Druckansicht der Internetadresse:

Faculty for Biology, Chemistry, and Earth Sciences

Macromolecular Chemistry I:

print page
Erabhoina, H.; Thelakkat, M.: Tuning of Composition and Morphology of LiFePO4 Cathode for Applications in All Solid-State Lithium Metal Batteries, Scientific Reports, 12(1), 5454 (2022) -- DOI: 10.1038/s41598-022-09244-3
Abstract:
All solid-state rechargeable lithium metal batteries (SS-LMBs) are gaining more and more importance because of their higher safety and higher energy densities in comparison to their liquid-based counterparts. In spite of this potential, their low discharge capacities and poor rate performances limit them to be used as state-of-the-art SS-LMBs. This arise due to the low intrinsic ionic and electronic transport pathways within the solid components in the cathode during the fast charge/discharge processes. Therefore, it is necessary to have a cathode with good electron conducting channels to increase the active material utilization without blocking the movement of lithium ions. Since SS-LMBs require a different morphology and composition of the cathode, we selected LiFePO4 (LFP) as a prototype and, we have systematically studied the influence of the cathode composition by varying the contents of active material LFP, conductive additives (super C65 conductive carbon black and conductive graphite), ion conducting components (PEO and LiTFSI) in order to elucidate the best ion as well as electron conduction morphology in the cathode. In addition, a comparative study on different cathode slurry preparation methods was made, wherein ball milling was found to reduce the particle size and increase the homogeneity of LFP which further aids fast Li ion transport throughout the electrode. The SEM analysis of the resulting calendered electrode shows the formation of non-porous and crack-free structures with the presence of conductive graphite throughout the electrode. As a result, the optimum LFP cathode composition with solid polymer nanocomposite electrolyte (SPNE) delivered higher initial discharge capacities of 114 mAh g-1 at 0.2C rate at 30 ᴼC and 141 mAh g-1 at 1C rate at 70 ᴼC. When the current rate was increased to 2C, the electrode still delivered high discharge capacity of 82 mAh g-1 even after 500 cycle, which indicates that the optimum cathode formulation is one of the important parameters in building high rate and long cycle performing SS-LMBs.
Youtube-KanalKontakt aufnehmen
This site makes use of cookies More information