the case of 

poly(tetAcGlc) a characteristic peak at 1750 cm-1, which can be attributed to –NH-CO-bonds, 

is observed whereas poly(BIEM) showed strong absorption bands in the fingerprint area at 

1100 cm-1. The branched glycopolymer, γ = 1, revealed the mentioned characteristic 

absorption bands of both tetAcGlc and BIEM, indicating the incorporation of both 
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monomers. Furthermore, after deprotection of the sugar moieties, higher absorption bands 

at 3400 cm-1, due to stretching vibrations of the hydroxyl groups of the sugar, can be 

observed. 

 

Figure 5. IR spectra of (a) linear poly(tetAcGlc), (b) deprotected copolymer  γ = 1, (c) protected copolymer  γ = 1 
and (d) poly(BIEM). 

Synthesis of Hyperbranched Glycopolymer-Covered Microspheres via Surface-Grafting 

SCVCP. PDVB core particles were prepared via distillation-precipitation polymerization of 

divinylbenzene in acetonitrile as reported by Bai et al.,27 yielding microspheres with a 

diameter of 1.5 µm. PDVB spheres display residual vinyl groups on the surface due to a layer 

of lightly cross-linked PDVB in the outer periphery of the particle.30 The remaining double 

bonds enable the attachment of polymer chains to the surface via various grafting 

techniques.31-37 The “grafting through” approach in this study led to microspheres covered 

with linear or hyperbranched glycopolymers via ATRP and SCVCP, respectively. In this 

approach hyperbranched polymers first grow in solution, then add to the PDVB vinyl groups, 

and grow further in a grafting onto - grafting from fashion. Given that surface grafted and 

free polymers in solution have comparable molecular weights and polydispersity indices,38-42 

the characterization of the unbound glycopolymers is a facile way to determine the 

properties of the grafted polymers. The experimental results are summarized in Table 2. 

Because of the extended reaction time in comparison to the preparation of free 

hyperbranched glycopolymers reported above, almost full conversion could be achieved in 

all runs. Furthermore, the extended reaction time assures the maximal coverage of the 
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particles with linear or hyperbranched glycopolymers. Figure 6 shows 1H NMR spectra of 

linear poly(tetAcGlc), hyperbranched glycopolymer (γ = 1) and poly(BIEM). The characteristic 

peaks at 4.0 – 4.5 ppm for poly(BIEM), obtained via a homo-SCVCP of BIEM, can be 

attributed to the four protons of the ethylene linkage of BIEM. Linear poly(tetAcGlc) displays 

three protons in the range of 4.5 – 5.3 ppm and eight protons at 3.5 – 4.5 ppm. The BIEM 

content in the copolymers obtained by SCVCP could be determined by comparing the peaks 

at 3.5 – 4.5 ppm attributed to the sum of eight protons of the poly(tetAcGlc) segment and 

four protons of the ethylene linkage of BIEM and the peaks at 4.5 – 5.3 ppm corresponding 

to three protons of poly(tetAcGlc) according to previous studies (Figure S1).17 The contents 

of BIEM within the copolymers obtained by NMR are in good agreement with the theoretical 

ones calculated from the composition in feed. 

Once the content of BIEM within the copolymer is known, the oxygen content of the 

formed polymers can be calculated. These oxygen contents range from 38.3 wt.-% for the 

linear poly(tetAcGlc) to 30.9 wt.-% for the hyperbranched copolymer with equal amounts of 

BIEM and tetAcGlc (γ = 1). After elemental analysis of the different polymer grafted spheres 

to determine the oxygen content, one can calculate the amount of grafted copolymer. In the 

case of the microspheres with γ = 1 an oxygen content of 0.74 wt.-% was found via 

elemental analysis, which corresponds to a copolymer / DVB composition of 2.4 / 97.6 and a 

weight increase of 2.5 percent. As the ratio of incorporated BIEM is 0.48, the amount of 

grafted tetAcGlc can be calculated to be 1.53 wt.-%. The results of the surface-grafting 

SCVCP experiments are summarized in Table 2.  An increase in incorporated inimer, which 

results in more compact and branched structures, leads to an increase in particle coverage 

(1.6 – 2.4 wt.-%). This might be caused by the generation of a high number of possible 

anchor groups within the copolymer that can attack the double bonds on the particle 

surface. As expected, the corresponding amount of sugar that is grafted on the spheres is 

increasing with increasing ratio of sugar in the feed in case of the branched copolymers (1.5 

– 1.9 wt.-%). The total absence of BIEM in the case of the linear PtetAcGlc grafted 

microspheres led to a weight increase of 1.64 percent.  
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Table 2. Synthesis of linear and hyperbranched covered microspheres. 

a) γ = [tetAcGlc]0 / [BIEM]0. Comonomer to catalyst ratio: ([tetAcGlc]0 + [BIEM]0) / [catalyst]0 = 100. b) Monomer 
to initiator to catalyst ratio: [tetAcGlc]0 / [EBIB]0 / [catalyst]0 = 40:1:1. c) Determined by GPC using THF as eluent 
with PtBMA standards. d) BIEM ratio in the polymer as determined by 1H-NMR.  e) Theoretical BIEM content 
calculated from the composition in feed. f) Determined from elemental analysis. The oxygen content of the 
bare particles is subtracted. 

 

Figure 6. 1H-NMR spectra of poly(BIEM) (a), hyperbranched poly(tetAcGlc) (γ = 1, b) and 
linear poly(tetAcGlc) (c) in DMSO-d6. 

Deprotection of the sugar moieties via treatment with NaOMe led to acetylglucosamine-

displaying spheres that could be easily dispersed in water and therefore enabled the 

investigation of the binding behavior of these sugar-covered microspheres toward lectins. As 

the glycopolymer spheres display sugar units along the surface, it should be possible to 

detect a positive recognition activity toward wheat germ agglutinin (WGA), a lectin that 

binds specifically to glucosamine residues. To determine the amount of lectin that could be 

bound by the different glycopolymer grafted microspheres, UV/vis spectroscopy was 

Run Mn (Mw/Mn) c) 

[g mol-1] 

BIEMNMR d) BIEMtheo e) Oxygen 

content  f) 

[wt.-%] 

Grafted 

copolymer  f) 

[wt.-%] 

Grafted 

tetAcGlc  f) 

[wt.-%] 

γ = 1 a) 5 500 (1.44) 0.48 0.50 0.74 2.39 1.53 

γ = 2 a) 5 700 (1.42) 0.34 0.33 0.71 2.15 1.65 

γ = 5 a) 7 400 (1.35) 0.18 0.17 0.74 2.08 1.86 

Linear b) 20 800 (1.13) - - 0.62 1.62 1.62 
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performed. Therefore, 2 mL of a stock solution of WGA in HEPES buffer (0.33 mg ∙ mL-1) was 

mixed with 2 mg of glycopolymer-covered microspheres and stirred for 5 hours. After 

centrifugation of the microsphere-lectin aggregates the supernatant was analyzed by UV/vis 

spectroscopy. By comparison of the spectra taken before and after treatment with the 

microspheres the amount of adsorbed lectin can be calculated. Representative UV/vis 

spectra for γ = 1 are shown in Figure 7. The decrease of peak height at λ = 276 nm 

corresponds to the adsorbed protein on the microspheres and was found to be 4.0 ∙ 10 -2 mg 

per mg of microsphere. After deprotection of the sugar moieties, the amount of grafted 

glycopolymer is found to be 1.1 ∙ 10-2 mg which leads to 3.6 mg of adsorbed protein per mg 

of grafted acetylglucosamine on the sphere. The results of all UV/vis experiments are 

summarized in Table 3. With increasing content of BIEM in the copolymer the amount of 

adsorbed protein per mg of grafted acetylglucosamine on the sphere is increasing. It is 

remarkable that the incorporation of ~50% of the hydrophobic linker BIEM for γ = 1 led to an 

increase in adsorption of 26% compared to the branched glycopolymer with γ = 5. This 

indicates a further increase of the “glyco-cluster effect” with implementation of branch 

points. In comparison to this, the linear grafted microspheres showed a higher binding 

affinity than the branched glycopolymer with γ = 5 but a lower binding affinity than the 

branched glycopolymer with γ = 2. Two competing mechanisms could cause this 

phenomenon. On the one hand, the implementation of branch points creates a compact 

structure that hampers the diffusion of protein molecules inside the copolymers. On the 

other hand, they increase the interaction between saccharides and proteins by displaying 

multiple saccharides in close proximity to each other, yielding multivalent binding sites, and 

therefore increase the “glyco-cluster effect”.  

Field emission scanning electron microscopy (FESEM) images of the ungrafted and 

grafted microspheres are shown in Figure 8. After grafting hyperbranched glycopolymer a 

coarser surface in comparison with the blank microspheres is observed. After adsorption of 

wheat germ agglutinin more organic materials that cover the spheres as well as a strong 

agglutination of the spheres can be recognized. 
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Figure 7. UV/vis spectra of WGA in solution before (solid curve, c = 0.33 mg ∙ mL -1) and after treatment with 
hyperbranched glycopolymer-covered microspheres (γ = 1) (dotted curve).   

 

Table 3. Protein adsorptions on linear and hyperbranched microspheres as determined by UV/vis 
measurements. 

a) γ = [tetAcGlc]0 / [BIEM]0. Comonomer to catalyst ratio: ([tetAcGlc]0 + [BIEM]0) / [catalyst]0 = 100. b) Monomer 
to initiator to catalyst ratio: [tetAcGlc]0 / [EBIB]0 / [catalyst]0 = 40:1:1. c) After deprotection of sugar moieties. 

 

 

Run Adsorbed Protein per mg 

Microsphere  

[10-2 mg] 

Grafted NGlc  per mg 

Microsphere c)  

[10-2 mg] 

Adsorbed Protein per mg 

NGlc [mg] 

γ = 1 a) 4.01 1.11 3.61 

γ = 2 a) 4.19 1.20 3.50 

γ = 5 a) 3.85 1.35 2.86 

Linear b) 3.66 1.17 3.12 
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Figure 8. FESEM images of (left) ungrafted and glycopolymer grafted (γ = 1) microspheres (middle) before and 
(right) after addition of wheat germ agglutinin. 

5.4 Conclusions 

The preparation and characterization of linear and hyperbranched glycopolymer grafted 

microspheres were successful. The surface coverage of the poly(divinylbenzene) particles is 

directly related to the composition of the copolymers in the feed. An equal molar amount of 

the hydrophobic linker and methacrylic glycomonomer led to the most compact three-

dimensional structure within the shell and the highest weight increase. Furthermore, this 

hyperbranched copolymer showed the highest capability to adsorb the lectin wheat germ 

agglutinin in relation of grafted glucosamine repeating units, whereby an increase of 16 

percent to the linear grafted glycopolymer chains could be detected. 
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5.6 Supporting Information 

 
Figure S1. 1H-NMR spectrum of hyperbranched glycopolymer with γ = 1. 
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6.1 Introduction 

The development of superparamagnetic nanoparticles for potential applications in cell 

targeting, bioseparation, drug delivery and magnetic resonance imaging (MRI) is of 

considerable current interest.1-5 In general, iron oxide particles depict higher 

biocompatibility and chemical stability compared to other metal oxides and can be easily 

encapsulated by nontoxic materials such as silicon oxide. For this the well-known Stöber 

method as well as reverse microemulsion have been performed to provide access to silica-

encapsulated iron oxide particles.6, 7 In addition to superparamagnetic nanoparticles, 

fluorescent materials show likewise enormous potential in biotechnological applications and 

find application in sensor technology or biological imaging.8-11 However, the therapeutic use 

of these particles is often hampered by unfavorable solubility, stability and toxicity of the 

compounds. The latter applies especially for quantum dots, which are of special interest for 

biological imaging but limited in use due to the leakage of heavy metals.12-14 To overcome 

these disadvantages and to broaden the applications of composite particles in biosensors 

and diagnostic medical devices, emphasis has been put on the synthesis of both magnetic 

and fluorescent silica particles.15-18 The combination of these two functionalities leads to 

fluorescent nanoparticles that can be physically manipulated by an external magnetic field or 

provide contrast enhancement in magnetic resonance imaging (MRI). By functionalizing 

these nanoparticles with targeting ligands, e. g. carbohydrates, it should be possible to 

target specific structures and tissues in vivo. 

 Carbohydrate-protein interactions are involved in a multitude of cellular recognition 

processes such as cell growth regulations, adhesion, cancer cell metastasis, inflammation by 

bacteria and viruses and immune response.19, 20 Furthermore, the uptake of saccharides by 

specific receptors is essential for the cell. The lock-and-key interactions between saccharides 

and proteins are generally weak but can be increased dramatically by displaying multiple 

saccharides in close proximity to each other, commonly known as the “glyco-cluster 

effect”.21 Therefore, the surface modification of functional particles with carbohydrates 

should not only improve the biocompatibility and solubility, but have an influence on the 

cellular uptake of the particles. As the cellular uptake of unmodified silica particles is usually 

confined to endosomes or phagosomes, surface modification should overcome the limits of 

using silica particles as cytoplasmic and nuclear imaging agents.22, 23  
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 We report the synthesis of fluorescent, magnetic galactose-displaying core-shell 

nanospheres by grafting a glycocopolymer consisting of 6-O-methacryloyl-galactopyranose 

(MAGal) and 4-(pyrenyl)butyl methacrylate (PyMA) onto silica encapsulated iron oxide 

particles (Scheme 1). In the first step, highly crystalline iron oxide (maghemite, γ-Fe2O3) 

nanoparticles were prepared by thermal decomposition of iron pentacarbonyl in the 

presence of oleic acid. The second step contained the encapsulation of the maghemite 

particles with silicon oxide via a reverse microemulsion method. The protective silica shell 

does not only serve to protect the magnetic particles against degradation, but can also be 

used for further functionalization. Here, the surface modification of the nanospheres via 3-

(trimethoxysilyl)propyl methacrylate (MPTS) led to methacrylate-carrying particles onto 

which glycopolymer chains could be grafted via the thiol-ene reaction. In general, the 

incorporation of a hydrophilic shell allows the good solubility of the particles in aqueous 

medium and can prevent the early detection by the reticuloendothelial system in vivo and 

therefore elongating the blood circulation time of the particles. 

Scheme 1. Synthesis of glycopolymer-grafted magnetic and fluorescent nanoparticles. 

 

6.2 Experimental Section 

Materials 

Polyoxyethylene nonylphenylether (Igepal® CO 520), 3-(trimethoxysilyl) propylmethacrylate 

(MPTS; 98%), ammonium hydroxide (NH4OH, 28% in H2O), tetraethoxysilane (TEOS; 98%), 

hexylamine (99%), dimethylphenylphosphine (99%) and hydroquinone (99%) were obtained 

from Aldrich and used without further purification. 2,2′-Azobis(isobutyronitrile) (AIBN, 

Aldrich, 98%) was recrystallized twice from methanol prior to use. Glycomonomer 6-O-
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methacryloyl-1,2:3,4-Di-O-isopropylidene-galactopyranose (MAIGal),24 magnetic iron oxide 

particles,25 4-(pyrenyl)butyl methacrylate (PyMA)26 and chain transfer agent 2-cyanoprop-2-

yl dithiobenzoate (CPDB)27 were prepared according to the literature. 

Synthesis 

Synthesis of a galactose- and pyrene-containing glycocopolymer via RAFT polymerization. 

30.4 mg (0.13 mmol) CPDB and 5.6 mg (0.03 mmol) AIBN were added to 2.7 g (8.22 mmol) of 

MAIGal in 35 mL DMF and the mixture degassed by bubbling with nitrogen. After placing the 

reaction vessel in a 70 °C oil bath, the reaction was monitored by near-infrared 

spectroscopy. After 22 h (86% conversion) a sample was drawn to analyze the glycopolymer 

by GPC and 1H-NMR spectroscopy. Subsequent addition of degassed 469 mg (1.37 mmol) 

PyMA in 1 mL DMF enabled the incorporation of the fluorescent dye in the glycocopolymer. 

The reaction was quenched after 6 h, analyzed by 1H-NMR spectroscopy and GPC and the 

glycocopolymer purified by dialysis against THF for 3 days. The solvent was evaporated and 

the polymer finally freeze-dried from dioxane. The purified copolymer was analyzed by 1H-

NMR spectroscopy and GPC-MALS to determine the composition and the absolute molecular 

weight of the copolymer. Deprotection of the sugar moieties towards water soluble PMAGal-

b-(PMAGal-co-PPyMA) chains was performed according to literature.28 

Synthesis of silica encapsulated iron oxide nanospheres. 2.3 g (5.44 mmol) Igepal CO-

520 in 45 mL cyclohexane in a 100 mL vial was placed in an ultrasonic bath for 10 min. After 

addition of 4 mL of iron oxide particles in toluene, the mixture was vortexed for 30 min, 

followed by the addition of 0.4 mL ammonia hydroxide (30 % in water) to form a reverse 

microemulsion. Encapsulation of the maghemite particles took place after the addition of 0.3 

mL TEOS after which the mixture was vortexed for 48 h. The resulting particles were 

repeatedly centrifuged and redispersed in EtOH (3x) and toluene (3x). To 80 mg of the 

particles in 10 mL toluene, 1 mL MPTS and a catalytic amount of triethylamine and 

hydroquinone was added and the mixture stirred for 48 h at 90° C to create double bonds on 

the particle surface. Repeated centrifugation and redispersion of the particles in DMSO 

yielded methacrylate-carrying magnetic particles that were kept in solution. 

Michael addition towards magnetic and fluorescent glycopolymer-displaying silica 

particles. To 100 mg of the deprotected glycocopolymer PMAGal-b-(PMAGal-co-PPyMA) in 3 
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mL DMSO, 30 µL hexylamine, 10 µL DMPP and 30 mg of silica-encapsulated magnetic 

particles (dispersed in 2 mL DMSO) were added and the mixture stirred for 24 h at room 

temperature. In presence of hexylamine the CTA undergoes aminolysis to form a thiol-group 

that is able to react with the double bond carrying particles via the Michael addition. 

Isolation of the magnetic glycopolymer particles was performed by extensive magnetically 

collecting and redispersion cycles.   

Characterization 

Gel permeation chromatography (GPC) measurements were performed on a set of four 30 

cm SDV-gel columns of 5 µm particle size having pore sizes of 102, 103, 104 and 105 Å with 

refractive index and UV (λ = 254 nm) detection. GPC was measured at an elution rate of 1 

mL/min with THF as solvent. SEC with multi-angle light scattering detector (MALS-GPC) was 

used to determine the absolute molecular weights. THF was used as an eluent at a flow rate 

of 1.0 mL ∙ min -1: column set, 5µm PSS SDV-gel 103, 105 and 106 Å, 30 cm each; detectors, 

Agilent Technologies 1200 Series refractive index detector and Wyatt HELEOS MALS detector 

equipped with a 632.8 nm He-Ne laser. The refractive index increments of the different 

polymers in THF at 25 °C were measured using a PSS DnDc-2010/620 differential 

refractometer. 

NMR-spectroscopy: 1H and 13C NMR spectra were recorded on a Bruker 300 AC 

spectrometer using CDCl3 or DMSO-d6 as solvent and internal solvent signal. 

Field-emission scanning electron microscopy (FESEM) was performed using a LEO 

Gemini microscope equipped with a field emission cathode.  

UV/vis spectroscopy measurements were performed on a Shimadzu RF-5301 PC 

fluorescence spectrometer and a Hitachi U-300 spectrophotometer. 

Online FT-NIR spectroscopy measurements were recorded with a Zeiss MCS 611 NIR 

2,0 HR. Online monitoring was accomplished using a all-quartz probe (Hellma, 661.060) with 

an optical path length of 10 mm that is connected to the spectrometer via 2 m fibre-optical 

cables. Data processing was performed with processXplorer software, whereby the change 

in peak height at 1628 cm-1 was recorded. 
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Vibrating Sample Magnetometry (VSM) monitors the magnetization curves at room 

temperature with an ADE Magnetics Vibrating Sample Magnetometer EV7 up to a maximum 

field strength of 2.2 T. A typical experiment consisted of a virgin curve, followed by a full 

hysteresis loop. Samples were measured in sealed Teflon vessels, placed on a glass sample 

holder between two poles of an electromagnet and vibrated at a frequency of 70 Hz. 

Transmission electron microscopy (TEM) images were taken with a Zeiss CEM902 

EFTEM electron microscope operated at 80 kV or a Zeiss EM922 OMEGA EFTEM electron 

microscope operated at 200 kV. Both machines are equipped with an in-column energy 

filter. Samples were prepared through deposition of a drop of the solution (concentration 

0.1 g∙ L -1) onto carbon-coated TEM grids. Afterwards the remaining solvent was removed 

with a filter paper. 

Cell Culture. A549 (CCL-185) lung epithelial cells were purchased from LGC Standards 

ATCC (Wesel, Germany) and were cultured in DMEM (high glucose, PAA, Cölbe, Germany) 

supplemented with 10% FCS (PAA, Cölbe, Germany), 100 μg/mL streptomycin (PAA, Cölbe, 

Germany) ,100 IU/mL penicillin (PAA, Cölbe, Germany), and 2 mM L-Glutamine (PAA, Cölbe, 

Germany). Cells were cultivated at 37 °C in a humidified 5% CO2 atmosphere. 

Delivery Assay. A549 cells were inoculated at a density of 2 × 105 cells/well in six-well 

plates 24 h before experiment. The culture media was replaced by OptiMEM (Invitrogen, 

Carlsbad, California) 1 h before 20 µg of the polymers were added to the cells for 24 h.  

Cell staining and microscopy. After 24 h of incubation, the cells were washed with 

PBS, fixed with 4% para-formaldehyde and permeabilized with methanol at -20 °C for 10 

min. Samples were blocked with 5% bovine serum albumin plus 0.3% TritonX-100 in 

phosphate-buffered saline (PBS, blocking solution) for 60 min. Primary antibody (mouse anti-

NUP98, NEB, Ipswich, Massachusetts) was diluted 1:50 in block solution and cells were 

incubated for 2 h at 37 °C and washed four times with PBS. Fluorescent secondary antibody 

(goat anti-mouse FITC, Sigma Aldrich, St. Louis, Missouri) diluted 1:160 in block solution was 

applied for 30 min and cells were washed as described above. Coverslips were mounted in 

Prolong Gold mounting medium (Invitrogen, Carlsbad, California) according to the 

manufacturer’s instructions. The cells were observed with an epifluorescence microscope 

(Olympus BX51TF, Hamburg, Germany). In addition, images were obtained using a laser 
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scanning confocal microscope (Leica TCS-SP5, Leica, Wetzlar, Germany) equipped with 

argon, neon, and UV lasers. Fluorescence images were captured and processed with a digital 

imaging processing system (Leica TCS software, Leica, Wetzlar, Germany). The different 

excitation/emission conditions for pyrene and FITC were used in separate channels with the 

X63 oil immersion objective. 

6.3 Results and Discussion 

Synthesis of fluorescent galactose-displaying glycopolymer. To create a fluorescent 

glycopolymer that can be attached to silica spheres, we performed the sequential RAFT 

polymerization of the glycomonomer MAIGal and PyMA in the presence of the chain transfer 

agent CPDB in DMF. The synthesis of the first block, consisting of the homoglycopolymer 

PMAIGal containing protected galactose moieties, was performed with an initial molar ratio 

of monomer to CTA of 60, [MAIGal]0/[CPDB]0/[AIBN]0 = 60:1:0.25, and monitored via near-

infrared spectroscopy (Figure 1). The mixture was stirred for 22 hours at 70 °C, yielding a 

monomer conversion of 86%. After the addition of PyMA ([MAIGal]0/[PyMA]0 = 6:1), the 

reaction was continued for additional 6 hours to yield the fluorescent glycocopolymer 

PMAIGal-b-(PMAIGal-co-PPyMA). Figure 2 shows first-order kinetics even to high monomer 

conversion indicating the absence of undesired side reactions. This is confirmed by 

monomodal GPC traces and the absence of high molecular weight shoulders, which would 

indicate a bi-molecular reaction (Figure 3). The number-average molecular weight of the 

homoglycopolymer before addition of PyMA was found to be Mn = 13 700 g ∙ mol -1 with a 

corresponding polydispersity index of 1.22, determined by conventional GPC. The further 

incorporation of glycomonomer as well as PyMA increased the molecular weight to Mn = 14 

800 g ∙ mol -1 whereas the molecular weight distribution was lowered to 1.18. To determine 

the absolute composition and molecular weight of the diblock, 1H-NMR spectroscopy and 

GPC measurements with MALS detection were performed. Given an absolute molecular 

weight Mn = 26 100 g ∙ mol -1, the first block was found to contain 71 units of galactose-

containing repeating units, whereas the second block was built up by a statistical copolymer 

of 4 sugar and 5 pyrene units. Deprotection of the sugar moieties via treatment with 

trifluoroacetic acid and water led to a fluorescent diblockcopolymer as shown in Figure 4.  
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Figure 1. RAFT polymerization of MAIGal (filled squares) with CPDB as chain transfer agent. Addition of PyMA 
led to the formation of the second block containing a statistical sequence of MAIGal and PyMA (open squares). 

 

Figure 2. First-order kinetic plot for the polymerization of MAIGal (filled squares) and after addition of PyMA 
(open squares). 
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Figure 3. Gel permeation chromatographs of PMAIGal homopolymer (dashed line) and fluorescent copolymer 
(solid line). 

 

Figure 4. Composition of the fluorescent diblockcopolymer after RAFT polymerization and deprotection of the 
sugar moieties via treatment with trifluoro acetic acid and water.  

Synthesis of magnetic and fluorescent glycopolymer-displaying nanospheres. Highly 

crystalline and monodispers maghemite nanoparticles with a diameter of 14 nm were 

prepared by controlled oxidation of iron nanoparticles that were generated from the 

thermal decomposition of an iron complex as described by Hyeon et al.25 In the next step, 

the oleic acid covered γ-Fe2O3 particles were coated with a silica shell by adopting a method 

described by Yi et al.29 for the preparation of silica encapsulated nanocomposites of 

magnetic particles and quantum dots. Therefore the black solution of iron oxide particles in 

toluene was introduced to a solution of the surfactant Igepal CO-520 in cyclohexane and 

vortexed. The addition of ammonium hydroxide formed a reverse microemulsion whereas 

subsequent addition of tetraethyl orthosilicate started the growth of the silica shell. The 

nanocomposite particles were aged for 48 hours and purified by several cycles of 

centrifugation and redispersion in ethanol and toluene. By this, highly monodisperse silica 
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particles containing exclusively one maghemite core could be obtained. TEM measurements 

led to a particle size of 65.2 nm and corresponding shell thickness of 25.6 nm that 

encapsulated the 14 nm sized iron oxide particles. 

The hydrophilic silica particles were transformed into double-bond bearing spheres 

that are suitable for grafting approaches by condensation of MPTS onto the surface of the 

particles. Optical evidence of the successful reaction is the easy dispersion of the formed 

hydrophobic particles in the aprotic solvent toluene. 

Various approaches can be performed to attach polymer chains to solid substrates, 

among them RAFT-hetero Diels-Alder cycloaddition (RAFT-HDA)30 or copper-catalyzed 

Huisgen 1,3-dipolar cycloaddition of azides and alkynes (CuAAC).31 These methods are widely 

investigated but still exhibit some disadvantages. In CuAAC traces of heavy metals might not 

be excluded whereas in RAFT-HDA only specific chain transfer agents can be used that may 

include elaborate synthesis steps. In contrast to this, thiol-ene chemistry is a more facile 

strategy to attach polymers on surfaces. In the presence of primary or secondary amines, 

RAFT agents undergo aminolysis to form a thiol end group, which is able to react with 

double-bond bearing substrates in a thiol-ene reaction via radical or anionic mechanism.32, 33 

 Here, the surface modification of the silica particles towards methacrylic-displaying 

spheres enabled the Micheal addition of the thiol group to the methacrylic units. In presence 

of the electron withdrawing carboxy group, no radical source is needed to initiate the 

reaction. To the mixture of deprotected fluorescent glycocopolymers and the double-bond-

functionalized particles in DMSO, hexylamine and DMPP were added to start the aminolysis 

and anionic chain reaction, whereby the loss of the characteristic color of the chain transfer 

agent indicated the formation of the thiol group. TEM- and SEM images of the different 

particles can be seen in Figure 5. 

 



Chapter 6                                                           Magnetic, Fluorescent Glycopolymer Hybrid Nanoparticles 
 

122 
 

 

Figure 5. (left) TEM-image of oleic acid stabilized maghemite particles. (middle) TEM-images of ungrafted MPS-
functionalized magnetic silica particles. (right) SEM-image of the protected glycopolymer covered spheres. The 
scale bars represent 100 nm. 

Optical and magnetic properties. After isolation of the glycopolymer-covered particles via 

repeated magnetically collecting and redispersing cycles, the successful attachment of the 

fluorescent glycocopolymer chains to the magnetic silica spheres was confirmed by UV/vis 

spectroscopy measurements (Figure 6). The absorption curve demonstrates that the 

particles absorb light at wavelengths < 400 nm and emit light with a fluorescence maximum 

at 475 nm, measured at an excitation wavelength of 317 nm. 

To quantify the magnetic properties of the iron oxide particles vibrating sample 

magnetometer (VSM) measurements were performed. The resulting magnetization curve 

confirms the superparamagnetic properties of the glycocopolymer grafted silica 

nanoparticles. The magnetization curve does not show a hysteresis. The saturation 

magnetization-normalized curves of the different particles match well, indicating that 

neither the encapsulation of the maghemite particles with silica nor the grafting of 

glycocopolymer chains had a significant influence on the superparamagnetic properties 

(Figure 7 left). Figure 7 (right) shows, that the glycopolymer hybrid particles can easily be 

magnetically collected. 
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Figure 6. UV/vis absorption and fluorescence spectra of glycocoplymer grafted nanospheres. 

 

Figure 7. (Left) Magnetic hysteresis curves of γ-Fe2O3 nanoparticles (solid line), silica encapsulated γ-Fe2O3 
particles (dotted line) and glycocoplymer grafted nanospheres (dashed line). (Right) image of the magnetically 
collected particles. 

Cellular localization of the glycopolymer grafted magnetic particles. The incorporation of 

fluorescent pyrene in the core-shell particles allows an easy localization of the particles 

within cells by microscopy experiments as pyrene is a highly fluorescent dye with a long 

lifetime despite laser irradiation. The localization of the particles in the cells was investigated 

with both epifluorescence and confocal microscopes. As far as the cells showed no 

significant signal after few hours in the cells, the incubation time was increased to 24 h, 
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whereby most of the cells internalised the particles. Epifluorescence microscopy images 

(Figure 8, A-D) showed a significant presence of the nanospheres next to and within the cell 

nucleus, the membrane of which was stained with anti-NUP98-FITC (Figure 8 C and F). 

Confocal microscopy experiments confirmed the presence of glycocopolymer grafted 

magnetic particles within the cell nucleus (Figure 8, E-G); confocal z-stacks proved that the 

particles were indeed located inside the cells and not stacked to the cell surface.  

 

Figure 8. Microscope images of A549 cells exposed to glycopolymer-grafted nanoparticles: (A-D) 
epifluorescence microscope, (E-G) confocal microscope.  (A) transmission image of cells, (B, E) merged 
fluorescence images, (C, F) fluorescence image that exclusively shows the green light emitting parts (nuclear 
membrane) and (D, G) blue (pyrene) emitting part (glycocopolymer covered nanospheres).  

As both glycoconjugates and carbohydrate-binding proteins are omnipresent in the 

cytoplasm and the nucleus,34 the galactose moieties in the outer sphere of the nanoparticle 

could cause the nuclear uptake. Due to the binding affinity towards β-galactosides a member 

of the galectin family might be the responsible lectin for the cellular uptake of the 

fluorescent particles. Galectin-1, for instance, is present in adult mammalian tissues, 

including muscle, liver, lung, heart, and skin and is expressed both i n the cytoplasm and cell 

nucleus. Next to galectin-1 also galectin-3, -7 and others have been found in the nucleus.34 

The uptake of the galactose-displaying particles in the used adenocarcinomic human alveolar 

basal epithelial cells (A549) indicates the participation of a member of the galectin family in 

this process. As the overexpression of Galectin-1 in tumour tissues must be considered as a 
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sign of the malignant tumor growth, Galectin-1 is a promising molecular target for the 

development of therapeutic tools.35, 36  

The designed glycopolymer-covered particles show potential as delivery agents into 

the nucleus without being toxic or inhibitive for the cells. The cellular localisation of 

nanoparticles were also observed in CHO-K1 (hamster ovary cells) and HEK (human kidney 

cells), who both express galectin-1.34 Therefore, the internalisation of nanoparticles is not an 

A549 cell specific phenomenon but might be another hint that galectin is responsible for the 

cellular uptake. 

6.4 Conclusions 

The thiol-ene reaction towards magnetic and fluorescent glycopolymer covered silica 

spheres was successful, whereby neither the prior encapsulation of the iron oxide particles 

with silica nor the grafting of glycocopolymer chains had a significant influence on the 

superparamagnetic properties. The incorporation of a galactose-displaying shell seems to 

enable the internalisation of the fluorescent particles within the cell cytoplasm and nucleus. 

As both glycoconjugates and lectins are omnipresent in the cytoplasm and the nucleus, 

carbohydrate-lectin recognition effects might be responsible for the uptake of the 

glycopolymer-covered particles.  
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Chapter 7 

Summary 

Glycopolymers containing different kinds of carbohydrates were grafted from various 

spherical templates, whereby the glycopolymer chains were prepared via controlled radical 

polymerization techniques, namely ATRP and RAFT. A library of carbohydrate-displaying 

spheres and their interaction with lectins is presented. 

 Glucose- or acetylglucosamine-displaying nanospheres were prepared via the 

combination of emulsion polymerization and photo-induced conventional polymerization or 

ATRP, respectively. The particles were able to stabilize gold nanoparticles to form 

catalytically active hybrid particles that were capable of reducing p-nitrophenol in the 

presence of NaBH4. Investigation of the interactions between acetylglucosamine-displaying 

polymers and a series of lectins revealed a selective binding towards the lectin wheat germ 

agglutinin (WGA) whereby the binding affinity of the protein to the polymer brushes was 

found to be magnitudes higher than to acetylglucosamine unimers. Lectin precipitation 

experiments revealed that 1 mg of glycopolymer brush was able to precipitate 0.5 mg of 

WGA. 

 Surface modification of poly(divinylbenzene) microspheres was performed using two 

different glycomonomers and various types of grafting techniques. “Grafting through” of a 

mannose-displaying glycomonomer yielded core-shell particles with densely grafted 

glycopolymer arms that were found to show no binding affinity towards a series of lectins. 

The nexus of the carbohydrate moiety to the polymer backbone seemed to hamper the key-

lock interaction of the sugar and protein. Grafting experiments of a galactose-displaying 

glycomonomer yielded particles with grafting densities ranging from 0.20 to 0.35 chains per 

nm2 depending on the utilized grafting approach. These particles showed a selective binding 

towards the lectin Ricinus communis agglutinin (RCA120), whereby each grafted glycopolymer 

chain was capable of binding to 0.7 molecules of RCA120. Furthermore, the particles were 
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found to have a superior binding affinity towards RCA120 in comparison to microspheres 

covered with galactose unimers. 

 The preparation of core-shell particles consisting of a poly(divinylbenzene) micro-

sphere core and a shell of highly branched glycopolymers was achieved via self-condensing 

vinyl copolymerization of an initiator-monomer and acetylglucosamine-displaying 

glycomonomer. It was found that an increase in incorporated inimer, which results in more 

compact and branched structures, directly led to an increase in particle coverage (1.6 – 2.4 

wt.-%). Carbohydrate-lectin binding studies revealed that the incorporation of approximately 

50% of the hydrophobic inimer led to an increase in adsorption of 26% compared to a less 

branched glycopolymer and 16% compared to linear glycopolymer grafted particles. These 

results indicated that the three-dimensional glycopolymer architecture directly affects the 

strength of the key-lock interaction of sugar and sugar-binding protein. 

 Studies on the interactions between glycopolymers and lectins were extended 

towards the cellular uptake of fluorescent, magnetic galactose-displaying core-shell 

nanospheres. These particles were prepared by grafting a galactose-displaying 

glycocopolymer onto silica-encapsulated iron oxide particles via thiol-ene chemistry. Due to 

the carbohydrate-containing shell, these particles could be localized not only in the 

cytoplasm but also in the nucleus of human lung cancer cells. This cell line expresses a 

galactose-binding protein which indicates that carbohydrate-lectin interactions are 

responsible for the uptake of the functionalized particles. 

 In general, these studies show the capability of utilizing carbohydrate-lectin 

interactions for potential applications like lectin precipitation and cellular imaging. 
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Zusammenfassung 

Glykopolymere unterschiedlicher Zuckerarten wurden auf verschieden sphärische Template 

aufgepfropft, wobei der Aufbau der Glykopolymerketten mittels kontrolliert radikalischen 

Polymerisationstechniken bewerkstelligt wurde, namentlich ATRP und RAFT. Eine Reihe von 

zucker-modifizierten Nano- und Mikrokugeln und deren Wechselwirkungen mit Lektinen 

wird hier vorgestellt. 

 Glucose- oder Acetylglucosamin-modifizierte Nanokugeln wurden durch die 

Kombination von Emulsionspolymerisation und photoinduzierter konventioneller Poly-

merisation oder ATRP hergestellt. Diese Partikel waren in der Lage Goldnanopartikel in 

Lösung zu stabilisieren, was zu katalytisch aktiven Hybridpartikeln führte, welche im Stande 

waren p-Nitrophenol in Gegenwart von NaBH4 zu reduzieren. Untersuchungen zur 

Wechselwirkung zwischen Polymeren mit Acetylglucosaminresten und einer Reihe von 

Lektinen offenbarten eine selektive Anbindung an das Lektin Weizenkeim-Agglutinin (WGA), 

wobei sich herausstellte, dass die Bindungsaffinität des Proteins zu den Polymerbürsten weit 

höher ist als zu einzelnen Acetylglucosamin-Molekülen. Lektin-Fällungsexperimente 

offenbarten, dass 1 mg Glykopolymerbürsten in der Lage sind 0,5 mg des Lektins WGA zu 

fällen. 

 Die Oberfläche von Poly(divinylbenzol)-Mikrokugeln (PDVB) konnte mit zwei 

unterschiedlichen Glykomonomeren mittels verschiedener Pfropftechniken modifiziert 

werden. Die “Grafting through” Methode wurde angewandt um ein Mannose-beinhaltendes 

Glykomonomer aufzupropfen um Kern-Schale Partikel mit hoher Pfropfdichte zu erhalten. 

Hierbei zeigten die aufgepfropften Glykopolymerketten keine Bindungsaffinität zu einer 

Reihe von Lektinen auf. Die Verknüpfung der Zuckergruppe an das Polymerrückgrat 

verhindert in diesem Fall die Schlüssel-Schloss Wechselwirkung zwischen Zucker und Protein. 

Pfropfexperimente eines Galaktose-beinhaltenden Glykomonomeren führten zu Partikeln 

mit Pfropfdichten von 0.20 bis 0.35 Ketten pro nm2 in Abhängigkeit der verwendeten 

Pfropfmethode. Diese Partikel zeigen eine selektive Anbindung an das Lektin Ricinus 

communis Agglutinin (RCA120),  wobei jede Glykopolymerkette 0.7 RCA120 Moleküle binden 

konnte. Im Vergleich zu Partikeln welche mit einzelnen Galaktosemolekülen versehen sind, 

zeigten Glykopolymer-gepfropfte Partikel eine überlegene Bindungsaffinität zu RCA120. 
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 Die Herstellung von Kern-Schale Partikeln bestehend aus PDVB-mikrosphärischen 

Kernen und einer Schale aus hochverzweigten Glykopolymeren konnte mittels selbst-

kondensierender Vinyl-Copolymerisation einens Initiator-Monomers und Acetylglucosamin-

enthaltenden Glykomonomers erzielt werden. Eine Erhöhung des Anteils des eingebauten 

Inimers führt zu kompakteren und stärker verzweigten Strukturen, was eine höhere 

Bedeckung der Partikel begünstigt (1.6 – 2.4 wt.-%). Zucker-Lektin-Bindungsstudien 

offenbarten, dass ein Einbau von ungefähr 50% des hydrophoben Inimers zu einer Erhöhung 

der Proteinadsorption von 26% im Vergleich zu einem schwächer verzweigten Glykopolymer 

und 16% zu Partikeln welche mit linearen Glykopolymeren gepfropft wurden führt. Diese 

Ergebnisse deuten an, dass die dreidimensionale Glykopolymer-Architektur direkte 

Auswirkung auf die Schlüssel-Schloss-Wechselwirkung von Zucker und Zucker-bindendem 

Protein hat.  

 Die Untersuchungen zur Wechselwirkung zwischen Glykopolymeren und Lektinen 

wurden auf die Aufnahme von fluoreszierenden, magnetischen Galaktose-beinhaltenden 

Kern-Schale-Nanokugeln in Zellen ausgeweitet. Diese Partikel wurden durch die 

Aufpfropfung von Galaktose-beinhaltenden Glykopolymeren auf mit Silica verkapselten 

Eisenoxid-Partikeln mittels Thiol-En-Chemie erhalten. Aufgrund der zuckerhaltigen Schale 

konnten diese Partikel nicht nur im Zytoplasma sondern auch im Zellkern von menschlichen 

Lungenkrebs-Zellen lokalisiert werden. Da diese Zelllinie ein Galakose-bindendes Protein 

exprimiert, kann darauf geschlossen werden, dass Zucker-Lektin Wechselwirkungen für die 

Aufnahme der funktionalisierten Partikel verantwortlich sind. 

 Diese Studien deuten das hohe Potential an Zucker-Lektin Wechselwirkungen für 

mögliche Anwendung wie die Lektinfällung oder die Darstellung von Zellen zu nutzen. 
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