Druckansicht der Internetadresse:

Faculty for Biology, Chemistry, and Earth Sciences

Macromolecular Chemistry I:

print page
Müller, C.J.; Klein, T.; Gann, Eliot; McNeill, Chris; Thelakkat, M.: Azido-Functionalized Thiophene as a Versatile Building Block To Cross-Link Low-Bandgap Polymers, Macromolecules, 49(10), 3749–3760 (2016) -- DOI: 10.1021/acs.macromol.5b02659
We unveil a concept for the design of cross-linkable semiconducting polymers that is based on a modular tercopolymerization which stands out by its low synthetic effort, easy accessibility, and its broad range of applications. 3-(6-Azidohexyl)thiophene was used as a comonomer in the synthesis of a variety of low-bandgap copolymers using different polymerization techniques such as Suzuki–Miyaura cross-coupling and Stille cross-coupling. We show that when only a small amount (5–10 mol %) of azide groups is introduced into the polymers, the impact on absorption and electrochemical properties (HOMO/LUMO values) is negligible. The small amount of azide functionality is however enough to obtain polymers that can easily be cross-linked by UV illumination. Thermal stability of the solid state packing and alignment is studied in neat polymer thin films as well as in blends with [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) as a relevant model blend system. Solvent resistivity of these polymer films is investigated by absorption and photoluminescence measurements. It is finally shown in organic field effect transistors that the introduction of 10% azide-functionalized monomer does not considerably influence hole transport mobility (0.20–0.45 cm2 V–1 s–1).
Youtube-KanalKontakt aufnehmen
This site makes use of cookies More information