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Self-Assembled Structures of Amphiphilic Ionic
Block Copolymers: Theory, Self-Consistent
Field Modeling and Experiment
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Abstract We present an overview of statistical thermodynamic theories that
describe the self-assembly of amphiphilic ionic/hydrophobic diblock copolymers
in dilute solution. Block copolymers with both strongly and weakly dissociating
(pH-sensitive) ionic blocks are considered. We focus mostly on structural and
morphological transitions that occur in self-assembled aggregates as a response to
varied environmental conditions (ionic strength and pH in the solution). Analytical
theory is complemented by a numerical self-consistent field approach. Theoret-
ical predictions are compared to selected experimental data on micellization of
ionic/hydrophobic diblock copolymers in aqueous solutions.
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1 Introduction

The assembly of amphiphilic (macro)molecules in aqueous environments is a
generic mechanism of self-organization on multiple length scales that is amply
exploited by nature. The spontaneous formation of self-assembled structures of
phospholipids and biomacromolecules, exemplified by living cells, is the outcome
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of a delicate balance between attractive and repulsive forces, among which hy-
drophobic attraction, hydrogen bonding, metal-coordination forces, and steric or
electrostatic repulsion play dominant roles.

In the realm of technology, the self-assembly of synthetic amphiphilic molecules
is also widely exploited. Many water-based industrial formulations include small
amphiphilic molecules (surfactants) and polymeric amphiphiles, which self- and
co-assemble with other molecules and colloidal (nano)particles.

In the past decade, significant progress has been made in terms of understanding
the self-assembly of amphiphilic diblock copolymers in selective solvents [1–9]. In
aqueous solutions, the assembly is driven by hydrophobic attraction between as-
sociating blocks and is counterbalanced by electrostatic and/or steric repulsions
between ionic or neutral water-soluble blocks. As a result, diverse nanostructures
emerge. Among them, spherical core–corona micelles, formed by copolymers with
a relatively long solvophilic block, have been extensively studied. Similarly to low
molecular weight amphiphiles (surfactants), block copolymers with more bulky
(longer) solvophobic blocks may self-assemble in cylindrical wormlike micelles,
bilayer vesicles (“polymersomes”), lamellar mesophases, etc.

Self-assembled nanoaggregates of amphiphilic block copolymers attract strong
research interest due to the large number of emerging and potential applications.
These include smart nanocontainers for encapsulation, delivery and controlled re-
lease of biologically active molecules in nanomedicine, food and personal care
products, and agrochemistry. Uptake of heavy metal ions, radionuclides, and toxic
organic compounds is being explored for water treatment and environment moni-
toring purposes. Polymeric nanostructures of different and controlled morphologies
could serve as molecular templates for nanoelectronic devices.

Necessary requirements for many applications include: (1) precise control over
the size (on nanometer length scale) and morphology of the assembled aggregates,
and (2) pronounced stimuli-responsive properties. The latter imply that these struc-
tures can change their size, aggregation number, etc. in a significant way when the
physical and/or chemical properties of the surroundings (temperature, pH, ionic
strength, etc.) are varied smoothly, or that the structures recognize weak specific
stimuli such as trace concentrations of biologically active or toxic molecules. Both
requirements can be met by nanoaggregates that emerge as a result of the assembly
of amphiphilic block copolymers with tailored molecular architecture. The latter
implies properly chosen molecular weight of the blocks and the correct balance
of intramolecular hydrophilic and hydrophobic interactions or, more specifically,
an appropriate composition of the macromolecule in terms of non-ionic, ionic and
pH-sensitive, and hydrophobic (thermosensitive) components.

Self-assembly of block copolymers that are made of poly(ethylene oxide), PEO,
as the hydrophilic non-ionic block, has been extensively explored. The research
interest in PEO-containing block copolymers was motivated, to a great extent, by
potential biomedical applications, which rely on the finding that PEO moieties are
biocompatible. Because amphiphilic block copolymers of PEO and poly(propylene
oxide) PPO (pluronics) are produced on an industrial scale, research on these non-
ionic polymeric surfactants resulted in many technological applications. Both PPO
and PEO are thermoresponsive, having a low solution critical temperature (LSCT),
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so nanostructures formed from pluronics also demonstrate thermoresponsive fea-
tures. Unfortunately, they do not show a pronounced response to salt or pH changes
in the solution.

Structures formed by amphiphilic block copolymers composed of a hydrophilic
block with ionic and, in particular, pH-sensitive (weak polyelectrolyte) segments,
linked to a hydrophobic block, are more responsive. This is because the strength of
repulsive Coulomb interactions between the polyelectrolyte (PE) segments can be
efficiently tuned by variations in pH or/and ionic strength in the aqueous solution,
while their thermoresponsive nature can be maintained if the hydrophobic block is
well chosen.

The responsive features of micelles with a PE corona, e.g., the ability of micelles
to change their size, aggregation number and morphology, as a response to variations
in ionic strength and pH, were demonstrated and studied experimentally. However,
association of the hydrophobic blocks in water often results in a dense core wherein
structural rearrangements are hindered by high energy barriers (the cores are found
in a glassy state). In this state, the dynamic equilibrium between copolymers in the
micelle and freely dispersed in solution (unimers) does not exist, and these micelles
must be characterized as out-of-equilibrium “frozen” aggregates. Under preparation
conditions, either the temperature is very high or mixtures of water and a common
(organic) co-solvent are used. In these mixed solvents or at high temperatures, the
dynamic equilibrium between unimers and aggregates is attained and the responsive
features can be exploited.

The response of frozen micelles to varied ionic strength and pH is thus limited
to conformational changes in the hydrated PE corona domains, and is similar to that
discussed for PE stars in [10].

One of the possible solutions for design of truly responsive (“dynamic”) micelles
is to use copolymers with “soft” hydrophobic blocks. For example, at the stage
of copolymer synthesis, one can incorporate a small fraction of pH-sensitive co-
monomer units in the hydrophobic moiety. This opens up the possibility of turning
on some repulsive contributions in a net attractive domain, leading to a softer core.
Alternatively, one can opt for copolymers that are made of a PE block that is linked
to a thermosensitive block [11]. This gives the possibility of triggering the formation
and dissociation of micelles by variations in the temperature [12].

In spite of significant experimental efforts made in the last decade, it remains
difficult to provide an unambiguous proof of the dynamic (equilibrium) nature
of polymeric micelles. A review of selected experimental results on the stimuli-
responsive behavior of PE micelles is presented at the end of this chapter.

A number of theoretical studies have been devoted to analysis of the self-
assembly of amphiphilic ionic/hydrophobic diblock copolymers [13–24]. Most of
these studies considered copolymers with strongly dissociating (also referred to as
“quenched”) PE blocks [13–18, 20] and extensively exploited the analogy between
the conformation of PE blocks in a corona and that in a spherical PE brush [25–33]
or PE stars (see [10] for a review). The micellization and the responsive behavior of
nanostructures formed by copolymers with pH-sensitive PE blocks have also been
systematically studied in recent years [19, 21–23].
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We present an overview of the statistical thermodynamic theories of self-
assembly in aqueous media for amphiphilic diblock copolymers that are composed
of one PE block and one hydrophobic block. In all theoretical models, the
hydrophobic block is assumed to be “soft” enough to ensure the equilibrium
character of self-assembly. We outline here the arguments that were presented in
more detail in the corresponding original papers [18–23].

We start with a brief reminder of the theory of self-assembly in a selective solvent
of non-ionic amphiphilic diblock copolymers. Here, the focus is on polymorphism
of the emerging copolymer nanoaggregates as a function of the intramolecular hy-
drophilic/hydrophobic balance. We then proceed with a discussion of the structure
of micelles formed by block copolymers with strongly dissociating PE blocks in
salt-free and salt-added solutions. Subsequently, we analyze the responsive behavior
of nanoaggregates formed by copolymers with pH-sensitive PE blocks. The predic-
tions of the analytical models are systematically complemented by the results of a
molecularly detailed self-consistent field (SCF) theory. Finally, the theoretical pre-
dictions are compared to the experimental data that exist to date.

2 Thermodynamic Principles of Micellization

2.1 Critical Micelle Concentration and Aggregation Number

The general principles of self-assembly of amphiphilic molecules into finite-sized
aggregates (micelles) are described in a number of classic books [34–36]. In our
analysis of micelle formation we apply the equilibrium “close association” model.
That is, we assume first that only one population of micelles, with an aggregation
number p (number of copolymers in one aggregate), is present in the system at any
given concentration of amphiphiles in the solution, or that there are no micelles
at all; and second, that the free energy per molecule in a micelle, Fp, exhibits a
minimum at a certain value of the aggregation number, p = p0.

The thermodynamic model of micellization, presented here, describes the asso-
ciation of any amphiphilic molecules, including low molecular weight surfactants
or polymeric amphiphiles. The physical origin of the minimum in the free energy,
as a function of p, is specified by the molecular architecture and the interactions
between amphiphilic molecules involved in the assembly, and will be discussed in
the corresponding sections. An extension of the model for the case of a continuous
distribution of micelles with respect to aggregation number (polydispersity of the
aggregates) involves the value of ∂ 2Fp/∂ p2. If this quantity is small in the vicinity
of p = p0, then the micelle distribution is wide, and vice versa [37]. The approxi-
mation of micelle monodispersity is essential for application of the numerical SCF
model which is discussed in Sect. 9.

We consider a solution with a volume V that contains Np amphiphilic block
copolymer molecules. The total number density of the amphiphiles is c = Np/V .
We assume that c1 is the concentration (number density) of the amphiphiles that are
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found in the unimer (nonassociated) state, whereas cmic = (c− c1)/p is the num-
ber density of the monodisperse micelles with aggregation number p. The relevant
thermodynamic potential is the Helmholtz free energy F(V,Np,T ). Assuming that
the solution is dilute and that intermicelle and micelle–unimer interactions can be
ignored, the free energy of the system can be presented as:

F/VkBT = pcmicFp/kBT + cmic(lncmic −1)+ c1F1/kBT + c1(lnc1 −1), (1)

wherein kB is the Boltzmann constant and T is the temperature. Here, the first term
represents the free energy of the micelles (Fp is the free energy of one amphiphile
in a micelle comprising p molecules), the second term is the translational entropy
of micelles, the third term is the free energy of unimers, and the last term is the
translational entropy of unimers.

The minimization of the Helmholtz free energy, F , with respect to p and cmic,
(∂F/∂ p = 0, ∂F/∂cmic = 0) leads to the following equations:

p
∂Fp

∂ p
=

kBT
p

lncmic, (2)

Fp + p
∂Fp

∂ p
≡ ∂ (pFp)

∂ p
= μ1(c1), (3)

where:

μ1(c1) = F1 + kBT lnc1 (4)

is the chemical potential of unimer, and (3) implies the equality of chemical poten-
tials of a free unimer and an amphiphile incorporated in a micelle.

Equations (2)–(4) determine the equilibrium aggregation number, peq, the num-
ber densities of unimers, c1, and of micelles, cmic, at a given value of the total
number density of amphiphiles, c. With the account of (4), we can rewrite (2) as:

kBT lncmic = − [pFp − pμ1(c1)] = −Ω(c1), (5)

where Ω is (by definition) the grand potential of a micelle.
Note that the condition of thermodynamic stability requires that the free energy

of a micelle, Fmicelle ≡ pFp, is a concave function of the aggregation number, p.
That is:

∂ 2(pFp)
∂ p2 > 0. (6)

Therefore, as follows from (3) and (5), in a thermodynamically stable system:

∂ μ1(c1)/∂ p ≥ 0 (7)

and:
∂Ω
∂ p

= −p
∂ μ1(c1)

∂ p
≤ 0. (8)
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Hence, under equilibrium conditions, the chemical potential of a unimer must be
an increasing function of the aggregation number p, and the grand potential of a
micelle, Ω(p), must be a decreasing function of p.

The minimal aggregation number, p = pmin, in a thermodynamically stable mi-
celle, is determined by the condition:

(
∂ 2(pFp)

∂ p2

)
p=pmin

= 0. (9)

That is, ∂Ω/∂ p = ∂ μ1/∂ p = 0 at p = pmin, and the micelles with p < pmin are
thermodynamically unstable.

A minimal micelle with peq = pmin appears in the system at a certain (minimal)
threshold concentration, cmin, which can be identified as the “theoretical critical
micellization concentration”. Below this threshold, c ≤ cmin, no micelles and only
unimers are found in the solution. At amphiphile concentration c = cmin, the number

density of micelles, c(min)
mic = exp [−Ω(pmin)/kBT ], is negligible with respect to the

unimer density, c(min)
1 . A subsequent increase in the concentration of amphiphiles,

c≥ cmin, leads to an increase in both the concentration of micelles, cmic, and the con-
centration of unimers, c1, and an increase in both the chemical potential of unimers
and the aggregation number, peq.

Often, the critical micelle concentration (CMC) is defined as the total concen-
tration of amphiphiles at which the number of unimers is equal to the number of
amphiphiles incorporated into the micelles, pcmic = c1 = CMC/2. In this case, the
CMC is specified by the equation:

kBT ln

(
CMC

2

)
=
(

∂ (pFp)
∂ p

)
p=peq(CMC)

−F1, (10)

where Fp is the free energy per chain in the equilibrium micelle with p = peq(CMC).
A frequently used simplifying approximation is based on neglecting the transla-

tional entropy of micelles (i.e., the second term in (1) is omitted). This approxima-
tion is justified as long as the aggregation number in an equilibrium micelle is large.
Then, (2)–(4) reduce to:

∂Fp(p)
∂ p

= 0, (11)

c1 = exp [(Fp(p0)−F1)/kBT ] , (12)

cmic =
c− c1

p0
. (13)

Within this approximation, (11) specifies the equilibrium aggregation number p0,
corresponding to the minimum of function Fp(p), which does not depend on the con-
centration of amphiphiles. According to (12), the concentration of unimers, c1, re-
mains constant at c≥CMC, irrespective of the total concentration of amphiphiles, c.
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According to the above definition of CMC, an approximate expression for the CMC
is given by:

kBT ln

(
CMC

2

)
approx

= Fp (p0)−F1 =
(

∂ (pFp)
∂ p

)
p=p0

−F1. (14)

As follows from (2), (∂Fp/∂ p)p=peq < 0. Because Fp exhibits a minimum at
p = p0, the equilibrium micelle is always smaller than that predicted by the approx-
imate theory, i.e., peq ≤ p0. An increase in the concentration of amphiphiles beyond
the cmin threshold results in a progressive increase in the equilibrium aggregation
number peq, that asymptotically approaches the value of p0.

A comparison of (10) and (14) indicates that because of the stability condition,
(8), the exact CMC [defined by (10)] is smaller than the CMC obtained from the
approximate analytical model, (14). Accounting for the translational entropy of mi-
celles leads, therefore, to a lower value of the aggregation number, peq(c) < p0, and
a lower CMC.

The statistical thermodynamic theory of self-assembly of amphiphilic ionic/
hydrophobic diblock copolymers, reviewed in this chapter, is based on the sim-
plifying approximation (11)–(13), which neglects the translational entropy of the
micelles. In particular, we pre-assume that at the copolymer concentration beyond
the CMC, the solution contains only micelles with the “optimal” aggregation num-
ber, p = p0, which corresponds to the minimum of the free energy, Fp. As a result,
the fluctuations around the most probable ground state, p = p0, which give rise to
the equilibrium distribution with respect to the aggregation number (polydispersity
of the aggregates), are also neglected.

The simplified model enables one to account, in a straightforward way, for the
effects of charge on the micellization of ionic amphiphiles. The electrostatic interac-
tions between ionic groups of the amphiphilic molecules in a micelle are included in
the free energy term, Fp. In a salt-free solution, the association of amphiphiles in ag-
gregates is accompanied by the localization (“condensation”) of counterions, which
are necessarily present in the system to ensure its total electroneutrality. While in
solution of unimers (below the CMC), the counterions are distributed fairly uni-
formly, the formation of large aggregates leads to a restriction in the mobility of
counterions. More specifically, a significant fraction of counterions are “trapped” in
the vicinity of an aggregate due to the large local attractive electrostatic potential.
This effect is well known for simple ionic amphiphiles, but becomes much more
pronounced for polymeric species. Consistent with the discussion in [10], a major
fraction of the counterions in PE micelles are entrapped in the highly hydrated PE
coronas. Hence, the aggregation of PE copolymers in micelles is opposed not only
by losses in the translational entropy of the polyamphiphiles but, much more signif-
icantly, by losses in the translational entropy of mobile counterions. Formally, the
effect of counterions can be accounted for by adding the term:

Fions/VkBT = c1Q[ln(Qc1)−1] (15)
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to the free energy in (1). Here, Q is the number of elementary charged groups in one
polyamphiphile and we assume that the “bare” charge, pQ, in the corona of a micelle
with p copolymers, is totally neutralized by the localized counterions. The validity
of this approximation is discussed in [10]. A more accurate analysis indicates that
the degree of neutralization of the micelle charge by its counterions (the fraction
of trapped counterions) is a function of p, which, however, approaches the plateau
value of unity at large p � 1.

The free energy, (1), complemented by the contribution due to counterions, cf.
(15), can be minimized with respect to cmic and p. When the translational entropy
of micelles is neglected, the optimal aggregation number, p = p0, is still given by
(11). The concentration of unimers that coexist with micelles, and thus the CMC, is,
however, significantly larger than for neutral (uncharged) amphiphiles:

c1 ≈ 1
Q

exp [(Fp(p0)−F1)/QkBT ] (16)

provided that Q � 1. This increase in the CMC upon an increase in Q is a direct
consequence of the loss in translational entropy of a large number of counterions
upon the aggregation of polyamphiphiles. A similar effect of significant increase in
the CMC for ionic low molecular weight surfactants has been discussed in [38]. An
addition of salt to the solution results in the decrease of excess electrostatic potential
associated with the PE corona and, at sufficiently high ionic strengths, (11)–(13)
apply for ionic polyamphiphiles.

2.2 Block Copolymer Micelles

As follows from Sect. 2.1, in order to find the optimal (equilibrium) aggregation
number and the CMC, a theoretical model has to specify the functional form of
the free energy Fp per amphiphile as a function of p in an aggregate of a given
morphology. This free energy depends on the molecular architecture as well as on
the interaction parameters, which, in general, can be affected by the environmental
conditions (temperature, ionic strength, pH, etc.).

We consider a dilute solution of diblock copolymer, which is composed of a
hydrophilic (non-ionic or ionic) block with a degree of polymerization NA and a
hydrophobic (associating) block with a degree of polymerization NB. Here, we focus
mostly on the specifics of self-assembly of the copolymer whose hydrophilic block
A is charged.

A poor solubility of the hydrophobic blocks B in water provides the driving force
for self-assembly of polymeric amphiphiles in aqueous media. This driving force
is counterbalanced by repulsive interactions between the hydrophilic blocks, which
ensure the formation of finite-sized aggregates in favor of a macroscopic phase sep-
aration at concentrations above the CMC. In these aggregates, blocks B associate in
a dense hydrophobic core that is surrounded by a hydrated corona, formed by the
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soluble blocks A. The preferred morphology of the core domain in the equilibrium
aggregate is controlled by a subtle balance of solvophilic–solvophobic interactions,
and the conformational entropy of both blocks.

Due to the strong hydrophobicity of the blocks B, the interface between the col-
lapsed hydrophobic domain and the surrounding aqueous environment is narrow
compared to the size of the core. Therefore, the coronal blocks A can be envisioned
as tethered to the interface to form a polymer brush [33, 39, 40]. The hydration
of the corona and the repulsion between different coronae ensure the solubility
(aggregative stability) of the micelles in water.

2.2.1 Corona Domain

The conformational characteristics of the corona-forming blocks are controlled by
the balance between repulsive monomer–monomer interactions and the conforma-
tional entropy penalty for chain stretching.

For uncharged coronal blocks A, the short-ranged (van der Waals) interactions
between monomer units are described in terms of a virial expansion. The latter
accounts for the monomer–monomer binary (pair) interactions, with second virial
coefficient vAa3, or the ternary interactions with third virial coefficient wAa6. We
assume that the monomer unit length, a, is the same for both blocks A and B. In the
following, we use a as a unit length to make all lengths dimensionless and elimi-
nate a in further equations. We also assume that the (dimensionless) second virial
coefficient vA ≥ 0 and that the third virial coefficient wA � 1.

The ionization of the soluble blocks A of the polymeric amphiphile introduces
long-ranged repulsive interactions in the corona of a micelle. We discuss sepa-
rately the cases of amphiphilic diblock copolymers containing strongly dissociating
(“quenched”) and weakly dissociating (“annealing” or pH-sensitive) PE block A
linked to the associating hydrophobic block B. In the former case, the fraction of
charged monomer units, αb, in the block A is quenched according to its chemi-
cal sequence (as in the case of, e.g., partially sulfonated polystyrene). In the latter
case, the fraction of charged monomer units, α(r), is controlled by the local pH (i.e.,
minus the log of the proton molar concentration), which depends on the bulk (buffer)
pH, and the local electrostatic potential Ψ(r). The degree of dissociation of the
monomer unit, α(r), of a weak polyacid depends on the local concentration cH+(r)
of hydrogen ions via the mass action law:

α(r)
1−α(r)

=
Ka

cH+(r)
, (17)

where Ka is the acidic ionization constant for an isolated monomer. For a polybase,
the ionization occurs through the protonation of the monomers, and a generalization
of the theory is straightforward.
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2.2.2 Core Domain

The compact core of a micelle is characterized by a uniform polymer density,
ϕ(χBS), chemical potential per monomer unit, kBT μB(χBS), and excess free energy
per unit area of the core–water interface, kBTγ(χBS). Here, χBS(T ) is the Flory–
Huggins parameter of monomer (B)–solvent (S) interaction, and χBS(T )≥ χBS(θ ) =
1/2 under poor solvent conditions for the monomer units of block B. Although the
solubility of polymers in organic solvents usually decreases with a decrease in tem-
perature, ∂ χ(T )/∂T ≤ 0, the situation is more complex in aqueous solutions. In
particular, it appears that the solubility of thermosensitive block B in water typically
decreases with an increase in temperature [11], and hence ∂ χBS(T )/∂T ≥ 0. In this
case, the collapse of blocks B and the aggregation of the block copolymers into mi-
celles occur at T ≥ LCST, where LCST is the lower critical solution temperature.

Within this so-called volume approximation [41], all the partial parameters,
ϕ(χBS), μB(χBS), and γ(χBS) are independent of the core size. This approximation
is applicable as long as the width of the core–water interface, Δ, is much smaller
than the core size, Rcore, i.e., Rcore � Δ. The excess free energy of the core–water
interface originates from an enhanced probability of unfavorable contacts between
solvophobic monomer units of block B and solvent (water) molecules in the inter-
facial region. The surface tension γ also accounts for local conformational entropy
losses in the segments of blocks B localized close to the core–solvent interface.

The explicit dependencies of ϕ(χBS), μB(χBS), and γ(χBS) on the χBS parameter
can be obtained [42] within the Flory theory of polymer solutions [43]. However,
in the vicinity of the theta point (or LCST) for the core-forming block B, |χ(θ )−
χ(T )|/χ(θ )≈ |T −θ |/θ 	 1, all the partial parameters can be expressed [41, 44] as
power law functions of the dimensionless virial coefficients of monomer–monomer
interactions for block B:

ϕ ≈−vB/2wB
∼= τ, (18)

γ/kBT ≈ v2
B/27/231/2w3/2

B
∼= τ2. (19)

Here, the second virial coefficient (excluded-volume parameter), vB
∼= [1 −

2χ(T )]≤0, is negative because water is a poor solvent for the hydrophobic block
B. The third virial coefficient, wB, is positive, and τ ≡ |T −θ |/θ is the relative de-
viation from the theta temperature. At small deviations from the theta point, τ 	 1,
the surface tension γ and the polymer volume fraction ϕ are related as γ/kBT ∼= ϕ2.
However, at larger deviations from the theta point, ϕ becomes comparable to unity
and the latter relationship breaks down. Because in a typical experimental situation
ϕ ∼= 1, we treat ϕ and γ as two independent parameters. Note that in a general
case, surface tension γ and width Δ of the core–corona interface depend on both the
polymer–solvent interaction parameter χBS(T ) for the core-forming block and the
incompatibility χAB between monomers of blocks A and B. That is, γ could depend
on the concentration of monomers of the coronal block A near the core surface. We,
however, neglect this (weak) dependence and assume that the surface tension γ is
not affected by conformations of the coronal blocks in a micelle.
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The combination of packing constraints (constant concentration of B segments in
the core and the localization of junctions between blocks B and A at the core–corona
interface) implies the stretching of the core-forming blocks in the radial direction.
This stretching leads to conformational entropy losses in the core-forming blocks.
For a given core surface area per molecule, the stretching of a core block is maximal
in a spherical geometry, and it decreases with decreasing curvature, i.e. going from
spherical to cylindrical to lamellar geometries. Explicit expressions for the confor-
mational entropy of core-forming blocks are presented below.

2.2.3 Free Energy

The free energy F per one block copolymer in a micelle can be presented as:

F = Fcorona + Finterface + Fcore. (20)

Here, the term Fcorona includes contributions due to the conformational entropy of
the coronal blocks and the (repulsive) interactions in the coronal domain. The term
Finterface is the excess free energy of the core–water interface. It is proportional to
the interfacial area, s, per copolymer molecule:

Finterface/kBT = γs. (21)

Finally, the term Fcore ∼ kBTR2
core/NB accounts for the conformational entropy of

stretched core-forming blocks, for which the numerical prefactor depends on the
particular morphology of the aggregate.

The volume contribution, NBμB, to the free energy of the collapsed core-forming
block is independent of the aggregation number, p, and therefore is disregarded in
subsequent equations.

The second term in (20) favors larger micelles (the area per chain, s, is a decreas-
ing function of the aggregation number, p), whereas the first and the last terms are
increasing functions of p, and thus limit the growth of micelles.

As discussed below, the first two terms in (20) always dominate over the last
term, i.e., the area per chain, s, is determined by the balance between the repulsive
interactions in the corona and the excess free energy of the interface. The confor-
mational entropy of the core-forming blocks, however, controls the morphology of
the aggregates if the size of the core exceeds that of the corona (so-called crew-cut
micelles, vesicles).

A minimization of the free energy, (20), with respect to its structural parame-
ters, i.e., the aggregation number p or, equivalently, the core radius or area of the
core–water interface per molecule, enables one to specify the values of structural
parameters, corresponding to the minimum in the free energy of an aggregate of a
given morphology. A subsequent comparison of the free energies, corresponding to
the “optimal” aggregates of different morphologies, allows one to identify which
morphology has the lowest free energy, i.e., which is the equilibrium morpholigy.
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Finally, making use of the theory of polymer and PE brushes of different morpholo-
gies, one can calculate experimentally observable properties such as the radius of
gyration and/or hydrodynamic radius of equilibrium aggregates.

3 Scaling Theory of Non-ionic Block Copolymer Micelles

3.1 Spherical Non-ionic Micelles

We first review the main results of the scaling theory for micelles formed by block
copolymers with a neutral (non-ionic) soluble block [37, 45–50].

In the case of strongly asymmetric block copolymers (NA � NB), the size of the
micellar core, Rcore, is much smaller than the radius Rcorona of the corona. In this
case, “starlike” micelles with spherical cores are formed (Fig. 1a). In the opposite
limit of short hydrophilic block, NA 	 NB, the size of micellar core, Rcore, exceeds
by far the thickness of the corona. The coronae of these crew-cut micelles can be
viewed as quasi-planar polymer brushes [51, 52], see Fig. 1b.

In the framework of the scaling theory, the corona of a spherical micelle can
be envisioned [53–56] as an array of concentric spherical shells of closely packed
blobs. The blob size, ξ (r) ∼= r/p1/2, grows as a function of the radial distance r
from the center of the core. Each blob comprises a segment of the chain within the
local correlation length of the monomer density fluctuations [57], and corresponds
to a ∼ kBT contribution to the free energy of steric repulsion between the coronal
chains. After calculating the total number of blobs in the micellar corona, one finds
the free energy (per coronal chain) as:

Fcorona(p)/kBT ∼= p1/2 ln

(
Rcorona

Rcore

)
, (22)

a
b

Fig. 1 Spherical starlike (a) and crew-cut (b) block copolymer micelles
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where:

Rcore ∼= (pNB/ϕ)1/3 (23)

is the radius of micellar core, Rcorona is the outmost radius of the corona, and
Hcorona = Rcorona −Rcore is its thickness. The excess free energy of the core–corona
interface is given by:

Finterface(p)/kBT ∼= γs ∼= γ
(

NB

ϕ

)2/3

p−1/3, (24)

where:

s ∼= R2
core/p ∼= (NB/ϕ)2/3 p−1/3 (25)

is the area of the core–corona interface per chain.
Finally, the conformational entropy contribution of stretching in the radial direc-

tion of the core-forming block B scales as:

Fcore(p)/kBT ∼= R2
core/NB. (26)

3.1.1 Starlike Spherical Non-ionic Micelles

For strongly asymmetric copolymers, NA � NB, the structure of a micelle is con-
trolled by the balance of the coronal free energy, Fcorona, and the excess free energy
of the core–corona interface, Finterface.

The minimization of the free energy with respect to p results in the equilibrium
aggregation number:

peq ∼= γ6/5(NB/ϕ)4/5
(

ln
Rcorona

Rcore

)−6/5

. (27)

Here, Rcorona ∼= Nν
A p(1−ν)/2v2ν−1

A is the external radius of the corona, and ν is the
Flory exponent for the coronal block A (ν ≈ 3/5 and ν = 1/2 under good and theta-
solvent conditions, respectively).

With the accuracy of the logarithmic factors, the corona and the core radii are
given by:

Rcorona ∼= Nν
A v2ν−1

A γ3(1−ν)/5
(

NB

ϕ

)2(1−ν)/5

(28)

and:

Rcore ∼= γ2/5
(

NB

ϕ

)3/5

(29)

respectively.
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An important feature of (27), (29) is the absence of a power law dependence of
the aggregation number peq and Rcore on the length NA of the coronal block. Micelles
are starlike, i.e., Rcorona � Rcore, provided that:

NA � γ(3ν−1)/5νv(1−2ν)/ν
A

(
NB

ϕ

)(2ν+1)/5ν
. (30)

By using (22), (24), and (27), one can calculate the free energy of the equilibrium
micelle, and, by using (14), estimate the CMC as:

lnCMC ≈−γ
(

NB

ϕ

)2/3

+ γ3/5
(

NB

ϕ

)2/5(
ln

Rcorona

Rcore

)2/5

, (31)

where Finterface(p = 1)/kBT ∼= γ(NB/ϕ)2/3 ∼= (NBτ2)2/3 is the excess interfacial free
energy of an individual block B collapsed in water. The latter provides the dominant
contribution to the CMC [the first term in (31)]. The second term in (31) describes
the repulsive interactions in the corona, balanced with the excess interfacial free en-
ergy, (24). As long as the aggregation number in the equilibrium micelle peq � 1,
the second term in (31) is relatively small with respect to the first (dominant) term.
Hence, in the case of non-ionic copolymer micelles, the CMC is determined mostly
by the solubility of hydrophobic block B and is weakly affected by the properties of
the coronal block A. An increase in length of the soluble block A leads to the loga-
rithmic increase in the CMC via the increase in Rcorona. These theoretical predictions
are in qualitative agreement with experimental findings [58].

3.1.2 Crew-Cut Spherical Non-ionic Micelles

In the case of crew-cut micelles, Hcorona 	 Rcore and the logarithm in (22)
can be expanded up to the term linear in Hcorona/Rcore, to give Fcorona/kBT ∼=
Hcorona/s1/2 ∼= Hcorona/ξ . The thickness of the corona, Hcorona, scales as Hcorona ∼=
NAs−(1−ν)/2νv(2ν−1)/ν

A . In the framework of the Alexander–de Gennes blob model
[51, 52], the micellar corona (the planar brush) can be envisioned as an array of
closely packed blobs with size ξ ∼= s1/2, equal to the average distance between the
coronal blocks. We note that a constant size of the blobs implies Hcorona ∼ NA. The
number of coronal blobs per chain ∼ Hcorona/ξ is proportional to the free energy of

the interchain repulsion that equals Fcorona/kBT ∼= NAs−1/2νv(2ν−1)/ν
A .

Taking the relation s ∼= (NB/ϕB)2/3 p−1/3 into account and minimizing the free
energy with respect to p, one obtains the equilibrium aggregation number:

peq ∼=
(

NB

ϕ

)2(NA

γ

)−6ν/(2ν+1)

v−6(2ν−1)/(2ν+1)
A (32)
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and the core radius, which determines the overall size of the crew-cut micelle:

Rcore ∼= NB

ϕ

(
NA

γ

)−2ν/(2ν+1)

v−2(2ν−1)/(2ν+1)
A . (33)

The core–corona surface area per chain is given by

seq ∼=
(

NA

γ

)2ν/(2ν+1)

v2(2ν−1)/(2ν+1)
A . (34)

Interestingly, this area is independent of the length of core-forming block B. In
contrast to the case of starlike micelles, the equilibrium aggregation number and the
core radius in a crew-cut micelle strongly decrease upon an increase in the degree
of polymerization of the coronal block, NA. The thickness of the corona is given by:

Hcorona ∼= N3ν/(2ν+1)
A v3(2ν−1)/(2ν+1)

A γ(1−ν)/(2ν+1) (35)

and it is easy to check that Hcorona ≤ Rcore provided that:

NA ≤ γ(3ν−1)/5νv(1−2ν)/ν
A (NB/ϕ)(2ν+1)/5ν . (36)

Similarly to the case of starlike micelles, the CMC is controlled by the gain in free
energy upon association of blocks B and is only weakly affected by the properties
of coronal block A:

lnCMC ∼= −γ(NB/ϕ)2/3 +(γN2ν
A )1/(2ν+1)v2(2ν−1)/(2ν+1)

A . (37)

An increase in the length of the core-forming block B leads to the progressive in-
crease in the conformational entropy penalty for their stretching, Fcore(p), given by
(26). However, before Fcore(p) becomes comparable to the dominant terms in the
free energy, Fcorona + Finterface, the spherical crew-cut micelles change their mor-
phology, i.e., they undergo a thermodynamic transition into cylindrical micelles, as
discussed in the following section.

3.2 Polymorphism of Aggregates of Non-ionic Block Copolymers

For strongly asymmetric block copolymers with long hydrophobic blocks, NB �NA,
the conformational entropy losses in the stretched core-forming blocks B determine
the equilibrium morphology of an aggregate. Because for given surface area s per
chain, the stretching of the core-forming blocks decreases from the spherical to the
cylindrical and to the lamellar topology, one anticipates that copolymers with longer
blocks B might form nonspherical aggregates.
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Fig. 2 Self-assembled block-copolymers aggregates of different morphologies: spherical (i = 3),
cylindrical (i = 2), lamellar (i = 1). Hydrophobic blocks B and polyelectrolyte blocks A form the
core and the corona of the micelle, respectively

The polymorphism of non-ionic block copolymer aggregates was theoretically
analyzed by Zhulina and Rubinstein [50], and here we briefly summarize the main
results.

The morphology of a block copolymer aggregate is specified by index i. We
distinguish between spherical (i = 3), cylindrical (i = 2), and planar (i = 1) mor-
phologies (see Fig. 2). The latter describes lamellae, vesicles, discs, etc. Edge effects
for nonspherical aggregates (i = 1,2) can be incorporated on the level of correction
terms.

The condition of constant core density ϕ imposes a relation between the core
radius, Rcore, and the interfacial area per chain, s(Rcore), in an aggregate of mor-
phology i as:

s = s(Rcore) =
iNB

ϕRcore
i = 1,2,3. (38)

The latter determines the excess interfacial free energy per chain as:

F (i)
interface(Rcore)

kBT
= γs(Rcore), i = 1,2,3. (39)

The elastic free energy of a stretched block B in the core of an aggregate with
morphology i yields:

F (i)
core(Rcore)

kBT
= bi

R2
core

NB
, (40)

where:

bi =

⎧⎨
⎩

π2/8, i = 1
π2/16, i = 2
3π2/80, i = 3

. (41)

The values of the numerical coefficients in (41) account for the nonuniform and
nonequal extension of the core blocks in micelles of different morphologies. They
were first calculated by Semenov [59] for a dense micellar core, ϕ = 1, within
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the so-called strong stretching approximation, i.e., when the chains are noticeably
stretched with respect to their Gaussian size. The coefficients bi in (41) remain valid
also for a condensed core with ϕ ≤ 1 (provided that the polymer density profile in
the core is uniform).

Finally, the coronal contribution, F(i)
corona(Rcore), to the free energy of an aggregate

of morphology i is calculated as the free energy of a planar (i = 1) or curved (i = 2,3)
polymer brush. This is attained by a generalization of the blob model for the case of
an arbitrary (finite) curvature of the grafting surface:

F (i)
corona/kBT =

∫ Rcore+Hcorona

Rcore

s(r)dr
ξ 3(r)

. (42)

Here:

s(r) = s(Rcore)
(

r
Rcore

)i−1

, i = 1,2,3 (43)

is the area per chain at a distance (r − Rcore) from the surface of the core, and
kBT ξ−3(r) = f (r) is the free energy density in the corona. The latter accounts,
in the scaling approximation, both for the conformational entropy losses and the
monomer–monomer interactions, where ξ (r) ∼= s(r)1/2 is the local correlation
length in the corona. Note that at i = 3, (42) and (43) lead to (22).

It can be demonstrated that a spherical starlike micelle is always thermodynami-
cally stable with respect to nonspherical aggregates. It has a lower free energy than
the cylindrical micelle or the lamella, as long as the size of the corona exceeds that
of the core, Hcorona � Rcore.

Morphological transitions sphere–cylinder–lamella occur, therefore, when the
aggregates acquire the crew-cut shape. It is instructive to consider first a lamellar
aggregate, i = 1. Here, the coronal contribution is given by the number of blobs per
chain in a planar brush:

F (1)
corona

kBT
∼= NAs−1/(2ν)v(2ν−1)/ν

A . (44)

By balancing F (1)
corona �F (1)

interface, one finds the equilibrium area per chain s in a planar
lamella:

s ∼=
(

NA

γ

)2ν/(1+2ν)

v2(2v−1)/(1+2v)
A . (45)

The thickness H(1)
corona of the corona is given by:

H(1)
corona

∼= γ(1−ν)/(1+2ν)N3ν/(1+2ν)
A v3(2ν−1)/(2ν+1)

A (46)
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while the free energy per chain yields:

F (1)

kBT
∼= γ1/(1+2ν)N2ν/(1+2ν)

A v2(2ν−1)/(2ν+1)
A . (47)

In a spherical or cylindrical crew-cut micelle (i = 2,3), the coronal free en-
ergy is lower than in a planar brush. At small curvatures of the core, the coronal
contribution, given by (42), can be expanded with respect to the small parameter

H(1)
corona/Rcore 	 1, with an account of the normalization condition:

NA =
∫ Rcore+Hcorona

Rcore

cp(r)s(r)dr. (48)

Here, cp(r) is the polymer concentration (number density of the A monomers) at
a distance (r − Rcore) from the core, and one can use the scaling relation [57]
between the local polymer concentration and the correlation length, cp(r) ∼=
ξ (1−3ν)/ν(r)v(1−2ν)/ν

A . Retention of the first (linear in H(1)
corona/Rcore) term provides

an approximate expression:

F(i)
corona

kBT
≈ F(1)

corona

kBT

[
1− 1

2

(
∂ lncp(r)

∂ lnr
− ∂ ln f (r)

∂ lnr

)
H(1)

corona

Rcore

]
=

=
F(1)

corona

kBT

[
1− (i−1)

4ν
H(1)

corona

Rcore

]
, (49)

where f (r) ∼ ξ−3(r) ∼ r−3(i−1)/2 is the free energy density in the corona, H(1)
corona is

given by (46), and Rcore is related to i and s via (38).
Within this line of approximations, the total free energy per chain in a crew-cut

aggregate of morphology i yields:

F(i)

kBT
=

F(1)

kBT
−b0

(i−1)
2i

γ(2−3ν)/(1+2ν)N7ν/(1+2ν)
A v7(2ν−1)/(2ν+1)

A
ϕ
NB

+bii
2 NB

ϕ2

(
NA

γ

)−4ν/(1+2ν)

v4(1−2ν)/(2ν+1)
A . (50)

In this equation, the first (dominant) term is the free energy per chain in the equilib-
rium planar lamella (i = 1). The second term is a decrease in coronal free energy due
to curvature of the core (the numerical coefficient b0 � 1 does not depend on i). The
third term gives the elastic free energy of the core block [the numerical coefficients
bi are specified in (41)]. The radius Rcore of the core in a cylindrical (i = 2) or spher-
ical (i = 3) micelle is calculated via (38) and (45), whereas the corona thickness
H(i)

corona ≈ H(1)
corona, cf. (46).
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A morphological transition (i+1)=⇒ i is specified by the condition F (i+1) = Fi,
to give the following equation for the binodals:

b0

2i(i+ 1)[bi+1(i+ 1)2 −bii2]
ϕ3

N2
B

γ(2−7ν)/(1+2ν)N11ν/(1+2ν)
A v11(2ν−1)/(2ν+1)

A = 1

(51)

By substituting i = 1 in (51) and solving it with respect to NB, one finds the degree

of polymerization of the insoluble block, N(l−c)
B , corresponding to a lamella-to-

cylinder transition:

N(l−c)
B =

√
2b0

π
ϕ3/2γ(2−7ν)/(2+4ν)N11ν/(2+4ν)

A v11(2ν−1)/(4ν+2)
A . (52)

Substitution of i = 2 in (51) gives the degree of polymerization N(c−s)
B , correspond-

ing to a cylinder-to-sphere transition:

N(c−s)
B =

√
20
21 b0

π
ϕ3/2γ(2−7ν)/(2+4ν)N11ν/(2+4ν)

A v11(2ν−1)/(4ν+2)
A . (53)

Because both binodals N(l−c)
B and N(c−s)

B obey the same power law dependencies on
NA, γ , νA, and ϕ , the region of thermodynamic stability of the cylindrical micelles

(N(c−s)
B < NB < N(l−c)

B ) constitutes a narrow corridor with the boundaries that differ
only in the numerical prefactor. Remarkably, the relative width of this corridor:

ΔNB

N(l−c)
B

=
N(l−c)

B −N(c−s)
B

N(l−c)
B

= 1−
√

10
21

≈ 0.31 (54)

is independent of the solvent strength (the value of ν). However, a weak dependence
on the solvent quality is found for the inverted binodals (i.e., the degrees of polymer-

ization of the coronal block, N(l−c)
A (NB,γ,ϕ) and N(c−s)

A (NB,γ,ϕ), corresponding to
the lamella-to-cylinder and the cylinder-to-sphere transitions, respectively):

ΔNA

N(l−c)
A

=
N(c−s)

A −N(l−c)
A

N(l−c)
A

=
(

21
10

)(1+2ν)/11ν
−1 ≈

{
0.28, ν = 3/5,

0.31, ν = 1/2.
(55)

Hence, upon a progressive decrease in the solvent strength, a slight increase is
predicted for the relative interval of molecular weights of soluble block A that cor-
responds to thermodynamically stable cylindrical micelles.

In Fig. 3 we present the theoretical diagram of states in NA, NB coordinates,
which specifies the stability regions of spherical (S), cylindrical (C), and lamellar
(L) aggregates in dilute solutions of non-ionic block copolymer [50]. The bin-
odals (solid lines) are calculated using the full expressions for the corresponding
free energy of an aggregate of morphology i. The latter involves the numerical
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Fig. 3 Diagram of states for non-ionic block copolymer with soluble A and insoluble B blocks
with theoretically predicted stability regions of spherical (S), cylindrical (C), and lamellar (L) ag-
gregates. Values of the theoretical parameters are adjusted for PS-PI copolymer in n-heptane [50].
Different symbols specify morphology of the experimental samples: spherical micelles (squares),
cylindrical micelles (triangles), and insoluble aggregates, presumably lamellae (diamonds). AFM
images of spherical and cylindrical micelles are adopted from [50]

values of all the parameters, adjusted for a specific block copolymer system, namely
polyisoprene(PI)-polystyrene(PS) in n-heptane. Samples with different molecular
weights of the soluble (PI) and insoluble (PS) blocks were examined by static and
dynamic light scattering. The morphology i of the aggregates in each sample, spec-
ified by respective degrees of polymerization, NA and NB, of PI and PS blocks is
indicated in the diagram by squares (spheres, i = 3), triangles (cylinders, i = 2), and
diamonds (insoluble aggregates). The latter presumably correspond to associated
lamellae (i = 1) in the sediment. The shapes of soluble aggregates (spherical and
cylindrical micelles of PI–PS diblock copolymer) are visualized by atomic force
microscopy (AFM).

Note that for spherical (starlike as well as crew-cut) micelles, the most probable
aggregation number [specified by (11)] is close to the average aggregation number.
For large p � 1, the concentration-dependent corrections arising due to transla-
tional entropy of micelles are negligible. The thermal (equilibrium) fluctuations in
the aggregation number (polydispersity of micelles) are controlled by the shape,
∂ 2F(p)/∂ p2, of the free energy near the bottom of the minimum attained at p = p0.
By contrast, in the solution containing cylindrical micelles (at the total polymer
concentration c ≥ CMC), the distribution with respect to the length (the aggregation
number) is wide and follows an exponentially decaying function [35, 37]. The aver-
age length of a cylindrical micelle increases proportionally to the square root of the
total polymer concentration, c, and grows exponentially as a function of excess free
energy of the end-cap of the cylindrical micelle [35, 60].
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4 Scaling Theory of Micelles with Polyelectrolyte Corona

The structure and the basic thermodynamics of micelles formed by amphiphilic
block copolymers with a PE coronal block A can be analyzed using the blob model.
However, the ionization of block A in a polymeric amphiphile introduces long-
ranged repulsive interactions in the corona of a micelle. As a result, the blob picture
for the micellar corona has to be modified, as explained in this section.

4.1 Starlike Micelles with Quenched Polyelectrolyte Corona

We start with the case of a salt-free dilute solution that contains asymmetric (NA ≥
NB) ionic/hydrophobic block copolymers with a long quenched PE block. These
copolymers associate into starlike micelles. The corona of such micelle resembles a
star-branched PE [61–64], discussed in detail in [10].

Long-ranged repulsive Coulomb interactions between the coronal blocks A dom-
inate over short-ranged excluded-volume monomer–monomer repulsions, provided
that the fraction of charged monomer units is sufficiently large. The block copoly-
mer solution also contains mobile counterions that spread fairly uniformly over the

volume of the solution if the aggregation number p is small, p ≤ α−1/2
b l−1

B . Here,
lB = e2/aεkBT is the Bjerrum length measured in units of monomer length a, e is
the elementary charge, and ε is the dielectric permittivity of the solvent. By con-

trast, a micelle with large aggregation number, p � α−1/2
b l−1

B , retains the majority
of its counterions inside the corona. The coronal contribution to the free energy is
dominated by Coulomb repulsions between charged blocks A in the former case,
and by the translational entropy of counterions confined in the corona in the latter
case (the so-called osmotic regime). The combined action of Coulomb repulsion and
osmotic pressure of counterions entrapped in the corona results in a uniform radial
stretching of the coronal blocks A, Rcorona ∼ NA. If Gaussian entropic elasticity of
the coronal chains is assumed, Felastic

∼= kBT R2
corona/NA, then each coronal block can

be envisioned as a string of Gaussian electrostatic blobs with constant size:

ξ ∼=
{

(α2
b lB)−1/3 p−1/3, p 	 α−1/2

b l−1
B ,

α−1/2
b , p � α−1/2

b l−1
B .

(56)

Hence, the radius of the corona is given by:

Rcorona(p) ∼= NA

ξ
∼=
{

NA(α2
b lB)1/3 p1/3, p 	 α−1/2

b l−1
B ,

NAα1/2
b , p � α−1/2

b l−1
B

(57)

and the free energy is given by:

Fcorona/kBT ∼= NA

ξ 2 . (58)
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Balancing the coronal free energy, Fcorona, with the excess free energy of the core–
corona interface [cf. (24)] leads to the equilibrium aggregation number:

peq ∼=
{

γ(NB/ϕ)2/3N−1
A (α2

b lB)−2/3, peq 	 α−1/2
b l−1

B ,

γ3(NB/ϕ)2(NAαb)−3, peq � α−1/2
b l−1

B

(59)

the radius of the core:

Rcore ∼=
{

γ1/3(NB/ϕ)5/9N−1/3
A (α2

b lB)−2/9, peq 	 α−1/2
b l−1

B ,

γ(NB/ϕ)(NAαb)−1, peq � α−1/2
b l−1

B

(60)

and the corresponding radius of the corona:

Rcorona ∼=
{

N2/3
A γ1/3(NB/ϕ)2/9(α2

b lB)1/9, peq 	 α−1/2
b l−1

B ,

NAα1/2
b , peq � α−1/2

b l−1
B

(61)

which determines the experimentally measurable (e.g., in dynamic light scattering
experiments) size of the micelle.

As in the case of micelles formed by copolymers with non-ionic coronal blocks,
the aggregation number p increases as a power law function of the length NB of the
core-forming block. A new feature, introduced by ionic interactions in the corona,
is, however, a strong decrease in the aggregation number as a function of the length
NA of the coronal block A and its degree of ionization, αb. As follows from (59),

micelles with a small aggregation number, peq ≤ α−1/2
b l−1

B , that release counteri-
ons from their barely charged coronae into the bulk of the solution, are formed if

N3
Aα5/2

b ≥ γ3(NB/ϕ)2lB. In the case of shorter coronal and/or longer core-forming

blocks, N3
Aα5/2

b 	 γ3(NB/ϕ)2lB, osmotic micelles with larger aggregation numbers,

peq � α−1/2
b l−1

B are formed, which retain most of their counterions in the coronal
domain. This situation usually occurs in experimental systems. Remarkably, as fol-
lows from (61), the radius of the micellar corona in the osmotic regime is controlled
(in terms of its power law dependence) solely by the length, NA, and the degree of
ionization, αb, of the coronal block.

Another specific feature of osmotic micelles in salt-free solutions is the strong
increase of the CMC as a function of NA and αb. As follows from (16), the dominant
term for the CMC of micelles in the osmotic regime is given by:

lnCMC ≈−γ(NB/ϕ)2/3(αbNA)−1. (62)

As discussed in Sect. 2.1, the origin of this increase in the CMC is the translational
entropy penalty for the localization of counterions in the corona upon the association
of block copolymers into micelles.

For micelles with a small aggregation number, p ≤ α−1/2
b l−1

B , screening effects
of low molecular weight salt that is added to the micellar solution, become im-
portant when the salt-controlled Debye screening length becomes smaller than the
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micellar size, rD ≤ Rcorona. For micelles with a large aggregation number, whose
coronae are found in the osmotic regime, the effect of salt on the self-assembly be-
comes essential when the (bulk) salt concentration Φion exceeds the concentration
of counterions entrapped in the corona, Φion ≥ pα−1/2

b N−2
A . As discussed in detail

in [18, 62], in the salt-dominated regime, the micellar corona can be subdivided
into several concentric regions that differ with respect to local structural properties
(e.g., radial dependence of the coronal blob size). Importantly, the size of the coro-
nal blobs in salt added solution is an increasing function of the distance from the
center of a micelle, though the blobs are not closely packed [18, 62]. However, with
a good (experimentally accessible) accuracy, the effect on the self-assembly of the
screening of the electrostatic interactions in the micellar corona, can be accounted
for within the mean-field approximation, as explained in Sect. 6.

4.2 Crew-Cut Micelles with Quenched Polyelectrolyte Corona

Strongly asymmetric copolymers with long hydrophobic blocks form crew-cut
micelles with Hcorona 	 Rcore. The coronae of such micelle can be treated as quasi-
planar PE brushes [25–33].

A detailed analysis shows [30] that when the surface area per coronal chain is suf-
ficiently small, the majority of counterions are localized inside the brush. The free
energy of such corona is dominated by the translational entropy loss of the entrapped
counterions (the corona is equivalent to the “osmotic” PE brush). More specifically,
this is the case when Hcorona � Λ, where Λ = s/2π lBαbNA is the Gouy–Chapman
length. In the opposite limit of a relatively sparsely “grafted” corona formed by
blocks A that have few charged groups, Hcorona 	 Λ, and most of the counterions
escape from the corona, but are retained in the proximity of the core within a dis-
tance ∼ Λ provided that Λ 	 Rcore. We assume that the corona of a crew-cut PE
micelle is in the osmotic regime (this situation is typical for experimental systems).

For crew-cut PE micelles, the coronal chains can be presented as being com-

posed of strings of Gaussian electrostatic blobs of size ξ ∼= α−1/2
b . The average

distance between the coronal chains, ∼s1/2 exceeds the blob size ξ . This implies
that the electrostatic blobs in the quasi-planar corona of a crew-cut micelle are also
not closely packed. Remarkably, in the osmotic regime, the size of the electrostatic

blob and, consequently, the corona thickness, Hcorona ∼= NA/ξ ∼= NAα1/2
b , are inde-

pendent (in terms of power law dependencies) of the aggregation number p (i.e.,
independent of area s(Rcore) per PE block A at the core–corona interface).

As a result, the equilibrium aggregation number and the core radius in a crew-cut
spherical micelle are given (with the accuracy of numerical factors) by the same
expressions [second lines in (59) and (60)] as for a starlike spherical micelle in the
osmotic regime:

peq ∼= γ3(NB/ϕ)2(NAαb)−3, (63)

Rcore ∼= γ(NB/ϕ)(αbNA)−1. (64)
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The aggregation number and the core size increase as a function of the length of the
hydrophobic block, NB and decrease as a power law function of the length of the PE
block, NA. The surface area per chain:

seq ∼= αb
NA

γ
(65)

is independent of the length NB of the core block [cf. (34)]. The CMC for the crew-
cut micelles in a salt-free solution is also given by (62).

The condition Hcorona 	 Rcore holds as long as NA 	 (NBγ/ϕ)1/2α−3/4
b . In the

opposite limit, NA � (NBγ/ϕ)1/2α−3/4
b , the micelles are starlike, Hcorona � Rcore.

Addition of salt in the solution leads to the screening of electrostatic repulsions
between the coronal chains and a decrease in the excess osmotic pressure, as soon
as the corona is found in the salt-dominated regime [28]. This regime is entered
when the bulk concentration of added salt exceeds significantly the concentration

of counterions trapped inside the corona, Φion � α1/2
b s−1 ∼= γα−1/2

b N−1
A . Here, one

can use the local electroneutrality mean-field approximation, discussed in Sect. 5.

5 Mean-Field Theory of Block Copolymer Micelles:
Boxlike Model

The mean-field approach provides a convenient framework for the analysis of
copolymer self-assembly leading to micellar structures. Combining the mean-field
approach with the local electroneutrality approximation (LEA) enables us to gener-
alize the theory for micelles with ionic coronal blocks that feature stimuli-responsive
properties.

The LEA assumes that the charge of coronal chains is compensated by the (ex-
cess) local concentration of counterions. The LEA is applicable provided that the
number of copolymer chains in one micelle is sufficiently large that the excess
electrostatic potential is great enough to retain the mobile counterions inside the
corona, even at low salt concentrations in the solution. In the LEA framework,
the electrostatic interactions manifest themselves through the entropy of the ions,
disproportionated between the interior of the corona and the bulk solution. The
mean-field theory in combination with the LEA scheme gives a route wherein
one can account explicitly for the ionization equilibrium and the interplay of elec-
trostatic and nonelectrostatic interactions in the micellar corona. This is of key
importance for the analysis of stimuli-induced structural transitions in micelles
formed by copolymer that contains a weakly ionizable (pH-sensitive) PE block. The
latter demonstrate a strong coupling between the ionization and aggregation state of
the block copolymer.

Within a mean-field approximation, the interaction part of the free energy density
in the corona, fint{cp(r)}, can be presented as a function of the local concentration
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of monomer units, cp(r). It comprises the contributions fev{cp(r)} and fion{cp(r)}
that arise due to the repulsive short-ranged (excluded volume) monomer–monomer
interactions and due to the charges along the coronal chains:

fint{cp(r)} = fev{cp(r)}+ fion{cp(r)}. (66)

Here:

fev{cp(r)}/kBT = vAc2
p(r)+ wAc3

p(r)+ · · · , (67)

whereas the ionic contribution, fion{cp(r)}, is specified below in Sects. 6 and 7.
Since solvent is assumed to be good for uncharged monomer units of the block A,
we retain only the first term in (67) (to account for binary short-ranged repulsions).

At this stage, we neglect the radial gradients in the polymer density distribution
within the corona and in the elastic stretching of the A and B chains. In other words,
we implement a boxlike model wherein the average concentration of monomer units
inside the corona is given by:

cp =
3pNA

4π(R3
corona −R3

core)
(68)

and the free energy of a spherical micelle with arbitrary size ratio, Rcorona/Rcore ≡
Hcorona/Rcore + 1, can be presented as:

F
kBT

∼= 3R2
core

2NB
+

3(Rcorona −Rcore)2

2NA
+

3γNB

Rcoreϕ
+

Fint(cp)
kBT

. (69)

In this equation, the first and the second terms describe the respective confor-
mational entropies of stretched core and coronal blocks, whereas the third term,
∼γs(Rcore), accounts for excess interfacial free energy [here, s(Rcore) is specified by
(38)]. The last term in (69) accounts for repulsive interactions in the corona,

Fint(cp) = (4π/3)(R3
corona−R3

core) fint(cp). (70)

The radii of the core, Rcore, and of the corona, Rcorona, are related as:

Rcorona

Rcore
=
(

1 +
NAϕ
NBcp

)1/3

. (71)

When (71) is substituted into (69), one can formulate the free energy of a micelle as
a function of two independent variables, Rcore and cp. The minimization of this free
energy with respect to Rcore provides a relation between cp and Rcore:

Rcore =
(

γN2
B

ϕ

)1/3
⎧⎨
⎩1 +

NB

NA

[(
1 +

NAϕ
NBcp

)1/3

−1

]2
⎫⎬
⎭

−1/3

(72)
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and [using the packing condition, (23)] between cp and the aggregation number p:

p =
4πγNB

3

⎧⎨
⎩1 +

NB

NA

[(
1 +

NAϕ
NBcp

)1/3

−1

]2
⎫⎬
⎭

−1

(73)

in the equilibrium micelle. Correspondingly, the free energy per chain in a micelle
becomes a function of a single structural parameter, cp:

F(cp)
kBT

=
9
2

(
γ
ϕ

)2/3

N1/3
B

⎧⎨
⎩1 +

NB

NA

[(
1 +

NAϕ
NBcp

)1/3

−1

]2
⎫⎬
⎭

1/3

+
Fint(cp)

kBT
.

(74)

In the limiting cases of starlike (NAϕ/NBcp � 1) and crew-cut (NAϕ/NBcp 	 1)
micelles, the free energy in (74) can be approximated as:

F(cp)
kBT

≈ Fint(cp)
kBT

+

⎧⎨
⎩

9
2 γ2/3(NB

ϕ )4/9N−1/9
A c−2/9

p , NAϕ/NBcp � 1,

92/3

2 γ2/3N1/3
A c−2/3

p , NAϕ/NBcp 	 1.
(75)

A closer inspection of the free energy (74) and (75) as a function of cp allows us
to specify the structural properties (aggregation number and size) of the equilibrium
micelle as a function of the copolymer composition (values of NB and NA) and the
external parameters that control the strength of interactions in the coronal domain.

5.1 Non-ionic Block Copolymer Micelles

In the case of non-ionic or weakly charged coronal chains, the excluded-volume
repulsions in the corona dominate over ionic interactions. In this case, the ionic
contribution can be neglected and the corresponding contribution to the free energy
can be presented as:

Fint(cp)
kBT

= vANAcp. (76)

The minimization of the free energy, (74) or (75), with respect to cp gives the
structural properties of a spherical micelle with a quasi-neutral corona. For a starlike
micelle one finds:

peq ∼= γ15/11
(

NB

ϕ

)10/11

N−3/11
A v−6/11

A , (77)
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Rcorona ∼= γ3/11
(

NB

ϕ

)2/11

N6/11
A v1/11

A , (78)

Rcore ∼= γ5/11
(

NB

ϕ

)7/11

N−1/11
A v−2/11

A . (79)

The micelles are starlike, i.e. Rcore 	 Rcorona, as long as block A is sufficiently
long:

NA � γ2/7
(

NB

ϕ

)5/7

v−3/7
A (80)

In the range of block lengths specified by (80), starlike spherical micelles are ther-
modynamically most favorable. Copolymer aggregates with other morphologies
(cylindrical micelles, vesicles) are metastable (i.e., have a larger free energy per
chain). The most important factor that contributes to the stability of spherical mi-
celles with relatively long NA is that overlap, and therefore repulsions, between
coronal blocks are minimal in the spherical geometry. The ionization of coronal
chains results in their additional stretching as compared to quasi-neutral micelles.
Therefore, the micelles with ionized corona remain spherical (starlike), provided
(80) is fulfilled.

For the crew-cut quasi-neutral micelles with Hcorona 	 Rcore, that are formed by

strongly asymmetric copolymers with short coronal blocks, NA 	 γ2/7(NB
ϕ )5/7v−3/7

A ,
one finds:

peq
∼= (γ/NA)9/5

(
NB

ϕ

)2

v−6/5
A , (81)

Rcore ∼= (γ/NA)3/5
(

NB

ϕ

)
v−2/5

A , (82)

Hcorona ∼= γ1/5N4/5
A v1/5

A . (83)

Due to the mean-field approximation used to account for excluded-volume inter-
actions in the coronal domain, the power law exponents in (77)–(82) differ slightly
from those obtained in the scaling framework in Sect. 3.1. This is because the mean-
field approach neglects the local density correlations and overestimates the free
energy of the micellar corona.

6 Mean-Field Theory of Block Copolymer Micelles
with Quenched Polyelectrolyte Corona

Structural rearrangements in a micelle with quenched PE corona can be investi-
gated using the mean-field approach (described in Sect. 5) in combination with
the local electroneutrality approximation (LEA). As before, we neglect here the
radial gradients in the polymer density and mobile ion distributions (i.e., imple-
ment the boxlike model). Moreover, we omit the contribution due to nonelectrostatic
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(excluded volume) repulsions. In such a framework, the free energy of a quenched
PE corona is formulated as:

Fion(cp)
kBT

= αbNA

[(
1−
√

1 +(αbcp/Φion)2

)/
(αbcp/Φion)+ Arsh(αbcp/Φion)

]

≈
⎧⎨
⎩

αbNA[ln(2αbcp/Φion)−1], αbcp/Φion � 1,

NA
α2

b cp
2Φion

, αbcp/Φion 	 1,
(84)

where:

Φion ≡ ∑
j

cb j (85)

is the total concentration of (monovalent) ionic species in the bulk of the solution
(including H+ and OH− ions) and Arsh(x) ≡ ln(x +

√
x2 + 1) is the inverse hyper-

bolic sine function.
Combining (84) and (74), one finds a closed expression for the free energy of

a spherical micelle with a quenched PE corona as a function of a single structural
parameter, cp.

In the low salt limit, αbcp � Φion, the coronal contribution to the free energy is
dominated by the translational entropy of counterions entrapped inside the corona,
Fint

∼= kBTαbNA(lncp −1). In this case, all results of the blob model are recovered
both for osmotic starlike and crew-cut spherical micelles (59), (61), and (62).

In the high salt limit, αbcp 	 Φion, the contribution of the translational entropy
of mobile ions, disproportionated between the interior and the exterior of the corona,
is equivalent to a renormalization of the second virial coefficient of monomer–
monomer interactions, as vA → veff = vA + α2

b/2Φion, [see (84)].
At any salt concentration, Φion, the F(cp) curve exhibits a single minimum as

a function of cp that corresponds to a single population of equilibrium micelles.
Using approximate expressions in (75), one can derive the power law dependencies
for the structural properties of starlike and crew-cut micelles on the block lengths,
NA and NB, the degree of ionization αb, the hydrophobicity of the block B, and the
salt concentration, as discussed in the following section.

6.1 Starlike Micelles with Quenched Polyelectrolyte Corona

Within the mean-field approximation, the coronal contribution to the free energy in
the salt-dominated regime can be calculated as:

Fint(p)/kBT ∼= veffNAcp =
(

vA +
α2

b

2Φion

)
NAcp, (86)

where veff = vA +α2
b /2Φion is the salt-dependent effective second virial coefficient.

The equilibrium aggregation number and the core size in a starlike PE micelle
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increase as a function of the salt concentration Φion according to the following
equations:

peq(Φion) ∼= γ15/11(NB/ϕ)10/11N−3/11
A

(
vA +

α2
b

Φion

)−6/11

, (87)

Rcore(Φion) ∼= γ5/11(NB/ϕ)7/11N−1/11
A

(
vA +

α2
b

2Φion

)−2/11

. (88)

An increase in the aggregation number peq(Φs) ∼ Φ6/11
ion , accompanied by a de-

crease in the strength of repulsive electrostatic interactions (due to added salt ions),
results in a very weak decrease in the coronal size in a starlike PE micelle as a
function of the salt concentration:

Rcorona(Φion) ∼= γ3/11(NB/ϕ)2/11N6/11
A

(
vA +

α2
b

2Φion

)1/11

. (89)

The micelles are starlike, i.e., Rcorona � Rcore as long as NA � γ2/7(NB/ϕ)5/7(vA +
α2

b /2Φion)−3/7.
Under the so-called salt dominance conditions, the association of block copoly-

mers into micelles does not lead to significant losses in the translational entropy of
counterions (whose concentrations inside the corona and in the bulk of the solution
are approximately equal). Therefore, within the accuracy of the main term, the CMC
is controlled by the hydrophobicity of the block B:

lnCMC ≈−γ(NB/ϕ)2/3 + γ6/11(NB/ϕ)4/11N1/11
A

(
vA +

α2
b

2Φion

)2/11

. (90)

An increase in the salt concentration Φion, leads only to a decrease in the second
(correction) term and to a mild decrease in the CMC.

At high salt concentrations Φion � v−1
A α2

b , the structural properties (e.g.,
peq(Φion), and Rcorona(Φion)) approach the values that are found for starlike mi-
celles with non-ionic corona, (77), (78).

Because an increase in salt concentration leads to the increase in the core size,
Rcore, and in the simultaneous decrease in the corona size, Rcorona, the starlike
micelle can transform into the crew-cut micelle with an increase in the salt con-
centration.

6.2 Crew-Cut Micelles with Quenched Polyelectrolyte Coronae

In the salt-dominated regime, the free energy of the quasi-planar corona of a crew-
cut micelle is given by:

Fint/kBT ∼= NAs−2/3v2/3
eff = NAs−2/3

(
vA +

α2
b

2Φion

)2/3

. (91)
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It decreases as a function of the salt concentration. Balancing the free energy, (91),
with the excess free energy of the core–corona interface, (24), gives the equilibrium
interfacial area per copolymer chain:

seq ∼= (NA/γ)3/5
(

vA +
α2

b

2Φion

)2/5

(92)

and the equilibrium aggregation number in a salt-dominated crew-cut micelle:

peq(Φion) ∼= (γ/NA)9/5(NB/ϕ)2
(

vA +
α2

b

2Φion

)−6/5

. (93)

As expected, the aggregation number increases with increasing salt concentration
Φion. The corresponding power law exponent, 6/5, is remarkably larger than in the
case of starlike micelles. This is due to stronger repulsive interactions between PE
blocks in the quasi-planar corona of a crew-cut micelle as compared to those in
a starlike corona. Similarly to the case of a starlike micelle, the thickness of the
corona, Hcorona, in a crew-cut micelle decreases as a function of the salt concen-
tration, Φion, although the area s(Φion) per PE chain at the core–corona interface
decreases:

Hcorona(Φion) ∼= γ1/5N4/5
A

(
vA +

α2
b

2Φion

)1/5

. (94)

The size of the core, which dominates the overall dimensions of a crew-cut micelle,
grows upon an increase in salt concentration as:

Rcore(Φion) ∼= (γ/NA)3/5(NB/ϕ)
(

vA +
α2

b

2Φion

)−2/5

. (95)

Upon further increase in the salt concentration, Φion � v−1
A α2

b , the structural
properties of crew-cut micelles with a quenched PE corona asymptotically approach
these of micelles with a non-ionic corona, (81)–(83).

Similarly to the case of crew-cut micelles composed of non-ionic block copoly-
mers, an increase in the length of the core-forming block B leads to an increase in
entropic penalty for stretching the chains. As a result, copolymers with longer insol-
uble block B might associate in nonspherical aggregates (e.g., cylindrical crew-cut
micelles). These morphological changes will be discussed in detail in Sect. 10.

7 Mean-Field Theory of Block Copolymer Micelles
with Annealing Polyelectrolyte Corona

Within the framework of the boxlike model, the free energy of the corona of micelle
with annealing PE block can be formulated as:
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Fion(cp)
kBT

= NA

[(
1−
√

1 +(αcp/Φion)2

)
+ ln(1−α)

]

≈ NA ·
⎧⎨
⎩

−α + ln(1−α), αbcp/Φion � 1,

α2
b cp

2Φion
+ ln(1−αb), αbcp/Φion 	 1.

(96)

Here, the average degree of ionization α of the coronal block A depends not only on
the pH (via αb), but also on the ionic strength in the bulk solution (buffer), and the
average polymer concentration in the corona, cp, as:

α
1−α

· 1−αb

αb
=
√

1 +(αcp/Φion)2 −αcp/Φion, (97)

where αb is the degree of ionization of a single monomer in the bulk solution of
given pH:

αb =
10pH−pKa

10pH−pKa + 1
. (98)

Equation (97) can be used to obtain approximate expressions for the degree of ion-
ization of the monomer units of the coronal block A in the limiting cases of low and
high salt concentrations:

α ∼=

⎧⎪⎨
⎪⎩

(
αb

1−αb
· Φion

2cp

)1/2
, αcp/Φion � 1,

αb

[
1− αbcp

Φion
(1−αb)

]
, αcp/Φion 	 1.

(99)

The coupling between the ionization of the coronal block A and the association
equilibrium of the copolymers gives rise to unique features for the self-assembly of
amphiphilic block copolymers with a weak (pH-sensitive) PE block. In other words,
the levels of ionization for unimers in solution and for copolymers incorporated in
micelles, can be noticeably different due to different values of the pH inside mi-
cellar corona and in the bulk solution. Furthermore, the strength of the electrostatic
repulsion in the corona can be affected not only by variations in the ionic strength
(as it is for micelles with quenched PE corona), but also by variations in the pH,
which affect the ionization of the coronal chains.

Moreover, the effect of added salt on the self-assembly of block copolymers with
an annealing PE block is more complicated than for copolymers with a quenched PE
block. The reason for this is that at pH ∼= pK, an addition of small amounts of salt
into the bulk solution leads to substitution of H+ (or OH−) counterions in the mi-
cellar corona by salt ions. The latter promotes ionization of the coronal chains and
affects the strength of repulsive interactions between the corona-forming blocks.
At low salt concentrations, ionization of the monomer units in coronae of micelles
formed by copolymers with an annealing PE block can be strongly suppressed. As a
result, the coronal contribution to the free energy of the micelle might be dominated
by nonelectrostatic excluded-volume repulsions between corona-forming blocks
(the so-called quasi-neutral micelle regime).
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7.1 Structural Transitions in Starlike Micelles with Annealing
PE Corona

The block copolymer chains with a strongly asymmetric composition, NA �
γ2/7(NB/ϕ)5/7v−3/7

A , form starlike micelles at an arbitrary small degree of ion-
ization of the coronal block. The free energy per chain in a starlike micelle with an
annealing PE coronal block is given by:

F
kBT

∼= 9
2

γ2/3
(

NB

ϕ

)4/9

N−1/9
A c−2/9

p + NA

[
vAcp +

(
1−
√

1 +(αcp/Φion)2

)

+ ln(1−α)
]
, (100)

where the degree of ionization α(αb,Φion,cp) is determined from (97).
Further analysis of the free energy as a function of cp (or α), (100) and (97),

indicates the existence of a single minimum at both low, Φion 	 αbcp, and high,
Φion � αbcp, salt concentrations. This minimum corresponds to a single population
of micelles that coexist with unimers either at low or at high salt concentration in
the solution. At intermediate salt concentrations, F(cp) might exhibit two minima
as a function of cp. The presence of two minima in the free energy indicates the
possibility of abrupt (quasi-first order) salt- and pH-induced structural transitions in
block copolymer micelles. These transitions are discussed below in Sect. 7.1.3.

7.1.1 Quasi-neutral Micelles

At low salt concentrations, Φion 	 αbcp, the ionization of A segments in the micelle
corona is low, α 	 αb. In this case, the excluded-volume repulsions (binary inter-
actions) give the dominant contribution to the free energy of the corona. As a result,
the structural properties of the quasi-neutral micelles approximately coincide with
those formed by non-ionic block copolymers and are given by (77) and (78).

An increase in the salt concentration leads to the progressive replacement of H+

ions in the micellar corona by, e.g., Na+ ions of the added salt (i.e., increases the
local pH in the corona). This promotes the increase in the degree of ionization α of
the coronal blocks as:

α ∼=
(

αb

1−αb
·Φion

)1/2

γ−3/11
(

NB

ϕ

)−2/11

N5/11
A v9/22

A . (101)

The latter leads to a slight decrease (on the level of the correction terms) in the
aggregation number, and an increase in the radius of the corona.

The free energy per chain in a quasi-neutral micelle is given by:

Fquasi−neutral/kBT ∼= γ6/11(NB/ϕ)4/11N1/11
A v2/11

A + NA ln(1−α). (102)

Here, the first term is dominant because α, given by (101), is small.
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Although at low salt concentrations the structural parameters of quasi-neutral
micelles formed by copolymers with an annealing PE block are close to those of
micelles formed by non-ionic block copolymers, the CMC for the former is signifi-
cantly larger than that for the latter. Indeed, the degree of ionization of the annealing
PE blocks in the unimer state of copolymer, αb, is significantly larger than that of
the copolymers incorporated in micelles. Hence, the association of copolymers into
micelles is accompanied by an additional free energy penalty (recombination of sig-
nificant fraction of counterions with the acidic groups of the annealing PE blocks).
As a result, the CMC increases as a function of NA and αb according to the equation:

lnCMCquasi−neutral ≈ −γ(NB/ϕ)2/3 + γ6/11(NB/ϕ)4/11N1/11
A v2/11

A −NA ln(1−αb)

= lnCMCneutral −NA ln(1−αb). (103)

Here, the first two terms specify the CMC for equivalent uncharged (neutral) block
copolymer with lengths of blocks, NA and NB:

lnCMCneutral ≈−γ(NB/ϕ)2/3 + γ6/11(NB/ϕ)4/11N1/11
A v2/11

A , (104)

and we have neglected the NA(1−α) term in the free energy of the coronae of the
quasi-neutral micelles as well as the contribution due to intramolecular repulsive
interactions and the stretching of the block A in unimers.

Equation (103) demonstrates that the CMC for quasi-neutral micelles is a
strongly increasing function of αb, i.e., it is strongly affected by the value of
the bulk pH. When −NA ln(1−αb) ≥ γ(NB/ϕ)2/3, quasi-neutral micelles do not
form at any copolymer concentration in the solution.

7.1.2 Charged Micelles

In the opposite limit of high salt concentration, Φion �αbcp, the difference between
the pH in the bulk solution and inside the micellar corona is negligible. At a given
solution pH, αb is specified according to (98), and the monomer units of blocks
A in the micellar corona approach their maximal at given pH degree of ionization,
α ≈ αb. The corona is indistinguishable from that formed by quenched PE chains
with a degree of ionization αb in the salt-dominated regime. The evolution of the
structural parameters of the micelles follows the same trends as described above: the
aggregation number increases and the coronal dimensions decrease upon an increase
in the salt concentration according to (87) and (89), respectively. An increase in αb

(an increase in the pH) enhances repulsive interactions in the corona and thus leads
to a progressive decrease in the aggregation number and an increase in the coronal
dimensions.
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The free energy of micelles in the salt-dominated regime is formulated as:

F/kBT ∼= γ6/11(NB/ϕ)4/11N1/11
A (α2

b /2Φion + vA)2/11 + NA ln(1−αb), (105)

whereas the CMC is given by:

lnCMCcharged ≈ −γ(NB/ϕ)2/3 + γ6/11(NB/ϕ)4/11N1/11
A

(
vA +

α2
b

2Φion

)2/11

= lnCMCneutral + γ6/11(NB/ϕ)4/11N1/11
A v2/11

A

×
[(

1 +
α2

b

2ΦionvA

)2/11

−1

]
. (106)

7.1.3 Micelle-to-Micelle Transition

Remarkably, in the intermediate range of salt concentrations, starlike micelles
formed by block copolymer with an annealing PE block exhibit a discontinuous
variation of their structural parameters upon a smooth variation in either the salt
concentration, Φion, or the pH of the solution.

Analysis of (100) indicates that at moderate salt concentrations, the free energy
versus cp curves might exhibit two minima, one corresponding to a quasi-neutral
(weakly ionized) micelle with high aggregation number, and the other correspond-
ing to a micelle with strongly charged corona, α ≈ αb, and low aggregation number.
These two minima correspond to two populations of micelles that coexist in the so-
lution in a certain range of salt concentrations.

When the two minima are equally deep, the transition from large (quasi-neutral)
to small (charged) micelle occurs as a jump-wise quasi-first order phase transi-
tion. (A more accurate analysis [23] points at a finite interval of salt concentrations
wherein the two types of micelles coexist). Using (102) and (105) for the free energy
of quasi-neutral and charged micelle, and assuming α2

b /ΦionvA � 1, the character-
istic salt concentration at the transition point can be evaluated as:

Φ∗
ion

∼= α−7/2
b γ3

(
NB

ϕ

)2

N−5
A . (107)

Decomposition of large micelles into many smaller ones is accompanied by an
abrupt increase in the degree of ionization of the corona from α ≈αb(Φ∗

ion/αbcp)1/2

to αb, accompanied by a substantial drop in the aggregation number:

pquasi−neutral

pcharged

∼=
(

1 +
α2

b

2vAΦ∗
ion

)6/11

. (108)
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A combined action of the decrease in the number of coronal chains and the increase
in their ionization results in a relatively small jump up in the coronal dimensions:

Rcorona,charged

Rcorona,quasi−neutral

∼=
(

1 +
α2

b

2vAΦ∗
ion

)1/11

. (109)

The diagram of states of the solution of block copolymer that forms starlike mi-
celles is presented using as coordinates either polymer concentration versus salt
concentration (Φion) (Fig. 4a) or polymer concentration versus bulk degree of ion-
ization (αb) (Fig. 4b).

When the polymer concentration is below CMCquasi−neutral (CMCqn), micelles do
not form in the range of Φion to the left of the CMCcharged (CMCch) line. When the
CMCch line is crossed, starlike micelles with charged, α ≈ αb coronae appear in the
solution.

When the polymer concentration exceeds CMCqn, quasi-neutral micelles with
weakly ionized, α 	 αb, coronae are found in the range of low salt concentrations
(small Φion). At the transition concentration, Φion = Φ∗

ion, these micelles abruptly
rearrange into micelles with smaller aggregation number, but stronger charged coro-
nae. Further increase in salt content, Φion > Φ∗

ion , leads to progressive increase in
the micelle aggregation number.

Alternatively, decomposition of large quasi-neutral micelles into smaller charged
micelles (upon crossing of Φ∗

ion(αb) line) may be triggered by an increase in the
pH (i.e., in αb) at the polymer concentration above CMCqn. An increase in the pH
both below and above the transition threshold, leads to a continuous decrease in the
aggregation number and an increase in the span of the corona. At polymer concen-
trations below CMCch, only unimers are found in the solution at high pH (αb ≈ 1).
A decrease in pH leads to a decrease in chain ionization and in Coulomb repulsions
between unimers, and may trigger micellization upon crossing the CMCch or the
CMCqn lines.

Figure 5 demonstrates the diagram of states for starlike micelles in the Φion,αb

coordinates. We delineate four regions, denoted as Sqn, Sqn′ , Sch and U . In region
Sqn, the starlike micelles are quasi-neutral, and their structural parameters are given
by (77), (78), and (101). The dotted line divides region Sqn into two parts. To the left
of the dotted line, the CMCqn is virtually unaffected by the polyelectrolyte nature of
the coronal chains (it coincides with the CMC for the equivalent neutral copolymer).
To the right of the dotted line, the CMCqn is shifted according to (103).

In region Sch, the coronal blocks are charged, α ≈ αb, and the parameters of
equilibrium micelles are given by (87) and (89). The bold line separating regions
Sch and Sqn is the line of abrupt rearrangements of the micelles, Φion = Φ∗

ion(αb).
In region Sqn′ , the coronal blocks A are ionized, α ≈ αb, but the electrostatic in-
teractions are strongly screened due to the high salt concentration. As a result, the
structural parameters of the micelles are the same as in region Sqn.

Finally, in region U the micelles are unstable, and only free ionized unimers (with
α = αb) are found in the solution for any polymer concentration.
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C
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unimers
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ionized coronae

micelles with strongly 
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C

micelles with weakly 
ionized coronae

10pH−pK+1

10pH−pK
=

unimers

micelles with strongly 
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b

Fig. 4 Diagram of states for solution of block copolymers with pH-sensitive PE blocks. Coor-
dinates are (a) polymer concentration C and salt concentration Φion (at constant buffer pH); (b)
polymer concentration C and pH (at constant salt concentration). Dashed lines in (b) indicate shift
of the boundaries of different regimes upon increasing hydrophobicity of the blocks B
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Fig. 5 Diagram of states in αb,Φion coordinates for dilute solution of block copolymers with

pH-sensitive PE blocks, that associate in starlike micelles, NA � γ2/7( NB
ϕ )5/7v−3/7

A . The dotted
arrow indicates cross-section of the diagram corresponding to the evolution of the micelle param-
eters as a function of salt concentration presented in Fig. 6a, b

Figure 6 shows the evolution of both the aggregation number and the radius of
the corona for starlike micelles upon variations in the salt concentration (6a, b) and
in the pH (6c,d). All the structural properties of starlike micelles with pH-sensitive
coronal blocks exhibit a non-monotonous and discontinuous variation as a function
of Φion: the aggregation number exhibits a minimum (with a jump down at Φion ≈
Φ∗), whereas the coronal dimensions exhibit a weak maximum (with a jump up at
Φion ≈ Φ∗).

7.2 Crew-Cut Micelles with Annealing Polyelectrolyte Coronae

Crew-cut micelles with Hcorona 	 Rcore are formed by copolymers with compara-

tively long hydrophobic and short hydrophilic blocks, NA 	 γ2/7(NB
ϕ )5/7v−3/7

A . The
latter condition ensures that quasi-neutral micelles have a crew-cut shape. As we
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Fig. 6 Dependency of (a) aggregation number p; (b) radius of the corona Rcorona for starlike
micelles with annealing coronal block as a function of salt concentration. The pH is fixed according
to the position of the dotted arrow in Fig. 5. Dependency of (c) p and (d) Rcorona as a function of pH

will show, the progressively increasing role of electrostatic interactions at interme-
diate salt concentrations leads to the decrease in the size ratio, Rcore/Hcorona, which
suggests possible transformation of crew-cut into starlike micelles.

The corona of a crew-cut micelle can be viewed as a quasi-planar annealing PE
brush, as long as Rcore � Hcorona. The ionization-recombination balance and the
structural properties of a planar PE brush were discussed in detail in [31]. Here,
we focus on the evolution of crew-cut micelles caused by an increase in the salt
concentration, Φion, and pH.

Using (75) (at NAϕB/NBcp 	 1) and (96), we find that with the accuracy of
numerical coefficients:

F
kBT

∼= 92/3

2
γ2/3N1/3

A c−2/3
p

+NA

[
vAcp + ln(1−α)− Φion

cp

(√
1 +(αcp/Φion)2 −1

)]
, (110)

where α(cp,Φion) is determined by (97).
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In the low salt limit, Φion 	 αbcp, the coronal chains are weakly ionized, i.e.,
α 	 αb ≤ 1. Making use of (96), we represent the free energy in (110) as:

F
kBT

∼= 92/3

2
γ2/3N1/3

A c−2/3
p +

NA[vAcp + ln(1−α)−α]. (111)

At very low salt concentrations α 	 αb ≤ 1, and the last two terms in (111)
are negligible compared to the second term (steric repulsions). The structure of
micelles is determined by the competition between steric repulsions (the second
term) and excess free energy of the core–corona interface (the first term). Balance
of these terms indicates that the structural parameters are given by (81)–(83) for
quasi-neutral crew-cut micelles.

The degree of ionization of the coronal chains increases as a function of the salt
concentration (99) and is given by:

α ∼=
(

αbΦion

1−αb

)1/2 N1/5
A v3/10

A

γ1/5
. (112)

As long as steric repulsions ∼ cpvA in the corona dominate over the ionic contribu-
tions ∼ α, the increase in α does not affect the structure of the micelles.

The ionic contributions start to dominate over steric repulsions at:

Φion ≥ Φ(1)
ion ≡

1−αb

αb

(
γ

NA

)6/5

v1/5
A . (113)

The equilibrium structure of the micelle is now determined by a balance between
the osmotic pressure of counterions in the corona and excess interfacial free energy
of the core–corona boundary. Here, the micellar corona is equivalent to a quasi-
planar PE brush in the annealing osmotic regime [31].

The aggregation number and the thickness of the corona depend on the degree of
ionization α in the same way as for crew-cut micelles with osmotic quenched PE
corona:

p ∼= γ3(NB/ϕ)2(NAα)−3, (114)

Hcorona ∼= aNAα1/2, (115)

s ∼= α
NA

γ
, (116)

but now the degree of ionization α of the coronal blocks depends on the ionic
strength, Φion, and on the polymer concentration in the corona cp

∼= NA/sHcorona

via (99), which leads to:

α ∼=
(

αb

1−αb

NAΦion

γ

)2

. (117)

Hence, α rapidly increases as a function of Φion.
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An increase in the degree of ionization of blocks A leads to an increase in osmotic
repulsion in the corona, and the aggregation number rapidly decreases as:

peq ∼=
(

NB

ϕ

)2( γ
NA

)9( 1−αb

αbΦion

)6

. (118)

The extension of coronal chains is therefore given by:

Hcorona ∼= α1/2NA
∼= N2

A

γ
αbΦion

1−αb
, (119)

i.e., the corona thickness increases with increasing salt concentration Φion, while the
size of the core:

Rcore ∼=
(

NB

ϕ

)(
γ

NA

)3( 1−αb

αbΦion

)2

(120)

decreases with Φion due to the decrease in aggregation number, (118). As a result,
the ratio Rcore/Hcorona decreases with increasing salt concentration as ∼1/(Φion)3.

The annealing osmotic regime holds as long as α 	 αb, i.e., in the range of salt
concentrations:

Φion 	 Φ(2)
ion ≡

γ
NA

α−1/2
b (1−αb). (121)

At Φion
∼= Φ(2)

ion, the coronal blocks reach maximal ionization, α ≈ αb, and maximal

extension, Hcorona ∼= α1/2
b NA. In contrast, the aggregation number reaches its mini-

mal value, which coincides with the aggregation number for a quenched PE micelle
with α = αb in a salt-free solution and is given by (63).

The ratio Rcore/Hcorona also passes through a minimum at Φ(2)
ion:

(
Rcore

Hcorona

)
Φ(2)

ion

∼= NB

ϕ
γ

N2
A

α−3/2
b . (122)

At larger salt concentrations, Φion � Φ(2)
ion, the corona is found in the salt-

dominated regime. Here, α ≈ αb and the structural parameters of these micelles
coincide with those of crew-cut micelles with a quenched PE coronal block, given
by (93)–(95). The CMC of copolymers with an annealing PE block at high salt con-
centration also coincides with that for copolymers with quenched PE block.

In the range of salt concentrations Φ(2)
ion 	 Φion 	 α2

b /vA, the electrostatic con-
tribution of veff dominates over the steric contribution, and veff = vA + α2

b/Φion
∼=

α2
b /Φion. At higher salt content, Φion � α2

b /vA, the electrostatic interactions are
screened, and the micelles are found in the quasi-neutral regime (81)–(83).

The scenario of crew-cut micelle evolution (described above) holds if Hcorona 	
Rcore in the whole range of salt concentrations (including Φ(2)

ion, where Rcore and
Hcorona reach their minimal and maximal values, respectively).
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The condition Hcorona 	 Rcore can, however, break down at relatively high
values of αb and/or for moderately asymmetric block copolymers, i.e., at αb ≥
(γNB/N2

Aϕ)2/3. In this case, the stronger electrostatic interactions in the corona
transform crew-cut micelles whose coronae are in the osmotic annealing regime,

Φion ≥ Φ(1)
ion, into salt-dominated starlike micelles when the bulk concentration of

salt reaches the value of Φion = Φ∗
ion ≤ Φ(2)

ion.
The transition point Φ∗

ion is specified by (107), and this rearrangement occurs
abruptly (as the first-order phase transition). In the transition range two population
of micelles, quasi-neutral crew-cut micelles and charged starlike micelles coexist in
the solution.

The equilibrium parameters of the micelles after the transition coincide with
those for charged starlike micelles.

In Fig. 7 the diagram of states for crew-cut micelles is presented in the Φion,αb

coordinates. The diagram contains regions CCqn, CCqn′ , CCosm, CCch and Sch.
In region CCqn, the micelles are quasi-neutral, and the coronae are weakly ion-
ized, α 	 αb. The dotted line indicates the value of αb above which the CMCqn
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Fig. 7 Diagram of states in αb,Φion coordinates for dilute solution of block copolymers with

pH-sensitive PE blocks, that associate in crew-cut spherical micelles, NA 	 γ2/7( NB
ϕ )5/7v−3/7

A . Ver-
tical and horizontal dotted arrows indicate fixed values of pH and salt concentration corresponding
to Fig. 8a, b and Fig. 8c, d, respectively
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Fig. 8 Dependency of (a) aggregation number p; (b) radius of the core Rcore and thickness of
the corona Hcorona in crew-cut spherical micelles with pH-sensitive coronal block as a function of
salt concentration. The pH is fixed according to the position of the vertical dotted arrow in Fig. 5.
Dependency of (c) p, and (d) Rcore and Hcorona as a function of pH. Salt concentration is fixed
according to the position of horizontal dotted arrow in Fig. 7

deviates from CMCn, cf. (103). In region CCqn′ , the coronal blocks are ionized,
α ≈ αb, but the electrostatic interactions are strongly screened due to high salt con-
centration, and structural parameters of the micelles are the same as in region CCqn.

Line Φ(1)
ion separates regions CCqn and CCosm. The bold line indicates the transi-

tion line Φion = Φ∗
ion(αb), where weakly ionized osmotic crew-cut micelles abruptly

transform into strongly charged starlike micelles (region Sch). In region CCch, the

charged micelles acquire crew-cut shape. Line Φ(2)
ion separates regions CCosm from

CCch. Upon crossing this line, a continuous transformation of micelles occurs.
The evolution in aggregation number, core radius, degree of dissociation, and

extension of the coronal chains in a crew-cut micelle, as a function of salt concen-
tration and pH, are schematically presented in Fig. 8.

In contrast to a nonmonotonous behavior of the equilibrium parameters of crew-
cut micelles, the CMC decreases monotonously as a function of the bulk salt
concentration, Φion. Namely:

lnCMCCC
∼= −γ(NB/ϕ)2/3

+

{
−NA ln(1−αb)−N3

A[αbΦion/γ(1−αb)]2, Φion 	 Φ(2)
ion,

N3/5
A γ2/5(vA + α2

b/2Φion)2/5, Φion � Φ(2)
ion.

(123)
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8 Micelles with Quenched and Annealing Polyelectrolyte
Coronae: Nonlocal Mean-Field Approach

The mean-field approach combined with the local electroneutrality approximation
(LEA) can be extended beyond the boxlike model. To calculate the free energy of a
micellar corona with the radial gradients in polymer density, we assume that all the
free ends of blocks A are located at the corona periphery and are equally stretched.
Within this model, the free energy of a micelle of morphology i (i = 1,2,3), can be
explicitly calculated for both quenched and annealing PE coronae. We outline here
only a general scheme of the approach, whereas the details can be found in [22, 32].

The Gibbs free energy per chain in the corona of morphology i is formulated as:

F (i)
corona =

3kBT
2

∫ Rcorona

Rcore

(
dr
dn

)
dr +

∫ Rcorona

Rcore

fint{cp(r)}s(r)dr. (124)

Here, the first term accounts for the nonuniform stretching of the coronal block,
whereas the second term accounts for the excluded-volume interactions, the trans-
lational entropy of mobile ions, and (in the case of an annealing PE block) the free
energy gain due to corona ionization, as specified by (66), (67).

The local chain stretching at distance r from the center of micelle, dr/dn, is
related to local polymer density, cp(r), as:

cp(r) =
dn

s(r)dr
, (125)

where:

s(r) = s(Rcore)
(

r
Rcore

)i−1

, i = 1,2,3. (126)

This enables one to represent the free energy of the corona, (124), in the form:

F (i)
corona =

∫ Rcorona

Rcore

f{cp(r),r}s(r)dr, (127)

where the free energy density in the corona is given by:

f{cp(r) ,r} =
3kBT

2cp(r)s2(r)
+ fint{cp(r)}. (128)

The outermost radius Rcorona of the corona follows from the normalization
condition: ∫ Rcorona

Rcore

cp(r)s(r)dr = NA. (129)
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Minimization of the coronal free energy, (127), under the constraint given by
(129) leads to the following equations for polymer density profile, cp(r), and for the
radius of the corona, Rcorona:

δ
δcp(r)

f{cp(r),r} = λ , (130)

(
cp(r)

δ
δcp(r)

f{cp(r),r}− f{cp(r),r}
)

r=Rcorona

= 0, (131)

where λ is the (exchange) chemical potential of monomer unit of the coronal
block. For specified density of the interaction free energy, fint{cp(r) = fev{cp(r)}+
fion{cp(r)}, the coronal free energy, F (i)

corona, can be calculated with the account of
(127)–(131) at arbitrary radius of the core, Rcore. The density of the free energy
of non-ionic interactions, fev{cp(r)}, is given by (66). Within the LEA, the ionic
contribution, fion{cp(r)}, can be obtained from (84) or (96) for a quenched and
an annealing corona, respectively, by replacing cp → cp(r),α → α(r). In the latter
case, the degree of ionization of the coronal chains α(r) becomes also a function of
the radial coordinate, r, and is related to local polymer concentration, cp(r), by (97)
and (99).

Compared to the boxlike model, the nonlocal mean-field approach provides
deeper insights in the structure of a micellar corona. In particular, in starlike mi-
celles (Rcorona � Rcore), the polymer density, cp(r), decays as a power law function
of r in the central regions of the corona. At low salt concentration, the local de-
gree of ionization in the corona increases as a power law function of r, according
to the relation between cp(r) and α(r), specified by (99). In both limits of starlike
(Hcorona � Rcore) and crew-cut (Hcorona 	 Rcore) micelles, the asymptotic power law
expressions for the coronal size and the free energy, obtained in the framework of
the boxlike model, are recovered. In addition, explicit numerical prefactors for both
properties can be calculated [22].

Analysis of the radial gradients in polymer and free energy densities in the corona
of aggregate with morphology i enables one to obtain linear in curvature correc-
tion terms for the coronal free energy of crew-cut micelles, Hcorona 	 Rcore. As we
demonstrate below in Sects. 10 and 11, the magnitude of these curvature-dependent
terms can be tuned by variations in the pH and ionic strength in the solution. As a re-
sult, morphological transformations of block copolymer aggregates can take place.

9 Self-Consistent Field Modeling of Micelle Formation

Scaling approaches to predicting structural dependencies for micelles are useful to
reveal power law behavior, but lack the precision with respect to numerical coef-
ficients. The mean-field theory for self-assembly, as discussed above, unravels the
general trends for these complex micellar systems, but implements major approx-
imations. In particular, the boxlike model neglects gradients in the local densities
in both the core and corona regions. A more advanced nonlocal mean field model
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accounts for radial gradients in the coronal density profile and in local stretching of
both the coronal and the core-forming blocks, but implements the strong stretching
approximation. Moreover, large-scale fluctuations in stretching of the coronal chains
(distribution of the free ends) are neglected. Therefore, one cannot expect truly ac-
curate molecularly detailed results from these analytical theories. In this section
we discuss the numerical self-consistent field (SCF) approach to self-assembly of
block copolymers [65–69]. The SCF approach is also of the mean-field type and
thus has a known tendency to overestimate the free energy of the unimers, as well
as the free energy for the polymer brushes that make up the micelle coronae. In con-
trast to the box model, one can account for all relevant gradients in densities in the
micelle [70–73] because it includes the statistical weights of all possible chain con-
formations within a freely jointed chain approximation [74] and therefore is able to
account for molecular details. Not surprisingly, the equations need to be solved nu-
merically [75], and the calculations really become challenging for weakly charged
and pH-dependent systems, especially in the limit of low salt concentrations. As
computations are more demanding, the SCF approach should be seen to comple-
ment the analytical approaches rather than to replace them.

The scaling laws and the analytical dependencies that are discussed in this review,
are expected to hold in the limit of long chains. In stark contrast, well-defined block
copolymers that form responsive micelles often have a limited molecular weight.
The analytical theory is only expected to give some guidance and trends for micelles
composed of short polymers because several of its premises are not met. From this
perspective, there exists a need to forward approaches that can give accurate in-
formation on self-assembly for relatively short copolymers [76]. As computational
difficulties are gradually overcome, Monte Carlo and molecular dynamics computer
simulations are used to generate results for self-assembly of copolymers in selective
solvents. Accurate results are expected for short copolymers, but detailed analysis
for micellization of amphiphilic ionic copolymers is not yet available.

Numerical SCF theory can be used to probe the self-assembly of both long
and short copolymers [72, 73, 77], for non-ionic [78–82] as well as ionic systems
[83–86]. For long polymers, we can use the numerical SCF theory to check the scal-
ing predictions and to test the validity of the analytical approximations. For short
chains, the numerical theory is still expected to give reasonable predictions and
results can be used to analyze experiments on the one hand, and to complement
computer simulation results on the other hand.

9.1 Spherical Micelles: Implementation of Numerical
SF-SCF Method

Here, we discuss results from the SF-SCF model wherein the SCF equations are
implemented using the discretization scheme of Scheutjens and Fleer. Details of
this approach have been presented in the literature [74]. Here, we only specify the
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main approximations of the model and focus on diblock copolymers ANA BNB in a
selective monomeric solvent S that may contain monovalent salt ions as well as
hydroxyl and hydrogen ions.

Calculations are done in a spherical coordinate system wherein lattice sites are
organized in layers with spherical geometry [70, 87, 88], resulting in measurable
radial volume fraction profiles for all the components ϕ(r). Generalizations to other
geometries are straightforward and one can therefore use the SCF approach to study
micelle–cylinder–lamelle transitions. To date, the SCF work in this direction has
been limited to surfactant systems [70, 88]. In this review, we thus focus on the
block copolymer micelles of spherical geometry. Besides the volume fractions ϕ(r),
the SCF theory features radial segment potential profiles u(r) for each type of seg-
ment X = A,B,S, · · · . Using these profiles, the free energy F can be computed. The
optimization of this free energy results in the self-consistent field machinery:

u[ϕ(r)] ↔ ϕ [u(r)]. (132)

The left-hand side of this equation indicates that the segment potentials are uniquely
computed from the volume fractions. First of all we have a Lagrange field, which is
coupled to the incompressibility relation ∑X ϕX (r) = 1 implemented for all coordi-
nates r. In addition there are the excluded volume interactions. These are accounted
for using the Bragg–Williams approximation, where the interactions are parameter-
ized by Flory–Huggins χ parameters. When the segments are charged they give rise
to an electrostatic contribution, eΨ(r)/kBT , where Ψ is the local electrostatic po-
tential. The potentials follow from solving, for a specified charge distribution q(r),
the Poisson equation. In these systems we introduce a 1:1 electrolyte wherein the
ions take up the same volume as a solvent molecule [89]. A two-state model is im-
plemented when the A segments are weakly charged. Depending on the local proton
concentration and the pKa value, a segment can either be in the state with a negative
charge or in a neutral form. These two states are equilibriated with the account of
the autodissociation of water. In this way, the degree of dissociation of a monomer
unit A, α, is a function of the radial coordinate [90]. For such system, we introduce
proton and hydroxyl ions (both of the same size as the water molecules) into the
system and fix the bulk concentration of hydrogen ions to set the (bulk) pH.

The right-hand side of (132) indicates that the segment volume fractions are
uniquely computed from the segment potentials. As mentioned above, we imple-
ment a freely jointed chain model, which ensures the chain connectivity, but which
does not prevent backfolding of the chain to previously occupied lattice sites. For
this chain model, the volume fractions can be computed efficiently using a propaga-
tor formalism, which is intimately related to the Edwards equation [91].

The free energy of n micelles in a volume (which is assumed to be incompress-
ible) that has a solvent, copolymers, etc. ( j = 1,2, . . .) as its molecular species, is
given by F = Ωn + ∑ j n jμ j where n j and μ j are the number and chemical poten-
tial of molecules of type j. The optimization of the free energy with respect to the
number of micelles leads to the condition of equilibrium for micelles, i.e., Ω = 0
[36, 92]. The SCF model gives access to the grand potential Ωm of the micelle that
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is pinned at the center of the computational box. When the micelle is sufficiently
large, we may ignore the translational entropy and define stable micelles having
Ωm ≈ Ω = 0 (cf. (5) with lncmic ≈ 0). Unless mentioned otherwise, we follow this
Ansatz in this section. By doing so we give an upper limit of the micelle size and
aggregation number (see discussion in Sect. 2.1).

We will focus on spherical micelles formed by copolymers in a monomeric sol-
vent. The default parameters are consistent with a selective solvent χBS = χAB = 1.5
and χAS = 0. The discretization length (size of a lattice site = size of a segment) a
is equal to 0.5 nm, which is chosen to be close to the Bjerrum length for aqueous
solutions around room temperature. The relative dielectric constant ε is set equal to
80 for all species except for apolar species, for which εB = 2. Further details are
given in the relevant sections.

The radial density profile (polymer volume fraction ϕA) in the corona of micelle
can unambiguously be used to find the aggregation number p. The sizes of core and
corona are less trivially obtained. To help define the micellar dimensions we have
incorporated two molecular markers at both ends of the hydrophilic block, named
X2 (at the junction between A and B segments) and X1 (at the free end of the A
block). The first moment < Xk >:

〈Xk〉 ≡ ∑r L(r)rϕXk (r)
∑r L(r)ϕXk (r)

k = 1,2, (133)

where L(r) ∝ r2 is the number of lattice sites at coordinate r, is a measure for the
average position of the marker. The X2 is typically at the boundary between the core
and the corona and 〈X2〉 is a measure for the core size, Rcore. The average position of
the first marker is a measure of the overall size of the micelle, Rcorona. The difference
between these two average positions is a measure for the dimension of the corona,
Hcorona.

The CMC of the copolymer system can also be extracted from the radial pro-
file ϕA because it corresponds to the concentration of copolymers in the limit of
r → ∞.

9.2 Neutral Micelles of Amphiphilic Block Copolymers

The SF-SCF approach has been used to consider many aspects of amphiphile self-
assembly [77, 82, 88, 93–96]. Here, we focus on results that are relevant for the
self-assembly of non-ionic copolymers in spherical micelles. The self-assembly of
non-ionic copolymers is characterized by relatively few parameters, and we will
use this system to show the micellar properties as a function of the most relevant
molecular parameters.

In Fig. 9 we give, as an example, the radial density (volume fraction) profiles
through a spherical micelle composed of A200B50 copolymers with a four times
longer hydrophilic block than the hydrophobic block. Inspection of the radial profile
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Fig. 9 Radial volume fraction profiles for the core-forming (B) segments, the corona-forming (A)
segments, and the monomeric solvent S for copolymer A200B50. The vertical dashed lines specify
the core size Rcore, the overall size of the micelle Rcorona, and the size of the corona Hcorona. These
measures are found by two markers placed in the molecule. One of the markers, X1, is positioned
between blocks A and B; the second marker, X2, is at the end of the hydrophilic block A. The first
moments of the density distributions of these markers are indicated by the two vertical dashed
lines. The Flory–Huggins parameters have the default values χBS = χAB = 1.5 and χAS = 0. The
grand potential Ωm = 0, which represents equilibrium when translational entropy of the micelle is
ignored

for the core-forming block B exemplifies that, as anticipated above, the core has
a homogeneous density. The density in the core is an increasing function of χBS.
In contrast to the assumption in the boxlike model, the volume fraction profile in
the corona has a clear dependence on r. Analysis of the latter profile indicates the
following generic features: For very small cores, the profile represents that of a
starlike micelle and the volume fraction of monomers A decays as a power law
near the micelle center, in accordance to the predictions of the analytical theory. At
larger distances (at the periphery of the corona), the profile is quasi-parabolic. The
core–solvent interface is sharp and becomes progressively sharper with increasing
χBS, but also when the repulsion between A and B (specified by the value of χAB)
increases. In Fig. 9 we also show the sizes of the micelle, Rcorona, and of the core,
Rcore (dashed vertical lines), and the thickness of the corona, Hcorona, obtained as
explained above.

The dependence of the aggregation number and the CMC on the lengths of the
polar blocks are given in Fig. 10a, b, respectively, for two values of the core-forming
block and for two values of the solvent quality of the corona-forming block. The
scaling theory and also the boxlike model give different dependencies for these
quantities, depending on the geometry of micelle (crew-cut or starlike). The size
of the core, Rcore, and that of the corona, Hcorona, are presented as a function of the
length of the soluble block A in Fig. 10c. As can be seen in Fig. 10c, the size of the
core decreases and that of the corona increases with increasing length of the coronal



106 O.V. Borisov et al.

p

χ
AS

 = 0

N
B
 = 50

N
B
 = 100

χ
AS

 = 0.5

CMC

χ
AS

 = 0.5

N
B
 = 50

N
B
 = 100

χ
AS

 = 0

(χ
AS

,N
B
)

(0
.5

,1
00

)

(0,100)

(0.5,50)
(0,50)

R
core

H

crew- cut starlike

R
core

H

10−18

10−13

10−8

50 60 70 80 90 100
N
B

CMC

χ
BS

 = 1.6

1.5

1.4

1.3

N
A
 = 1000

a

c

b

d

103

10−8

10−13

10−18

10−23

102

102

101

100

101

101 102 103 104 101 102 103 104
NA

101 102 103 104
NA

NA

Fig. 10 (a) The micellar aggregation number p as a function of the length of the polar block NA;
(b) CMC (volume fraction of copolymer in the bulk) as a function of the block length NA; and
(c) the core size Rcore and corona size H as a function of NA for equilibrium micelles (Ωm = 0)
with NB = 50 (dotted lines) and NB = 100 (solid lines) and χAS values of 0 (good solvent) and
0.5 (theta solvent). Other parameters have the default values. (d) CMC as a function of the length
of the core-forming block NB for NA = 1000 and for different values of the solvent quality of the
core-forming block χBS as indicated

block. The boundary from crew-cut to starlike shape appears around NA ≈ 100 for
NB = 50 and is about twice as high for NB = 100. Over a wide range of NA values,
the core and corona dimensions are comparable and therefore there is a wide range
of parameters for which the micelle is in the crossover from crew-cut to starlike
regimes. Starlike micelles occur over a wider range of parameters when the solvent
quality for the corona chains is better.

From Fig. 10a, b it is difficult to extract clear power law dependencies. There-
fore, we only qualitatively discuss the trends that are in qualitative agreement with
the scaling analysis. The longer the polar block A, the smaller the aggregation num-
ber and the higher the CMC, (31). Inferior solvent quality for the polar block makes
these trends less pronounced. The decrease in the aggregation number with increas-
ing length of the polar block approximately follows a power law dependence, where
the apparent exponent is highest in the crossover regime. The slope of the depen-
dence p(NA) is not a strong function of the length of the core-forming block. It is
more steep for good solvent than for theta solvent conditions.
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In Fig. 10d we show that the CMC depends exponentially on the length NB of
the core-forming block. The slope of this dependence is proportional to the χBS,
and is well documented in the surfactant literature. We note that the dependence
of the CMC on the length of the core block (Fig. 10d) is much stronger than that
of the corona (Fig. 10b). In passing, we note that the SCF theory assumes that the
chains in the bulk are ideal and are fully surrounded by the solvent. The method
thus ignores the possibility that the core-forming block of unimers is collapsed. In
such a state, the unimer also avoids most contacts with the solvent and we conclude
that the SF-SCF approach overestimates the free energy of unimers. Collapse of the
hydrophobic block of unimer would increase CMC according to (31), (37).

9.3 Micelles with Quenched Polyelectrolyte Corona

For block copolymers comprising ionic hydrophilic blocks one has, in addition to
the parameters discussed in the previous section, several new parameters that influ-
ence the micelle characteristics. Here, we focus on how these new parameters, i.e.,
the charge density in the corona and the ionic strength influence the micelle charac-
teristics. In this section we therefore focus on a given molecular composition and we
opt for a symmetric case, A200B200, and fixed the values for the excluded-volume in-
teractions parameters: χBS = χNaB = χClB = χAB = 1.5 and χAS = χNaS = χClS = 0.
Hence, we choose for the scenario that the ions have similar excluded-volume inter-
actions with the polymer segments as the solvent. Note that in practice ions might
have some specific affinity for either the core or the coronal blocks, and this situation
could be also addressed in frames of the SF-SCF model.

In Fig. 11 we show an example of the relevant radial distributions for an equi-
librium micelle composed of a symmetric ionic/non-ionic diblock copolymer with a
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Fig. 11 (a) Radial volume fraction profiles for apolar block B and charged coronal block A with
α = 0.2 (every fifth segment along the coronal block has a negative charge −e). Inset shows radial
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Φs = 0.001. (b) Corresponding radial electrostatic potential profile Ψ(r) (left ordinate) in volts
and the dimensionless radial charge density q(r)/e (right ordinate)
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charge density of −0.2 charges per segment in the coronal chain in a Φs = 0.001 salt
solution. In Fig. 11a, the volume fractions of the polar and apolar blocks are shown
in combination with that of the two markers. The distributions of the salt ions are
given as well (in the inset). Compared to Fig. 9 we show here a result for which the
core is larger. In the corona the counterions (Na) accumulate and the co-ions (Cl)
are depleted with respect to the bulk concentrations. Both co- and counterions avoid
the core because they interact with B monomers as molecules of a poor solvent.

In Fig. 11b the radial distribution of the electrostatic potential is shown in combi-
nation with the overall distribution of the charge density. As, in this case, the charge
along the chain is quenched, the charge distribution due to the polymers in the mi-
celle simply follows the distribution of the A segments. The total charge profile is
now computed from q(r)/e = −0.2ϕA(r) + ϕNa(r)−ϕCl(r). As seen in Fig. 11b,
the overall charge in the corona chain is very low, proving that the LEA is accurate
in this case. The radial electrostatic potential in the micelle is negative throughout
the micelle, as expected. One can systematically investigate the radial profile of the
electrostatic potential and one then finds that the electrostatic potential is approxi-
mately parabolic in the corona region. As compared to Fig. 9 the average density of
segments in the corona is significantly lower in the case of the charged micelle than
for the non-ionic case. The accumulation of counterions in the corona causes a local
high osmotic pressure, which, in turn, swells the corona region. This is typical for
micelles with a PE corona.

Copolymers with quenched PE blocks form micelles that strongly respond to
variations in the ionic strength in solution. To illustrate this behavior, which is al-
ready anticipated above from the scaling theory and the boxlike model, we show the
micelle characteristics in Fig. 12. In these graphs, we plot the aggregation number,
the CMC and the sizes of the core and corona as a function of the fractional charge
along the corona block for various values of the salt concentration Φs.

Inspection of the results of Fig. 12 shows that in the limit of high ionic strength
and low charge density, the micelle parameters go to the limit of non-ionic micelles.
With increasing charge and decreasing ionic strength, rather dramatic changes in
micellar properties are predicted. As illustrated in Fig. 12a, the aggregation num-
ber dramatically drops to very low values. More specifically, when Φs = 10−4 the
micelles disappear when the fractional charge is more negative than −0.1. Corre-
spondingly, the CMC is a very strong function of the charge density along the A
chain, especially when the ionic strength is low. This strong dependence is traced
to the loss in translational entropy of the entrapped counterions. As the density of
segments in the core is not a strong function of the aggregation number, the size of
the core follows the aggregation number. Hence, Rcore is a strongly decreasing func-
tion of the charge density. On the other hand, the size of the corona increases with
increasing charge density. The higher the charge density in the corona, the more
counterions are localized in the corona, with corresponding consequences for the
osmotic driving force that swells the corona. At the same time, the effective sec-
ond virial coefficient of monomer–monomer interactions in the corona is a strongly
increasing function of the charge density and a decreasing function of the ionic
strength.
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Fig. 12 (a) Dependence of
the aggregation number p; (b)
CMC; and (c) core size Rcore

and corona size Hcorona as a
function of the fractional
charge αb for quenched PE
block at Φs values of 10−1,
10−2, 10−3, and 10−4. Both
blocks have the length of 200
segments. Ωm = 0 and the
interaction parameters have
the default values
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From the above it is clear that one needs relatively long core-forming blocks in
order to generate a strong enough associating force to keep highly charged coronal
chains in the micelle. This observation explains why, in the next section, we focus
on copolymers with a longer apolar block.
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9.4 Micelles with Annealing Polyelectrolyte Corona

When the charge density in the corona chains is pH-dependent (i.e., the charges
are annealing), the micelles are even more responsive. Here, we consider micelles
composed of a relatively long hydrophobic block, NB = 300, and a shorter acidic
coronal block, NA = 100, to illustrate the properties of these systems. It is assumed
that the A segments have an (intrinsic) pKa and when the pH � pKa, all the segments
release a proton so that each one acquires a negative charge (−e) and αb = 1. For
pH 	 pKa all segments are in the protonated (neutral) state, i.e. αb = 0. The dif-
ference ΔpH = pKa− pH is important. When the chargeable segments are isolated
in the bulk solution, half the segments will be charged at pH = pKa (i.e., αb = 0.5),
as described by (98). In the corona, however, the locally high electrostatic poten-
tial suppresses the degree of dissociation and, typically, the effective pKeff

a (defined
as the pH at which half the groups are titrated) is shifted by several pH units with
respect to the intrinsic pKa.

The radial volume fraction profiles of monomer units in such micelle at a pH one
unit below the intrinsic pKa and for a salt concentration of Φs = 10−3 are shown in
Fig. 13. In this case, the degree of dissociation in the bulk is αb ≈ 0.1. As shown
in Fig. 13 (right ordinate), the degree of dissociation is significantly suppressed in
the corona region of the micelle. This is due to the negative electrostatic potential
in the corona. As shown for quenched micelles, the electrostatic potential is low
outside the corona of the micelle (i.e., both in the core and in the bulk solution)
and this is why α(r)/αb ≈ 1 in these regions. In this particular example, the corona
block is rather small and the ionic strength is not too low. This is why in this case
the core size exceeds that of the corona. Hence in this example the micelle is in the
crew-cut regime. For such a micelle, the curvature in the coronal part of the micelle
is not very important and the profile is close to that in a planar PE brush. Such a
brush is known [30] to have a parabolic profile of the electrostatic potential.

Fig. 13 Radial density profiles for A and B segments (left ordinate), and radial distribution of the
degree of dissociation normalized to the dissociation of an A segment in the bulk, α(r)/αb ≈ 1
(right ordinate), for A100B300, Φs = 10−3, and pH−pKa = −1
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Fig. 14 (a) Aggregation number p, and (b) core size Rcore and corona size Hcorona as a function
of the difference between pH and pKa for Φs = 10−4, 10−3, 10−2, and 10−1 as indicated. The
copolymer chain A100B300 has polar A segments with annealing charges. Other parameters have
the default values

For micelles composed of diblock copolymers with pH-sensitive coronal blocks,
all measurable characteristics become a strong function of the pH and ionic strength
in solution. In Fig. 14 we show how the aggregation number and the sizes of the
core and corona change over a wide range of these parameters. With increasing pH,
the polyacid chains become gradually more charged, (117), and the response of the
micelles is to decrease the aggregation number as well as the core size [cf. (118),
(120)]. At the same time the corona size increases, (119) so that the overall size of
the micelle is a much weaker function of the pH.

As illustrated in Fig. 14 there is a nontrivial salt concentration dependence for the
aggregation number and core size: both pass through a minimum at low salt concen-
tration, if pH ≈ pKa (cf. predictions of the analytical theory schematically depicted
in Fig. 8). In all cases, the drop in aggregation number, as well as the size changes
are more dramatic for lower ionic strengths. Furthermore, the major changes occur
near pH ≈ pKa; however, in the series Φs = 10−1, 10−2 and 10−3 the drop in p
and Rcore and the rise in Hcorona occur at gradually lower pH values, but this trend
reverses for even lower ionic strength. More specifically, for Φs = 10−4 the drop
occurs very close to pH ≈ pKa at a value of the pH that is larger than for Φs = 10−3.
For even lower ionic strengths this upward shift continues (not shown). It is relevant
to mention that for these low ionic strengths, no stable micelles are present when
pH is much larger than pKa.

Comparing the core and corona sizes as presented in Fig. 14 we see that for these
rather asymmetric copolymers with a much longer apolar block than polar block, the
micelles remain in the crew-cut regime for all pH values (Rcore > Hcorona) at high
ionic strength. For lower ionic strengths, there is a transition from a crew-cut to a
starlike micelle that takes place around pH ≈ pKa. Typically, the overall size of the
crew-cut micelles (Rcorona = Rcore+ Hcorona) decreases with pH due to the dominant
decrease in Rcore. However, for very low ionic strengths, the overall micelle size
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goes through a minimum around the crossover from crew-cut to starlike micelles.
This minimum appears due to interplay of the opposite trends in evolution of Rcore

and Hcorona as a function of pH. The transition from crew-cut to starlike micelles
becomes progressively sharper the lower the ionic strength in the solution.

From Fig. 14 it is noticed that the crew-cut to starlike micelle transition becomes
sharper with decreasing ionic strength. In Fig. 14 we focused on micelles with a
vanishing grand potential, and that have the property that ∂Ωm/∂ p < 0 [see (8)]. As
discussed in Sect. 7.2, below some threshold ionic strength the crew-cut to starlike
micelle transition becomes jump-like and, under certain conditions, both the starlike
and the crew-cut micelles coexist in equilibrium. We illustrate this coexistence with
a study on micelles at low salt concentration, Φs = 10−5. For more details we refer
to the literature where the transition is analyzed in depth for a slightly different
case [23].

The coexistence between crew-cut and starlike micelles is demonstrated for mi-
celles composed of A50B300 copolymers using the default solvency parameters. We
selected the low ionic strength conditions, Φs = 10−5. In this case, the pH-induced
micelle-to-micelle jump-like transition occurs around pH −pKa ≈ 1, i.e., for a pH
just above the pKa. It is illustrated in Fig. 15a that in a narrow pH range, the grand
potential Ωm develops a new region of stability at small values of p (indicated
by the conditions Ωm > 0 and ∂Ωm/∂ p < 0). For lower values of the pH (upper
curve in Fig. 15a), the grand potential becomes an increasing function of p, which
signals that these micelles are unstable. For higher values of the pH (lower curves
in Fig. 15a), the grand potential becomes negative for small values of p, imply-
ing that these small micelles spontaneously disintegrate. For coexistence between
starlike and crew-cut micelles, it is further necessary that the chemical potentials
of the copolymers in both aggregates match. As proven in Fig. 15b, it is possible
to find such conditions. For stable micelles, the condition ∂ lnϕb/∂ p > 0 should
be fulfilled and, as can be seen in Fig. 15b, this occurs both for small values of p
(starlike micelle) and for much larger values (crew-cut micelle). For the value of pH
−pKa = 1, we therefore find a corridor of micelle sizes for which the two types of
micelles coexist at the same chemical potential (indicated by the shaded area). For
lower values of the pH, it is found from the chemical potentials that crew-cut mi-
celles are more favorable than the starlike micelles (not shown), whereas at higher
pH values the opposite occurs. Indeed, the coexistence region (in terms of a pH
interval) is very narrow.

In Fig. 15c,d we show the radial volume fraction profiles for A and B segments.
By visual inspection of the two profiles, it is clear that the coronal size is much larger
than the core size in Fig. 15c (starlike micelle) and the opposite occurs in Fig. 15d
(crew-cut micelle). For the starlike micelle, the density in the corona is much lower
than in the crew-cut case. Due to the curvature, the corona of a starlike micelle layer
has two regions: near the core the density drops as a power law function of the
distance from the center of the core and near the periphery the shape of the profile
resembles that in a planar-like corona. These trends are in line with predictions of
the analytical theory.

In the SCF results discussed in this section, it was pre-assumed that the geometry
of the micelles is spherical. Especially for the cases that the micelles are in the crew-
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Fig. 15 (a) Grand potential Ωm of a micelle composed of A50B300 copolymers and fixed in the
center of the coordinate system as a function of the aggregation number p. (b) The volume fraction
of the unimers ϕb that are in equilibrium with the micelles, as a function of the aggregation number
p for given values of pH. The unstable parts of the curves of (a) and (b) are dotted. The stable
parts are shown by solid lines. The shaded area in (b) represents the coexistence region where
starlike and crew-cut micelles coexist. In (c, d), the radial volume fraction profiles for the apolar
(B) and annealing charged (A) segments are shown for a typical starlike (p = 3) and a typical crew-
cut (p = 700) micelle, respectively. The two micelles have almost identical grand potential Ωm

(very close to zero) and their copolymers have (almost) the same chemical potentials. In all panels
Φs = 10−5

cut regime, one should consider the relative stability of the aggregates of the same
copolymers, being in the same physical chemical conditions, but with a different
geometry (cylindrical or lamellar). Although such analysis is possible, systematic
SCF analysis of nonspherical block copolymer aggregates is currently lacking in
the literature.

10 Polymorphism of Self-Assembled Aggregates of Block
Copolymers with Quenched Polyelectrolyte Blocks

Similarly to the case of non-ionic micelles, micelles with a charged corona can
demonstrate shape transformations. The physical origin of these morphology



114 O.V. Borisov et al.

changes is the same as in non-ionic micelles. That is, an increase in curvature of
the micellar core decreases the coronal electrostatic interactions (with respect to a
planar PE corona) at the cost of an additional stretching of the insoluble core blocks.
These changes in the coronal and core free energies become comparable when the
size of the core, Rcore, becomes larger than that of the corona, Rcore ≥ Hcorona.
Therefore, one anticipates morphological transformations (under both low and high
salt conditions), when spherical micelles acquire the crew-cut shape. In the case
of ionic coronal block, the morphological transitions can be triggered by tuning
the strength of repulsive interactions in the corona, e.g., by variation in the ionic
strength of the solution.

To specify the range of thermodynamic stability of micelles with morphology i,
at a given salt concentration, Φion, we go beyond the boxlike model and incorpo-
rate polymer density gradients in the coronal domain and account for a nonuniform
stretching of the blocks. We follow here the arguments of [20, 22].

In a crew-cut aggregate with morphology i, the free energy per chain is given

by F (i) = F(i)
core + F(i)

interface + F(i)
corona, where the first two terms are specified by (40),

(41), and (39), whereas the coronal contribution is approximated if the core of the

aggregate is weakly curved, Hcorona/Rcore ≈ H(1)
corona/Rcore 	 1, as:

F(i)
corona ≈ F(1)

corona − 3(i−1)
2

(
H(1)

corona

N1/2
A

)2
H(1)

corona

Rcore
. (134)

Here, H(1)
corona and F (1)

corona are the respective thickness and free energy (per chain) in
a planar brush with grafting area s(Rcore) = iNB/ϕRcore. The specific expressions

for H(1)
corona and F (1)

corona are determined by the state of a PE brush (osmotic, salt-
dominated, or quasi-neutral). By substituting the corresponding expressions for

H(1)
corona and F (1)

corona in (134), one finds the coronal free energy per chain, F (i)
corona,

in an aggregate of morphology i and, subsequently, the equilibrium value of the
free energy, F (i), in a weakly curved crew-cut aggregate. The binodals, separating
stability regions of aggregates with morphologies i and i + 1, are derived from the
condition F (i) = F (i+1).

10.1 Salt-Free Solution

We first find the binodals in a salt-free solution of block copolymers with a quenched
PE block A. Assuming Gaussian elasticity of the stretched coronal blocks, and tak-
ing advantage of the LEA (all mobile counterions are entrapped inside the corona),
one finds [22]:

F(1)
corona

kBT
= αbNA

[
ln

( √
3αb

s(Rcore)

)
− 1

2

]
(135)
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and:

H(1)
corona =

1√
3

α1/2
b NA. (136)

Note that the LEA can be safely applied in salt-free solutions of the
ionic/hydrophobic block copolymers at concentrations sufficiently larger than the
CMC to insure finite electrostatic screening length in the solution.

The free energy per chain, F (i), in an aggregate of morphology i yields:

F (i)

kBT
≈ F (1)

corona

kBT
+ γs(Rcore)− (i−1)

2i
√

3

α5/2
b N3

Aϕ
γNB

+ bi
i2NBγ2

ϕ2α2
b N2

A

. (137)

Here, the first two terms are the free energy of the planar corona and core–water
interface, respectively. The third term is the reduction of coronal free energy due to
curvature, while the last term accounts for the elastic stretching of the core blocks.
Similarly to the case of non-ionic micelles, the area s per chain is determined by
balancing the dominant free energy contributions (the first and the second terms in
(137)). Correspondingly, the binodals are specified from balancing the correction
terms [the third and forth terms in (137)] in the free energies of aggregates with
morphology i and i+ 1, as:

α9/2
b N5

Aϕ3

N2
Aγ3

= 2
√

3i(i+ 1)
[
bi+1(i+ 1)2 −bii

2] i = 1,2. (138)

The transition from morphology i to i + 1 (i.e., lamella to cylinder or cylinder to
sphere) occurs upon an increase in the degree of ionization of the coronal blocks, αb,
and/or an increase in NA/decrease in NB. These molecular parameters are specified
by the block copolymer composition. Therefore, to detect the predicted structural
transformations, one has to use a series of block copolymer with finely tuned
molecular weights of the blocks. As follows from (138), the relative width of the
corridor, delineating the stability range of cylindrical micelles in a low salt solution,

(N(c−s)
A −N(l−c)

A )/N(l−c)
A ≈ 0.16, is rather small. Moreover, the absolute width of the

corridor, N(c−s)
A −N(l−c)

A , is also small due to the typically short length of block A. A
more practical route to search for morphological transitions in diblock copolymers
with quenched PE block is to exploit the response of charged micelles to variations
in the content of added salt.

10.2 Salt-Dominated Solution

Under salt dominance conditions (i.e., when the concentration of salt, Φion, ex-
ceeds by the far the concentration of counterions in salt-free osmotic corona),
the electrostatic interactions in the corona are described via an effective second
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virial coefficient of binary monomer–monomer interactions, veff. The structure of
a planar brush, wherein the interactions are determined by binary contacts between
monomers, is specified by the free energy per chain:

F(1)
corona

kBT
=

34/3

2
NAv2/3

eff s(Rcore)−2/3 (139)

and the brush thickness:

H(1)
corona =

1

31/3
NAv1/3

eff s(Rcore)−1/3, (140)

where s(Rcore) is the grafting area per chain. By using (39), (40), (41), and (134),
and by optimizing the free energy with respect to area s, we find the equilibrium
free energy per chain, F (i), in a weakly curved crew-cut aggregate of morphology i
[20]. Within the accuracy of linear in curvature terms:

F (i)

kBT
≈ 5

2
31/5N3/5

A v2/5
eff γ2/5 − (i−1)

2i
N2

Aϕveff

NB
+ bi

i2NB

32/5ϕ2

(
γ

NAv2/5
eff

)6/5

(141)

for i = 1,2,3. Here, the first term is the free energy of a planar PE corona balanced
with the surface free energy, the second term specifies the reduction in coronal free
energy caused by the core curvature, and the third term is due to elastic stretching
of core blocks B. An approximate expression for the binodals that separate regions
of thermodynamic stability of aggregates with morphology i and i+1, are given by:

veff = vA+α2
b /2Φion ≈ N10/9

B

N16/9
A

γ2/3

ϕ5/3

{
2i(i+ 1)

32/5

[
bi+1(i+ 1)2 −bii

2]}5/9

i = 1,2.

(142)

A progressive increase in the salt concentration, Φion, leads first to the sphere-to-
cylinder and then to cylinder-to-lamella transitions, which occur almost at a constant
surface area per chain, s.

The regions of thermodynamic stability of the aggregates of different morpholo-
gies are presented in Fig. 16a, b as a function of variable length of the ionic and
hydrophobic blocks, respectively. As follows from Fig. 16, spherical micelles are
stable in a wide range of salt concentrations if NA � NB and even if NA ≤NB. Cylin-
drical micelles and vesicles (or lamellar structures) are found in a narrow range of
(high) salt concentration for strongly asymmetric, NB � NA copolymers. For each
morphology i, an increase in salt concentration leads to the progressive decrease
in the corona thickness, Hcorona, and in a simultaneous increase in the radius of
the core Rcore. At the transition (sphere-to-cylinder and cylinder-to-lamella) points,
these smooth dependencies are interrupted by a drop in the core size (which enables
relaxation of the elastic tension in the core blocks) and in a simultaneous jump up
in the thickness of the corona. The ratio Hcorona/Rcore monotonically decreases as a
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Fig. 16 Phase diagrams of the solution of ionic/hydrophobic diblock copolymers as a function of
salt concentration and the length of the hydrophilic (A) (a) and hydrophobic (B) (b) blocks

function of salt concentration for each particular morphology, but jumps up at the
transition point, as demonstrated in Fig. 17.

We emphasize that it is a reduction in elastic stretching of the core blocks B,
that drives the change in micelle morphology. Similarly to the case of salt-free solu-
tions, both the elastic stretching of the core blocks and the reduction in electrostatic
interactions in weakly curved corona constitute only small corrections to the major
free energy terms: the surface free energy at core–corona interface, balanced with
the ionic contribution in a quasi-planar corona [the first term in (141)]. However, the
interplay between these corrections dictate the morphology i of crew-cut aggregates.
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Fig. 17 Ratio of the coronal
thickness Hcorona to the core
radius Rcore, as a function of
the salt concentration (via the
effective second virial
coefficient α2

b/2Φion) in the
aggregates of different
morphologies. Arrows
indicate transitions from
spherical to cylindrical, and
from cylindrical to lamellar
morphology
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Salt-induced transitions between charged aggregates of different morphologies
were also considered in [17]. In contrast to our findings, the transitions sphere-to-
cylinder and cylinder-to-lamella were predicted in the starlike regime of charged
aggregates with corona thickness Hcorona ≥ Rcore. (We refer to such aggregates as
starlike irrespective of morphology i.) The origin of this discrepancy is traced to
an inadequate extrapolation of the asymptotic expressions for the free energy of
a starlike corona (that are valid only in the limit Hcorona � Rcore) to the range
Hcorona � Rcore. As a result of such treatment, the free energies of the spheri-
cal (i = 3), cylindrical (i = 2), and lamellar (i = 1) starlike aggregates intersect
when Hcorona ≥ Rcore, resulting in improper location of the sphere-to-cylinder and
cylinder-to-lamella morphological transitions. These transitions were erroneously
attributed in [17] to the gain in entropy of counterions. Remarkably, if the finite size
of the core is taken into account, but the conformational entropy of the core-forming
blocks B is disregarded, a spherical shape of the micelle provides the minimal free
energy at any values of the interaction parameters. As emphasized earlier, the driv-
ing force for morphological transitions is the successive relaxation of the elastic
stretching of the core blocks going from a spherical to cylindrical and finally to
the lamellar topology. Without this effect, a spherical micelle with a quenched PE
corona would be stable at any salt concentration [20].

11 Re-entrant Morphological Transitions in Aggregates
of Block Copolymers with Annealing Polyelectrolyte Block

Remarkably, in micelles with weakly dissociating (pH-sensitive) coronae an in-
crease in the salt concentration, Φion, might invert the sequence of morphologi-
cal transformations from sphere–cylinder–lamella to lamella–cylinder–sphere [21].
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This “unusual” sequence of transitions occurs under low salt conditions, when the
coronal ionization is strongly coupled to the conformations of the soluble block A.
The physical origin of inverted morphological transitions is the same as for non-
ionic micelles and micelles with quenched PE corona. The elastic stretching of the
core-forming blocks increases in the series lamella–cylinder–sphere, whereas the
average coronal concentration of ionizable monomer units decreases upon an in-
crease in curvature of coronal domain. As a result, the ionization of the coronal
blocks, α , increases, and the corresponding ionic contribution to the free energy
decreases. When gains in the ionic contribution in the corona of micelle become
comparable to the losses in elastic stretching of core blocks, micelles might change
morphology. To specify the binodals, separating the regions of thermodynamic sta-
bility for aggregate of morphology i, we use (134). As is discussed earlier, this
equation approximates the coronal free energy of a crew-cut aggregate with a

weakly curved core, Rcore � Hcorona. Recall that H(1)
corona and F(1)

corona in (134) are the
thickness and the free energy of a planar corona under the corresponding conditions
(i.e., for pH-sensitive chains with varying α).

When the degree of ionization of monomer units in the corona is relatively small,
α << αb ≤ 1, the effect of short-ranged interactions is not negligible. Therefore, in
a weakly dissociating corona, both ionic and nonelectrostatic binary interactions
(specified by the second virial coefficient vA) should be taken into account. In this

case, the corresponding expressions for H(1)
corona and F(1)

corona can be represented as
[22, 97]:

H(1)
corona =

1

31/3
NAv1/3

A s(Rcore)−1/3 z1/3

(√
1 + z−1

)2/3
, (143)

F (1)
corona

kBT
=

34/3

2
NAv2/3

A s(Rcore)−2/3

√
1 + z−3

z1/3
(√

1 + z−1
)1/3

, (144)

where the combination of parameters:

z =
24vA

s(Rcore)2

1−αb

αbΦion

depends on both area per chain, s(Rcore), and the strength of steric and electrostatic
repulsions (via vA and αb).

The coronal free energy in a weakly curved aggregate of morphology i is then
specified as [22]:

F(i)
corona ≈ F(1)

corona

[
1− (i−1)

H(1)
corona

3Rcore

z(√
1 + z−3

)(√
1 + z−1

)
]

. (145)

We now introduce the new combinations of the parameters, t and u:

t =
s(Rcore)

31/5v2/5
A

(
γ

NA

)3/5

; u =
24v1/5

A

32/5

(
γ

NA

)6/5 1−αb

αbΦion
. (146)
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Here, t is proportional to the still-unknown area per chain, s(Rcore), whereas u spec-
ifies the relative strength of non-ionic and ionic interactions. When electrostatic
interactions are weak compared to nonelectrostatic interactions, u → ∞. In the op-
posite limit, i.e., when electrostatic interactions dominate, u → 0.

By balancing the dominant contribution in the coronal free energy, F(i)
corona ≈

F (1)
corona, with the surface free energy, F (i)

interface = γskBT, we find the equilibrium area,
s(Rcore), or, equivalently, the relation between t and u:

u2/3

t3
(√

1 + u/t2−1
)4/3

= 1. (147)

The equation for binodals is obtained along the same lines as before. One finds [22]:

N2
Bγ6/5

ϕ3N16/5
A v9/5

A t(u)9/2

{
2

32/5
i(i+ 1)

[
(i+ 1)2bi+1 − i2bi

]}
= 1 i = 1,2, (148)

where t(u) is the solution of (147).
When electrostatic interactions are weak, u → ∞ (or, equivalently, αb → 0), the

solution of (147), t(u) → 1, and one finds asymptotic expressions for the binodals
in the quasi-neutral limit. Note that due to the mean-field nature of the model used
here, the exponents are slightly different from these in (51), obtained for non-ionic
micelles in the scaling framework. The difference is, however, minor.

When u → 0 (the so-called osmotic annealing limit), t(u) ≈ 16/u2. Here, one
finds the asymptotic expressions for the binodals as:

αbΦion

1−αb
= 35/9210/9 N2/9

B γ4/3

ϕ1/3N14/9
A

i(i+ 1)
[
(i+ 1)2bi+1 − i2bi

]
i = 1,2. (149)

As follows from (149), an increase in Φion triggers the lamella–cylinder–sphere
transformations in a crew-cut micelle with an annealing osmotic corona. As dis-
cussed earlier, an increase in Φion leads to an enhanced ionization of the coronal
blocks, driven by the substitution of hydrogen ions by the salt ions and, thereby, de-
creasing local pH inside the corona. As a result, the ionic contribution to the coronal
free energy decreases, and the spherical shape of the aggregate is stabilized. In other
words, in order to transform a cylindrical aggregate into spherical micelles, one has
to increase the concentration of salt ions in the solution. Recall that such behavior
is expected only under low salt conditions, when salt-induced screening of electro-
static interactions is negligible.

In a salt-dominated solution, the behavior of weakly and strongly dissociating
PEs becomes indistinguishable, α ≈ αb. Here, the addition of salt leads predom-
inantly to an enhanced screening of electrostatic interactions in the corona (via
the decrease in the effective virial coefficient, veff = vA + α2

b /2Φion). Therefore,



Self-Assembled Structures of Amphiphilic Ionic Block Copolymers 121

block copolymer with a pH-sensitive block demonstrates under these conditions the
conventional sequence of morphological transitions (see Sect. 10 ). The correspond-
ing binodals are specified by (142).

Figure 18a demonstrates the diagram of states in NB, Φion coordinates for block
copolymer with the length of pH-sensitive block NA = 50, and pH = pKa (i.e., for
αb = 0.5). Solid lines indicate the binodals calculated according to (148) and (142).
A smaller value of αb = 0.1 is used in Fig. 18b The diagrams localize the stability
regions of three main morphologies of block copolymer aggregates: spherical, S
(i = 3), and cylindrical C (i = 2) micelles, and lamellae L (i = 1). The latter can
further associate due to Van der Waals forces, and precipitate from the solution.

Comparison of diagrams of Fig. 18a, b indicates that morphology i of aggregate
formed by pH-sensitive block copolymers can be tuned by variations in both con-
centration of added salt, Φion and pH in solution. For example, when pH < pKa

(e.g., at αb = 0.1, Fig. 18b), a copolymer with lengths of the blocks, NA = 50 and
NB = 125, retains the cylindrical (C) morphology at any salt concentration, Φion.
In contrast, when pH = pKa (αb = 0.5, Fig. 18a), the same copolymer makes cylin-
drical (C) micelles only at low salt concentrations, and associates into spherical (S)
micelles upon a further increase in Φion.

In addition to three canonical morphologies of aggregates (S, C, and L), more
complex associations of block copolymer molecules could be found in certain re-
gions of the diagram. In particular, a recent theoretical study [24] predicts the
existence of branched cylinders in the vicinity of the S–C binodal line. The lat-
ter occupy a narrow corridor and coexist with cylindrical and spherical micelles.
Branched structures and networks of aggregates formed by diblock copolymer with
quenched PE block were also considered in [17].

12 Experiment Versus Theory

In this last section of the review, we compare the theoretical results with the avail-
able experimental data. Clearly, we can not discuss here all the relevant papers on
self-assembly of ionic/hydrophobic block copolymers. A comprehensive discussion
of experimental developments and trends in this field can be found elsewhere (see,
e.g., [8, 9]). Instead, we focus here on selected experimental findings that are used
to confront the predictions of theoretical models formulated above.

The assembly of amphiphilic ionic/hydrophobic block copolymers in aqueous
media suggests that the effective (hydrophobic) attraction between the associating
blocks is sufficiently strong to counterbalance repulsions between the PE blocks.
That is, the corresponding cohesive free energies for the hydrophobic core-forming
blocks are significantly larger than those involved in the assembly of non-ionic
block copolymers in selective organic solvents. In order to assure the stability of
micelles in wide ranges of temperature and salinity, polymers with high Tg, e.g.,
PS or poly(tert-butyl sterene) are often chosen for core-forming block [98–114].
The hydrophobic domains in these aggregates are found in a glassy (“frozen”) state
and can hardly rearrange once micelles are formed. Moreover, assembly of the
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Fig. 18 Diagram of states in NB,Φion coordinates for diblock copolymer solution at different
values of pH−pKa, corresponding to αb = 0.5 (a) and αb = 0.1 (b). Other parameters are γ = 1,
ϕ = 1, vA = 0.4, NA = 50. Dashed and dotted lines correspond to asymptotic expressions for the
binodal lines given by (142) (at αb = 0) and (149)
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ionic/hydrophobic block copolymers in water may lead to out-of-equilibrium frozen
aggregates, even for copolymers with a core-forming block that exhibits relative low
Tg, e.g., poly(n-butyl acrylate) [115–119]. The nonequilibrium nature of the aggre-
gates with non-glassy cores is often explained by high activation energy barriers for
exchange between copolymers included in the micelles and those existing in unimer
state in the solution [120].

Depending on the intramolecular hydrophilic/hydrophobic balance, micelles
with frozen cores can be obtained either by direct dissolution of the copolymers
in water (at elevated temperature) or by dialysis of the molecular solution of the
copolymer from common solvent (e.g., dioxane) to water. The “freezing” of the
core (quenching of the aggregation state) occurs below a certain temperature or
upon a decrease of the content of the common solvent in the mixture with water.

The aggregation number (and the size of core domain) in micelles with glassy
core, is little affected by variations in environmental conditions. Moreover, the
frozen micelles retain their integrity at arbitrary low concentration, i.e., exhibit no
CMC. Since the aggregation number is fixed, variations in the ionic strength and/or
in pH may lead to only conformational changes in the corona. Depending on the
ratio between the lengths of the hydrophobic and PE blocks, the coronae of frozen
micelles are similar to colloidal PE brushes or to multiple-arm PE stars.

Structural characterization of block copolymer aggregates by dynamic and static
light scattering (DLS and SLS) in combination with small angle neutron scattering
(SANS) at variable ionic strength and pH in the solution enables one to discriminate
between frozen and dynamic (equilibrium) micelles. In particular, SANS provides
direct information about the core size and shape because of relatively low scattering
density of the corona.

The theory predicts that in the case of frozen starlike micelles with strongly dis-
sociating PE corona, the hydrodynamic radius of the micelle (measured by DLS)

is expected to decrease as Rcorona ∼ c−1/5
s upon an increase in salt concentration cs

[10]. This theoretical prediction is in agreement with findings in [106] on poly(tert-
butyl sterene)-block-poly(sodium styrene sulfonate) micelles, that proves the frozen
nature of these aggregates. Starlike micelles with frozen PS core and pH-sensitive
poly(acrylic acid) coronae were systematically studied in [112–114]. Conforma-
tional changes in the corona induced by variations in the ionic strength and pH in
the solution were analyzed by SANS, and a good agreement with theoretical predic-
tions [62, 64] concerning conformations of pH-sensitive PE stars was established.

Hence, it is still a challenging experimental task to produce dynamic, equilib-
rium micelles. The dynamic nature of micelles is inherently linked to the stimuli-
responsive properties, i.e., an ability to change reversibly the aggregation number
and morphology of the aggregate in response to specific variation in the environ-
mental conditions. An ability of micelles to disintegration, triggered by external
stimuli, is most valuable in certain applications, e.g., drug delivery and controlled
release systems [121, 122].

Most experimental studies searching for dynamic micelles have focused on the
proper choice of “soft” hydrophobic block to assure equilibrium,i.e., reversible as-
sociation of the ionic/hydrophobic block copolymers. Copolymers with such soft
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hydrophobic blocks as poly(ethylethylene) [123], poly(isobutylene) [124–127], or
poly(diethyleneglycol ethylether acrylate) [128] have been extensively explored.

The solution behavior of poly(ethylethylene)-block-poly(styrene sulfonic acid)
was studied by combining DLS, SLS, cryo-TEM, and SANS [123]. Here, the com-
bination of a soft hydrophobic block (with Tg ≈−25◦C) with a strongly dissociating
PE block was chosen to analyze the effect of ionic strength on the block copolymer
assembly in a wide range of salt concentrations (three orders of magnitude in cs). It
was found that an increase in concentration of added salt leads to an increase in the
aggregation number (and in core size) and in a simultaneous decrease in the hydro-
dynamic radius of the micelle as Rcorona ∼ c−x

s with the apparent exponent x ≈ 0.12.
The latter value is close to the theoretical exponent 1/11 ≈ 0.09 (89), which is ex-
pected for equilibrium micelles in which the aggregation number increases upon
an increase in salt concentration (87). Note that the value of experimental expo-
nent is noticeably smaller than the 0.2, predicted for frozen micelles (PE stars).
This suggests that micelles of poly(ethylethylene)-block-poly(styrene sulfonic acid)
copolymer in aqueous solution might be close to equilibrium.

Micellization of poly(isobutylene)-block-poly(methacrylic acid) copolymers
with short hydrophobic and long PE blocks has been studied [124–127] by DLS,
SLS, SANS, and pyrene titration experiments supported by cryo-TEM imaging. It
was unambiguously demonstrated that at high pH, when the poly(methacrylic acid)
blocks are fully ionized, the aggregation number increases whereas the hydrody-
namic radius decreases as a function of salt concentration. Both dependencies can
be approximated by power laws with exponents close to those predicted by theory
(87), (89), which again points to the dynamic nature of these micelles.

Micellization of poly[2-(dimethylamino)ethyl methacrylate]-block-poly[2-
(diethylamino)ethyl methacrylate] (DMAEMA/DEAEMA) gives rise to pH-
responsive spherical micelles that are found in aqueous solution above a certain
critical pH [129, 130]. Under acidic conditions, protonation of the amino groups
transforms the block copolymers in PEs and keeps them as unimers in solution.
Deprotonation of the DEAEMA block by addition of base makes this block
hydrophobic and causes formation of micelles, with the corona formed by still-
protonated (annealing) DMAEMA blocks. The electrostatic properties of the
micellar corona were additionally tailored by using copolymer with the DMAEMA
block selectively quaternized with benzyl chloride (Q-DMAEMA/DEAEMA), and
by substituting the DMAEMA block by a PEO block. In the former case, one
finds strongly charged (quenched) corona whereas in the latter case the hydrophilic
micellar corona is electroneutral [130]. The data obtained from potentiometric
titrations, DLS, SLS, and SANS allowed the probing of the dependence of ag-
gregation number p as a function of the degree of chain ionization, α ∼ αb. The
starlike DMAEMA/DEAEMA micelles demonstrated a power law decrease in ag-
gregation number, p ∼ α−y

b with apparent exponent y = 1.5, upon an increase
in αb (a decrease in pH). The equilibrium theory predicts the value of exponent
y = 12/11 ≈ 1.1 for starlike micelles in the salt-dominated regime, (87). The
theoretical exponent is reasonably close to the experimental exponent, specified
for DMAEMA/DEAEMA micelles at the boundary between osmotic and salt-
dominated regimes [130]. At the same time, the rearrangements of these micelles
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due to additions of salt ions after micellization were hindered, suggesting the lack of
full equilibrium. “Softness” of the core-forming DEAEMA block was also demon-
strated by the salt-induced rearrangements in Q-DMAEMA/DEAEMA micelles.
Here, the degree of ionization of the coronal blocks, α ∼ 1, was not sensitive to
variations in solution pH, but the forming micelles responded to additions of salt
both before and after micellization.

We remark, however, that a soft hydrophobic block alone does not necessar-
ily ensure the dynamic (equilibrium) nature of the forming aggregate. On the
contrary, there are experimental indications that a combination of softness of the
core-forming block with “intrinsic hydrophobicity” of the PE block [e.g., in the
cases of poly(styrene sulfonic) or poly(methacrylic) acid] might be important. A
tentative explanation assumes the influence of the coronal block on the core–corona
interfacial energy. In addition, we also note that in experimental studies of dynamic
micelles, mostly asymmetric or nearly symmetric block copolymers with longer
PE block were investigated. These block copolymers form starlike aggregates in
aqueous solutions. Currently, we are not aware of reliable experimental evidence
of dynamic crew-cut micelles formed by copolymers with long hydrophobic core-
forming block.

An alternative strategy for design of dynamic, stimuli-responsive PE micelles
is to use block copolymers with thermosensitive associating blocks, e.g., poly(N-
isopropylacrylamide) [131, 134, 135] poly(N,N-diethylacrylamide) [131–133], and
poly(N,N-dimethylacrylamide) [134]. In this case, reversible micellization–
dissociation can be triggered by temperature variations that affect the solubility
of the core-forming blocks. For example, in [131] it was shown that poly(acrylic
acid)-block-poly(N-isopropylacrylamide) copolymers can form micelles with
poly(N-isopropylacrylamide) core and poly(acrylic acid) corona at pH 6 and
T ≥ 45◦C, whereas at pH 4 and room temperature “inverse” micelles are formed.

Moreover, in the vicinity of the LCST (or UCST) the insoluble core is
soft enough to undergo structural transformations in response to variations in
strength of ionic interactions in the corona. In [135], micellization of poly(N-
isopropylacrylamide)-block-poly(DMAEMA) in aqueous solution was studied as
a function of pH and temperature. Predicted by the theory [19], a pH-induced,
jump-wise transition between spherical micelles with distinctively different aggre-
gation numbers was observed by combination of DLS and AFM at temperatures
T > LCST for the core-forming N-isopropylacrylamide block. To the best of our
knowledge, to date this study is the only experimental evidence of abrupt structural
transformations in spherical micelles with annealing PE corona.

Nonspherical aggregates (cylindrical micelles, vesicles, lamellae, etc.) were de-
tected experimentally for a number of non-ionic block copolymers (see, e.g., [50,
136–139]) and copolymers with weakly dissociating PE block [102, 140]. Mor-
phological transformations in non-ionic PI-block-PS micelles were triggered by
variations in molecular weight of the PS block [50] or by variations in the sol-
vent composition [137, 138]. The latter studies clearly indicate the possibility of
stimuli-responsive transitions (sphere → cylinder → vesicle) for non-ionic block
copolymer aggregates in mixed organic solvents. It was also demonstrated [58] that
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mild swelling of PS core of the micelle in a single solvent n-heptane (a preferential
solvent for PI block) leads to the decrease in Tg of the core-forming block down to
�28◦C, and allows for a close to equilibrium state of the aggregates at temperatures
slightly elevated above Tg.

Experimental observations on stimuli-induced equilibrium morphological tran-
sitions in aggregates formed by amphiphilic ionic/hydrophobic block copolymers,
are still lacking. Nanoaggregates of different morphologies (spherical starlike and
crew-cut micelles, cylinders, vesicles and “complex” micelles) were obtained by
Eisenberg et al [102, 140] via dialysis of the molecular solution of poly(acrylic
acid)-block-PS copolymers from a common solvent (dioxane) into water at different
pH. The aggregates (spherical or cylindrical micelles) were formed by copolymers
with different ratios of the lengths of PE and hydrophobic blocks at a certain compo-
sition of the mixed solvent. Copolymer with shorter PS blocks formed spheres, and
longer hydrophobic blocks gave rise to cylinders. However, below a certain content
of dioxane, the PS core was kinetically frozen. Hence once formed, the aggregates
could not change the morphology (aggregation state) upon variations in the ionic
strength and pH, but rather responded by conformational changes in the corona.
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