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Summary 

This work describes the synthesis of different stimuli-responsive block co- and 

terpolymers of the AB- and ABC-type, their characterization, and their self-

assembly in the bulk and in solution. Sequential anionic polymerization was used to 

obtain well-defined polymeric materials, which were utilized for the generation of 

functional nanostructures, e.g. for membrane applications. 

In a first approach, five series of polybutadiene-block-poly(2-vinylpyridine)-block-

poly(tert-butyl methacrylate) (BVT) block terpolymers were synthesized and their 

behavior in thin-films on substrates with different wettabilities was investigated. 

The aim was to generate microphase-separated structures which could serve as 

precursors for the fabrication of stimuli-responsive composite membranes. Thin 

films were prepared via spin-casting and the self-assembly processes were 

facilitated through subsequent solvent annealing. Although no smart membrane 

could be prepared and tested, model systems were intensively studied and in-depth 

knowledge could be gained concerning the morphological behavior of BVT 

terpolymers under such conditions. The thin film structures were always compared 

with the bulk ones. 

Using a different strategy, smart ultrafiltration membranes could be fabricated via 

non-solvent induced phase separation (NIPS) processes. Amphiphilic polystyrene-

block-poly(N,N-dimethylaminoethyl methacrylate) (PS-b-PDMAEMA) diblock 

copolymers were synthesized and cast onto planar glass substrates with a doctor 

blade. After final film formation in the coagulation bath, asymmetric membranes 

with tunable water flux and pore sizes were obtained. PS forms the matrix of these 

materials, while PDMAEMA covers the pore walls. The pH- and temperature-

responsive properties of those systems were attributed to the hydrophilic PDMAEMA 

segments. The influence of several important parameters during the casting 

process onto the membrane morphology and permeability was thoroughly 

investigated: solvent composition, the cast film height, the “open-time”, and the 

PDMAEMA content of the block copolymers. 

Besides PS-b-PDMAEMA, several diblock copolymers with PDMAEMA as second block 

were also synthesized: PB-b-PDMAEMA, poly(tert-butoxystyrene)-block-PDMAEMA, 

and poly(ethylene oxide)-block-PDMAEMA. For the latter, a novel one-pot strategy 
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could be successfully employed, providing a facile changeover from an oxyanion to 

a carbanion. The kinetics of the DMAEMA polymerizations show that the reactions 

proceed considerably slower in presence of the tBuP4-phosphazene base compared 

to polymerizations performed with an excess of alkoxides. 

In a third approach, the self-assembly of BVT block terpolymers in solution was 

explored. Narrowly dispersed micelles with a patchy core were formed in acetone, 

a selective solvent for polybutadiene. The micelles exhibited a PB core, a non-

continuous P2VP shell, and a PtBMA corona. The micellar core was then crosslinked 

via different methods, enabling the transfer of such polymeric colloids into non-

selective solvents, like dioxane, while still preserving their structure and shape. 

Finally, polymer analogous reactions were performed with the BVT terpolymers. 

After hydrolysis of the PtBMA block to PMAA and, eventually, quaternization of the 

middle block, P2VP, amphiphilic block terpolymers with either one or two pH-

responsive segments were obtained. Their aggregation behavior in aqueous 

systems, depending on salinity and pH, was studied. Micelles with a soft PB core, a 

P2VP shell and a PMAA corona were formed. Under certain conditions intra-micellar 

interpolyelectrolyte complexes (IPECs) formed, generating multicompartment 

micelles with a patchy shell. Furthermore, the IPEC formation of those systems 

with oppositely charged double hydrophilic poly(N-methyl-2-vinylpyridinium)-block-

poly(ethylene oxide) (P2VPq-b-PEO) diblock copolymers was investigated. In that 

way, a second IPEC shell was formed by electrostatically driven co-assembly of 

PMAA and P2VPq. PEO serves as the new corona of the resulting colloidal 

structures. The time-dependent evolution of such systems was studied and 

intermediate star-like structures were identified. Furthermore, the selective 

incorporation of in-situ generated gold nanoparticles inside the IPECs was 

demonstrated. 
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Zusammenfassung 

In dieser Arbeit werden die Synthese, die Charakterisierung und die 

Selbstaggregation von Block Co- und Terpolymeren sowohl des AB- als auch des 

ABC-Typs beschrieben. Lebende anionische Polymerisation wurde herangezogen, 

um wohldefinierte Materialien zu erhalten. Diese wurden anschließend verwendet 

um Nanostrukturen mit definierten Funktionalitäten herzustellen, beispielsweise 

für die Anwendung als Membranen. 

In einem ersten Ansatz wurden fünf Serien von Polybutadien-block-poly(2-

vinylpyridin)-block-poly(tert-butylmethacrylat) (BVT) Blockterpolymeren 

synthetisiert. Daraufhin wurden deren Eigenschaften in Dünnfilmen auf Oberflächen 

mit unterschiedlicher Benetzbarkeit untersucht. Die Zielsetzung bestand darin, 

mikrophasenseparierte Strukturen herzustellen und diese als mögliche Vorstufen 

zur Herstellung schaltbarer Komposit-Membranen zu verwenden. Dazu wurden 

Dünnfilme (Dicke unter 100 nm) durch Aufschleudern auf eine Oberfläche (z.B. 

Silizium) aufgebracht und der Prozess der Selbstanordnung durch nachfolgendes 

Quellen und Tempern im kontrollierten Lösungsmitteldampf beschleunigt. Obwohl 

auf diese Weise keine endgültigen Membranstrukturen erhalten und getestet 

werden konnten, gelangen intensive Untersuchungen an Modellsystemen. Außerdem 

wurde das morphologische Verhalten derartiger BVT-Terpolymere sorgfältig 

analysiert. Weiterhin wurden alle Dünnfilm-Strukturen stets mit den jeweiligen 

Volumenstrukturen verglichen.  

Mittels einer anderen Strategie, nämlich über den Nichtlösungsmittel induzierten 

Phasenseparationsprozess (NIPS), konnten intelligente Ultrafiltrationsmembranen 

hergestellt werden. Dazu wurden amphiphile Polystyrol-block-poly(N,N-

dimethylaminoethylmethacrylat) (PS-b-PDMAEMA) Diblockcopolymere synthetisiert. 

Konzentrierte Lösungen dieser Materialien wurden mittels einer Rakel in 

definierten Filmdicken auf Glasplatten aufgetragen. Nach dem endgültigen 

Ausfällen der Polymerfilme in einem Wasserbad wurden asymmetrische Membranen 

erhalten, deren Durchlässigkeit und Porengröße durch äußere Einflüsse regulierbar 

sind. PS bildet die Matrix während PDMAEMA hauptsächlich die Porenwände 

bedeckt. Das Ansprechen dieser Systeme auf Änderungen des pH-Wertes oder der 

Umgebungstemperatur wurde auf die Eigenschaften des hydrophilen PDMAEMA 
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Blocks zurückgeführt. Nach ersten Ergebnissen hinsichtlich der Poren dieser 

Membranen und ihrer Verwendung zur selektiven Filtration von Nanopartikeln 

unterschiedlicher Größe wurde der Einfluss verschiedener Parameter während der 

Filmherstellung auf Morphologie und Durchlässigkeit der Membranen untersucht. 

Dazu zählten die Zusammensetzung des Lösungsmittelgemisches, die Höhe des 

aufgebrachten Films, die Offenzeit vor dem Eintauchen in das Fällbad und der 

Anteil an PDMAEMA, bezogen auf den Volumenbruch im verwendeten 

Blockcopolymer. 

Neben PS-b-PDMAEMA wurden verschiedene andere Blockcopolymere mit PDMAEMA 

als zweitem Block hergestellt: PB-b-PDMAEMA, Poly(tert-Butoxystyrol)-block-

PDMAEMA sowie Polyethylenoxid-block-PDMAEMA. Im letztgenannten Fall wurde 

eine neuartige Ein-Topf-Strategie angewandt. Dadurch wurde während der 

Reaktion direkt von einem Oxoanion-Kettenende auf ein Carbanion-Kettenende 

gewechselt. Die Kinetik aller DMAEMA-Polymerisationen zeigt, dass der Zusatz von 

Phosphazen-Base im Falle der Polymerisation von PEO-b-PDMAEMA zu einer deutlich 

langsameren Reaktionsgeschwindigkeit verglichen mit Polymerisationen in 

Gegenwart von Alkoxiden führt. 

Ein dritter Teil dieser Doktorarbeit befasste sich mit der Selbstanordnung von BVT 

Blockterpolymeren in Lösung. In Aceton, einem selektiven Lösungsmittel für PB, 

wurden sehr eng verteilte Mizellen mit einem uneinheitlichen Kern gebildet. Sie 

besaßen einen PB-Kern, eine uneinheitliche Schale aus P2VP sowie eine PtBMA-

Corona. Der Mizellkern wurde mit verschiedenen Methoden vernetzt wodurch die 

Aggregate ohne Strukturveränderung in nicht-selektive Lösungsmittel wie z.B. 

Dioxan überführt werden konnten. 

Schließlich wurden an den zuvor gebildeten und charakterisierten Mizellen 

polymeranaloge Modifikationen durchgeführt. Der PtBMA-Block wurde zu 

Polymethacrylsäure (MAA) hydrolysiert. Gegebenenfalls wurde zuvor der P2VP-

Block durch Quaternisierung mit Methyliodid in einen starken Polyelektrolyten 

verwandelt. Auf diese Weise wurden amphiphile Blockterpolymere mit entweder 

einem oder zwei pH-sensitiven Blöcken erhalten. Das Aggregationsverhalten dieser 

Systeme in Abhängigkeit von pH-Wert und Salzgehalt wurde anschließend 

untersucht. Mizellen mit einem weichen PB-Kern, einer P2VP-Schale und einer MAA-

Corona wurden gebildet. Unter bestimmten Voraussetzungen werden intermizellare 
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Interpolyelektrolytkomplexe (IPECs) gebildet. Daraus resultieren 

Multikompartiment-Mizellen mit einer uneinheitlichen Schale. Außerdem wurde die 

IPEC-Bildung dieser Syteme mit entgegengesetzt geladenen Poly(N-methyl-2-

vinylpyridinium)-block-polyethylenoxid Diblockcopolymeren untersucht. Es konnte 

eine weitere Schale durch die elektrostatisch induzierte IPEC-Bildung zwischen 

PMAA und P2VPq geformt werden. PEO diente als stabilisierende Corona der neu 

gebildeten Strukturen. Die zeitliche Entwicklung solcher Aggregate wurde weiter 

untersucht und sternförmige Zwischenzustände konnten identifiziert werden. 

Abschließend wurde die Bildung von Gold-Nanopartikeln selektiv innerhalb der 

IPEC-Schale dieser Mizellen demonstriert. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



________________________________________________________Summary / Zusammenfassung 

 

 



______________________________________________________________________Introduction 

1. Introduction 

The development of block copolymers and, along with that, the concept of 

entropically and enthalpically driven phase separation[1] had a great impact on a 

variety of different research areas.[2, 3] Within this introduction, a brief overview 

will be given for several topics related to the concept of block copolymers with 

relevance concerning the content of this thesis. 

1.1. Functional Materials via Self-assembly 

Increasing complexity in nowadays problems is always accompanied with more 

demanding requirements on materials. Often, more and also different functional 

groups are desired in close proximity and on smaller length scales. Therefore, block 

copolymers with their ability to self-assemble into a large diversity of morphologies 

are promising starting materials for the fabrication of tomorrow’s nanostructured 

materials.[4] Moreover, depending on the block copolymer architecture, the 

composition, and on the environment or substrates employed these processes can 

be even further manipulated.[5, 6] The blending of different block copolymers has 

also been shown to generate well-defined structural patterns.[7, 8] Microphase-

separated domains in such block copolymer patterns then are in the range of 10-

100 nm. A short abstract of possible morphologies for a linear ternary system, 

polystyrene-block-polybutadiene-block-poly(methyl methacrylate) (SBM) as 

investigated by Stadler et. al., is displayed in Figure 1-1. 

 

 

 

 

 

 

 

Figure 1-1: Ternary phase diagram obtained for different SBM block terpolymers. 
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Besides polymer architecture and sequence, the introduction of “smart” polymeric 

building blocks leads to novel, unexpected properties and broadened the scope of 

possible applications.[9-11] “Smart”, or intelligent, polymers are able to change 

their properties or conformation in response to an external stimulus like pH,[12] 

temperature,[13] or light.[14] Such materials could be used for, e.g., responsive 

membranes[15] or bioreactors.[16] Furthermore, block copolymer systems with 

photoadressable segments are very interesting for lithography purposes[17, 18] or for 

the preparation of scaffolds with pores in the nanometer size.[19, 20] 

Another possibility for the introduction of new functionalities into polymers is the 

generation of hybrid materials, e.g. polymers where inorganic compounds, like 

transition metal atoms, are either covalently bond or coordinated to the chains. 

This has been a drastically emerging field within the last decade.[21] Metal-

containing polymers, or metallopolymers, have caused a rapidly expanding interest 

due to the combination between the processability of polymers and the advanced 

functionality provided by metal centers. Alongside with that are superior chemical 

and electronic properties, rendering these materials suitable for applications in the 

fields of conducting polymers,[22] colloidal crystals,[23] thin-films (Figure 1-2),[24] 

and displays.[25] 

 

Figure 1-2: SFM height image (left), high-resolution TEM image (middle), and high-resolution 
SFM image (right) of a polystyrene-block-poly(ferrocenylethylmethylsilane) PS-b-PFEMS block 
copolymer thin film annealed via toluene evaporation exhibiting a cylindrical morphology.[24] 
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1.2. Anionic Polymerization as a versatile tool for Block 

Copolymer Synthesis 

Living anionic polymerization is a demanding but nevertheless versatile tool for the 

preparation of well-defined polymers. Since Szwarc’s pioneering work in 1956[26] 

the number of polymers and block copolymers prepared via this technique is huge. 

Among recently reported examples are linear block copolymers of the ABC[27, 28] and 

the ABCD type,[29] amphiphilic[30] and / or double hydrophilic systems,[31] and 

gradient block copolymers.[32] The scope of accessible monomers also broadened, 

either through the use of additives[33] or via a previously protected monomer to 

avoid side reactions during the polymerization step (Figure 1-3).[34] 

 

 

 

 

 

 

 

 

 

Figure 1-3: Living anionic polymerization of N-methacryloyl-2-methylaziridine; (A) monomer 
synthesis; (B) kinetic plots at different polymerization temperatures; (C) SEC traces of the 
polymers corresponding to the kinetic plots.[34] 

Increasing attention is drawn nowadays towards the controlled synthesis of block 

copolymers containing metallopolymer segments. Exemplarily, the synthesis of 

poly(ferrocenyldimethylsilane)-block-poly(2-vinylpyridine) (PFS-b-P2VP) via 1,1-

dimethylsilacyclobutane (DMSB) mediated sequential anionic polymerization is 

shown in Figure 1-4.[35] 
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Figure 1-4: Synthesis of PFS-b-P2VP block copolymers via anionic polymerization.[35] 

Instead of using sophisticated monomers, changes in the resulting block copolymer 

architecture can also lead to complicated synthetic procedures and, hence, 

complex structural patterns in the bulk. This has been demonstrated for 

polystyrene-block-polybutadiene-block-poly(2-vinylpyridine)[36] (SBV, Figure 1-5) 

and µ-poly(ethylethylene)-block-poly(ethylene oxide)-block-poly(perfluoropropy-

lene oxide) [µ-(PEE)(PEO)(PFPO)] miktoarm terpolymers.[37] 
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sis of the PB macromonomer (A); synthetic procedure for Figure 1-5: Synthe SBV miktoarm 
terpolymers (B).[36] 
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One peculiar advantage of anionic polymerization is that the chain-end 

functionality can be controlled with appropriate endcapping agents, like in the 

case of amino-endfunctionalized polybutadienes.[38] 

From the kinetic point of view, the monitoring of such polymerization reactions 

with in-situ NIR spectroscopy has become an approved and versatile method and 

has been applied to both known[39] and novel systems.[40] 
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1.3. Block Copolymer Membranes 

Increasing complexity in modern separation processes is accompanied by 

demanding and further specialized requirements for a suitable membrane. Many 

state-of-the-art membranes are facing their limitations, especially when it comes 

to new technically challenging or commercially attractive separation problems. 

Polymers are by far the most important membrane materials, especially because of 

the relative ease and flexibility to manufacture a large diversity of effective 

barrier structures for different membrane processes. Possible pathways towards 

the design of novel membranes are the modification of already established 

membrane structures, an alteration of the preparation techniques, or the use of 

new building blocks with improved functionalities.[41] The concept of block 

copolymers and, hence, self-assembly provides access to a large variety of 

functional groups. Moreover, the junction between two segments is covalent and 

therefore thermodynamically, chemically, and mechanically stable. Recently, well-

defined asymmetric membranes from PS-b-P4VP diblock copolymers with a 

hexagonally arranged pattern typical for block copolymer morphologies in the top 

layer have been reported (Figure 1-6).[42] 

 

 

 

 

 

 

 

 

Figure 1-6: SEM micrographs of asymmetric membranes prepared from PS-b-P4VP diblock 
copolymers; cross-section (A), separation layer (B), and an on-top view (C); the scalebar 
corresponds to 1 µm (A) and 500 nm (B, C).[42] 
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1.3.1. Membranes via Phase Inversion Processes 

One of the most important industrial processes for the fabrication of integrally 

anisotropic (“asymmetric”) polymer membranes is non-solvent-induced phase 

separation (NIPS). Here, a previously casted film of a concentrated polymer 

solution is immersed in a precipitation bath. This is a straightforward and fast one-

step procedure where both membrane morphology and barrier structure can be 

controlled by a wide range of parameters.[43, 44] Membranes prepared via this 

technique usually exhibit an anisotropic cross section with a thin separation layer 

supported from underneath by a macroporous support. Such asymmetric structures 

find their applications in pressure-driven processes like ultrafiltration, 

nanofiltration, or reverse osmosis. To incorporate functional or stimuli-responsive 

groups into already existing materials often grafting-to processes are used prior to 

membrane formation via the NIPS technique.[45, 46] As shown by Neoh and 

coworkers, poly(vinylidene fluoride)-graft-poly(N,N-dimethylaminoethyl 

methacrylate) (PVDF-g-PDMAEMA) membranes prepared via phase inversion were 

both pH- and temperature-responsive in terms of water flux.[47] The proposed 

membrane formation mechanism is displayed in Figure 1-7. 

 

Figure 1-7: Proposed pore formation mechanism during the phase inversion for PVDF-g-
PDMAEMA membranes (A); SEM cross-sectional view (B) and an on-top view (C).[47] 
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If described for a linear block copolymer like PS-b-P4VP, the process is slightly 

more complex.[42] Directly after the film casting, solvent evaporates and the 

polymer enriches at the air interface. At a certain concentration, the block 

copolymer self-assembles and, under the appropriate conditions, porous 

morphologies with a long range order are formed. This is schematically depicted in 

Figure 1-8. 

 

 

 

 

 

 

 

 

 

 

Figure 1-8: Membrane formation process during the phase inversion of PS-b-P4VP diblock 
copolymers; directly casted film (A), after 10 seconds (B), and after immersion into the 
coagulation bath (C).[42] 
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1.3.2. Composite Membranes 

Three types of composite membranes are commonly known: thin-film (TFC), pore-

filling, and pore-surface-functionalized composite membranes.[41] From those, thin-

film composite structures are the only type related to the content of this thesis. 

TFC membranes can be further subdivided into porous and non-porous materials. 

Non-porous examples were often prepared via Langmuir-Blodgett (LB) 

techniques[49] or layer-by-layer assemblies.[50] 

Several approaches for the block copolymer based fabrication of porous barriers as 

components of TFC membranes have been reported so far. Typically, materials 

containing at least one block which can be removed after final structure formation 

in thin-films are used. In that way, pores are introduced. Examples are the NaOH-

assisted dissolution of the polylactide compartment in thin-films of poly(3-

alkylthiophene)-block-polylactide,[51] the UV-etching of PMMA in thin-films of PEO-

b-PMMA-b-PS block terpolymers,[52] or the ozonolysis of a polydiene block like 

polyisoprene from thin films of suitable block copolymers.[53] The resulting porous 

polymeric thin-films should be transferred onto supporting membrane structures 

afterwards. First attempts towards nanoporous TFC membranes and their 

application for the filtration of viruses have been made for thin-films of PS-b-PMMA 

diblock copolymers. Those membranes then exhibited excellent solvent resistance 

and an improved pressure stability.[54] The preparation scheme and SEM 

micrographs are shown in Figure 1-9. Another pathway for pore formation is to 

introduce additional PMMA homopolymer during the spin-casting of PS-b-PMMA 

diblock copolymer thin-films. Subsequent solvent-annealing, film transfer onto a 

porous substrate, and rinsing with acetic acid generated nanoporous composite 

membranes (Figure 1-9).[55] 
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Figure 1-9: Thin-film composite membrane fabrication using PS-b-PMMA diblock copolymers 
transferred onto a porous substrate and UV-etched for pore formation (A); SEM on-top view 
onto the nanoporous membrane (B); cross-sectional view (C);[54] TFC membrane preparation 
using additional PMMA homopolymer mixed with PS-b-PMMA diblock copolymer (D); SFM image 
revealing a blocked virus particle on top of such a TFC membrane structure (E).[55] 

One profound drawback of all mentioned systems is the brittleness of the matrix 

block, polystyrene. Sperschneider et al. reported on thin-films from polybutadiene-

block-poly(2-vinylpyridine)-block-poly(tert-butyl methacrylate) (BVT) block 

terpolymers. Here, the first block could be crosslinked via an UV-photoinitiator 

while PtBMA was etched via UV irradiation.[56] The crosslinked films could be 

transferred onto commercially available support membranes. Unfortunately, the 

development of the morphology was strongly determined by the low surface 

tension of the first block, PB. 

1.4. Block Copolymer Self-assembly in Solution 

In selective solvents for one of the compartments, the immiscibility of block 

copolymer segments leads to the formation of micelles. The most typical micellar 

I-10 
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structures obtained for linear AB diblock copolymers are star-like,[57] crew-cut,[58] 

cylindrical micelles,[59] and vesicles.[60] Aggregate formation strongly depends on 

the employed solvent, the solubility parameters according to the Flory-Huggins 

theory, the block sequence, the volume fractions, and the block lengths. If ABC 

block terpolymers are used, the micellar assemblies become more complex, in 

most cases core-shell-corona micelles are formed.[61] For the analysis of such self-

assembled structures, cryogenic transmission electron microscopy often is the 

method of choice. It allows high-resolution insight into complex fluids in a near in—

situ state.[62] 

Besides their preparation and characterization, the crosslinking of block copolymer 

micelles is an interesting area of research. After fixation, the structures can be 

transferred into different, non-selective solvents, broadening the scope of possible 

applications for these systems. Amongst the reported methods were cold-

vulcanization of polydiene systems,[63] the use of multifunctional quaternization 

agents,[64] and UV-irradiation.[65] Another possibility for the modification of pre-

formed micellar aggregates are sonication methods. Here, the size of, e.g., 

cylindrical micelles can be tuned in a precise and elegant way (Figure 1-10).[63, 66] 

 

Figure 1-10: Dark-field TEM image showing fiber-like micelles of polyisoprene-block-
poly(ferrocenyldimethylsilane) (PI-b-PFS) diblock copolymers (A); plot of the micelle weight-
average length vs. sonication time (B); table summarizing the solution characteristics of the 
micelles obtained via TEM analysis (C). 
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1.4.1. Compartmentalized Polymeric Micelles 

Multicompartment systems are very promising candidates for future delivery 

applications. The storage of two different dyes in separate domains of micelles 

from µ-poly(ethylethylene)-block-poly(ethylene oxide)-block-poly(perfluoropropy-

lene oxide) [µ-(PEE)(PEO)(PFPO)] miktoarm terpolymers has already been described 

by Hillmyer et al.[67] Compartmentalized micelles are formed if one part of a 

micellar structure is further subdivided. In general, three different types of such 

multicompartment systems have been reported so far: multicompartment core,[68] 

multicompartment or patchy corona,[69] and Janus-type systems.[70] 

There are different strategies for the formation of multicompartment core 

micelles. One possibility is the use of two solvophobic blocks which exhibit a very 

high incompatibility among each other, e.g. the combination of hydrocarbon and 

fluorocarbon segments in aqueous media.[68, 71] Other approaches are based on the 

kinetically induced rearrangement of polymeric micelles in response to changes in 

solvent quality or charge neutrality.[72] The blending of different block copolymers 

and the subsequent fixation of the formed assemblies via crosslinking also lead to 

compartmentalized micellar systems.[73] A short compendium of the mentioned 

pathways and the resulting structural motifs is shown in Figure 1-11 and 1-12. 

 

 

 

 

 

 

 

 

 

Figure 1-11: Phase diagram for the morphology of multicompartment micelles formed by µ-EOF 
miktoarm terpolymers in dilute aqueous solution.[68] 
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Figure 1-12: Self-assembly of a poly(4-methyl-4-(4-vinylbenzyl)morpholin-4-ium chloride)-block-
polystyrene-block-poly(pentylfluorophenyl 4-vinylbenzyl ether) (PVBM-b-PS-b-PVBFP) block 
terpolymer (A);[71] mixing of poly(2-cinnamoyloxyethyl methacrylate)-block-poly(glyceryl 
methacrylate) (PCEMA-b-PGMA) and the corresponding succinated diblock copolymer PCEMA-b-
PSGMA in dichloromethane with subsequent crosslinking via UV irradiation (B);[73] molecular 
structure of a poly(acrylic acid)-block-poly(methyl acrylate)-block-polystyrene (PAA-b-PMA-b-
PS) block terpolymer (C); one-dimensional assembled structures of PAA-b-PMA-b-PS in mixtures 
of THF (67%) and water (33%) (D); formation mechanism proposed for the elongated 
multicompartment cylinders (E).[72] 

 

Considerably fewer examples for a patchy or compartmentalized micellar corona 

are found in the literature. Recently, the thermo-reversible formation of 
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cylindrical micelles with a phase separated corona from polystyrene-block-

polyethylene-block-poly(methyl methacrylate) (PS-b-PE-b-PMMA) block terpolymers 

has been reported.[74] Here, the crystallization of the PE middle block was 

supposed to be the driving force for the formation of wormlike micelles. The 

micelles with a PE core and segregated PS and PMMA coronal chains are shown in 

Figure 1-13. 

 

 

 

 

 

 

 

Figure 1-13: TEM micrographs of PS-b-PE-b-PMMA wormlike micelles drop-coated from acetone, 
a selective solvent for PMMA (A); drop-coated from toluene followed by selective staining of the 
PS domains with RuO4 (B).[74] 

Janus systems are non-centrosymmetric, compartmentalized colloids exhibiting two 

sides of different chemistry or polarity. During the last decade, different synthetic 

pathways for the preparation of such structures evolved.[70] Concerning block 

copolymers, Janus particles can be synthesized via the template-assisted pathway 

in a convenient manner and on the gram scale. Self-assembled suitable bulk 

morphologies of polystyrene-block-polybutadiene-block-poly(methyl methacrylate) 

(SBM) or polystyrene-block-polybutadiene-block-poly(tert-butyl methacrylate) (SBT) 

were crosslinked in the bulk and after re-dissolving and, eventually, sonication 

nicely dispersed Janus colloids were obtained. In that way, Janus micelles,[75] 

cylinders,[76] and discs[63] could be prepared. The synthetic procedure is shown in 

Figure 1-14. 
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Figure 1-14: Template-assisted pathway for the fabrication of Janus micelles, cylinders, and 
discs.[70] 

 

1.4.2. Interpolyelectrolyte Complexes 

Interpolyelectrolyte complexes (IPECs) are formed if two oppositely charged 

polyelectrolytes, polymer chains bearing several charges, are mixed. Often, the 

charge ratio Z (+/-) is used as a measure of the charge balance. For Z (+/-) = 1, the 

resulting material is uncharged and hydrophobic.[77-79] There is a growing research 

interest in such complexes due to their dynamic and stimuli-responsive character. 

Such IPECs are capable of undergoing interpolyelectrolyte exchange reactions in 

aqueous media.[80, 81] It could be shown by Kataoka et al. that even chain length 

recognition is possible. They investigated the core-shell supramolecular assembly 

of oppositely charged block copolymers and reported on extremely narrow micellar 

size distributions for systems where the polyelectrolyte chains matched exactly in 

length.[82] 

Polyelectrolytes are classified as either weak or strong cationic and anionic 

examples. The dissociation of weak polyelectrolytes typically depends on the 

surrounding conditions, like in the case of poly(methacrylic acid) (PMAA).[79] Strong 

polyelectrolytes are permanently charged, a typical example is quaternized poly(1-
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methyl-4-vinylpyridinium) bromide (PM4VP).[79] An excerpt of commonly used linear 

polyelectrolytes is displayed in Figure 1-15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-15: Commonly used weak and strong cationic and anionic linear polyelectrolytes.[83] 

 

The controlled formation of IPECs in solution provides a facile method for the 

stepwise building up of layered assemblies. Pergushov et al. successfully prepared 

core-shell-corona micelles through the complexation between negatively charged 

polyisobutylene-block-poly(methacrylic acid) (PIB-b-PMAA) micelles and positively 

charged PM4VP.[77, 79] They also investigated the stability of these IPECs, depending 

on the charge ratio Z (+/-) (Figure 1-16). 
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Figure 1-16: IPECs formed between PIB-b-PMAA micelles and PM4VP polyelectrolyte chains 
(A);[79] IPEC stability depending on the Z (+/-) ratio (B).[77] 

Employing the same method, core-shell-corona IPECs were created via the 

electrostatically driven co-assembly of poly(ethylene oxide)-block-poly4-

vinylpyridine) (PEO-b-P4VP) and polystyrene-block-poly(acrylic acid) (PS-b-PAA).[84] 

Another remarkable feature of IPECs is that their formation is reversible. High salt 

concentrations are able to break up the complexes, resulting again in free polymer 

chains.[85] 

 

1.4.3. Hybrid Materials 

Hybrid materials of polymers and inorganic nanoparticles (NPs) are supposed to 

combine the advantages of both components: superior mechanical properties and 

the processability of polymers and the advanced magnetic, optical, or catalytical 

characteristics of metals.[86] Regarding the controlled preparation of such organic-

inorganic hybrids, several methods have been described so far: the direct mixing of 

pre-synthesized metal nanoparticles and block copolymers,[87] the in-situ 

generation of metal NPs in solution containing block copolymers, polymer brushes, 

or micellar aggregates,[88-90] the covalent incorporation of metal atoms into 

polymer segments,[91] or the selective deposition of metals onto pre-aligned 

polymeric substrates.[92] 

One attempt for the direct mixing of NPs and block copolymers has recently been 

described by Maria et al.[93] Here, CdSe NPs were incorporated into semiconductor 
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polymers, containing a hole-conductor compartment carrying tetraphenylbenzidine 

units and P4VP as the second block. The resulting hybrid materials are promising 

candidates for the fabrication of novel polymer-based solar cells. 

Schrinner et al. reported on a solution-based approach for the formation of noble 

metal nanoparticles stabilized by spherical polyelectrolyte brushes (SPBs).[94, 95] 

Cationically charged SPBs with a PS core and grafted poly(2-aminoethyl 

methacrylate) chains were loaded with HAuCl4 and subsequently reduced with 

NaBH4 leading to stable, narrowly dispersed gold NPs located within the corona of 

the SPBs. Moreover, a double loading process with first Au and, afterwards, Pt 

yielded bimetallic nanoparticles (Figure 1-17). 

If cylindrical polymer brushes (CPBs) are used as templates in a comparable 

manner, metal or semiconductor nanowires become feasible. Yuan et al. showed 

that CdSe,[90] Tellurium,[89] and Fe3O4 nanorods can be produced in this way (Figure 

1-17).[89] 
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 Two-step loading process for the formation of Au-Pt alloy NPs in the corona of 
cationic SPBs (A); HR-TEM micrograph of SPBs carrying bimetallic Au55Pt45 NPs (B);[95] double 

aded CdSe nanowires templated by core-shell CPBs (PAA-b-PnBA) (C);[90] TEM micrograph of a 
single Tellurium nanorod (D); Tellurium nanowire with additionally attached Tellurium NPs (E); 

The covalent incorporation of metal atoms into polymer chains basically is a 

 involving both the synthesis of novel monomers and the 

Figure 1-17:

lo

proposed structure of the CPB-Te hybrid particle (F).[89] 

 

synthetic approach

exploitation of new or the modification of approved polymerization techniques. 
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This has already been partially described in a previous section of this introduction 

for anionic polymerization. 
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Atomic layer deposition (ALD) can be used to selectively deposit metal atoms in or 

 

igure 1-18: Preparation pathway for the fabrication of hollow inorganic nanospheres and 
nanotubes via first polymer self-assembly and subsequent ALD techniques (A); HR-TEM 

onto specific compartments of self-assembled polymer microstructures. This has 

been demonstrated in the group of Oli Ikkala for PS-b-P4VP diblock copolymers.[92] 

Here, continuous layers of Al2O3 were created on top of the P4VP shell of different 

block copolymer aggregates, being spherical or cylindrical in shape. Afterwards the 

polymer has been thermally decomposed, rendering hollow inorganic nanospheres 

and nanotubes (Figure 1-18). 

F

micrograph of a hollow Al2O3 nanotube (B).[92] 
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In a different approach, Crossland et al. used double gyroidal structures formed by 

poly(4-fluorostyrene)-block-poly(D,L-lactide) (PFS-b-PLA) diblock copolymers for 

the preparation of hybrid solar cells.[96] After film formation on pre-treated glass 

substrates, the PLA compartment was removed under basic conditions, yielding a 

porous gyroidal network. Afterwards, the structure was replicated 

electrochemically, generating an interpenetrating network of PFS and TiO2. The 

polymer part has been removed and the resulting gyroidal TiO2 network backfilled 

with a solid state hole transporting material. These bicontinuous bulk 

heterojunction solar cells exhibited promising characteristics and could serve as 

prototypes for novel polymer-based hybrid materials (Figure 1-19). 

 

Figure 1-19: Fabrication of bicontinuous hybrid solar cells via the electrochemical replication of 
a gyroidal polymer microstructure (A); SEM fracture cross section image of a replicated TiO2 
porous array (B).[96] 
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1.5. Objective of this Thesis 

One focus of this thesis is the synthesis and the characterization of novel block co- 

and terpolymers via anionic polymerization techniques and their application to the 

preparation of stimuli-responsive membranes. Two pathways are to be explored: 

the polymeric thin-film based formation of composite membranes in close 

collaboration with the department of physical chemistry (A. Sperschneider) and the 

solution-assisted non-solvent induced phase separation (NIPS) route together with 

the department of technical chemistry at the University Duisburg-Essen. We aim at 

the successful fabrication of model systems for first investigations on membrane 

switchabilities in terms of pore size, separation quality, wettability, and overall 

water flux. 

In addition to that, more general interest is devoted to the self-assembly of BVT 

block terpolymers in selective solvents for the first block, polybutadiene. Starting 

in organic solvents like acetone, the structure of the aggregates is to be 

determined and after crosslinking of the PB compartment the feasibility of the 

transfer of these aggregates into non-selective solvents like dioxane can be 

elucidated. Further modifications like the quaternization of the P2VP block or the 

hydrolysis of the PtBMA to PMAA then lead to water-soluble systems with one or 

two environmentally sensitive compartments. The aggregation behavior of those 

amphiphilic polymers will also be studied. Finally, first investigations concerning 

the formation of interpolyelectrolyte complexes of such PB-P2VPq-PMAA block 

terpolymer micelles with oppositely charged diblock copolymers will be carried 

out. 

 

   

I-22 
 



______________________________________________________________________Introduction 

References 

[1] L. Leibler, Macromolecules 1980, 13, 1602. 

[2] T. Smart, H. Lomas, M. Massignani, M. V. Flores-Merino, L. Riuz Perez, G. Battaglia, 

nanotoday 2008, 3, 38. 

[3] A.-V. Ruzette, L. Leibler, Nat Mater 2005, 4, 19. 

[4] M. Lazzari, M. A. Lopez-Quintela, Adv. Mater. 2003, 15, 1583. 

[5] S. B. Darling, Prog. Polym. Sci. 2007, 32, 1152. 

[6] H.-A. Klok, S. Lecommmandoux, Adv.Mater. 2001, 13, 1217. 

[7] T. Goldacker, V. Abetz, R. Stadler, I. Erukhimovich, L. Leibler, Nature 1999, 398, 

137. 

[8] V. Abetz, T. Goldacker, Macromol. Rapid. Commun. 2000, 21, 16. 

[9] N. Nath, A. Chilkoti, Adv. Mater. 2002, 14, 1243. 

[10] Z. Nie, E. Kumacheva, Nat Mater 2008, 7, 277. 

[11] M. Yoshida, J. Lahann, ACS Nano 2008, 2, 1101. 

[12] S. Dai, P. Ravi, K.-C. Tam, Soft Matter 2008, 4, 435. 

[13] F. A. Plamper, A. Schmalz, M. Ballauf, A. H. E. Müller, J. Am. Chem. Soc. 2007, 

129, 14538. 

[14] F. Plamper, A. Walther, A. H. E. Müller, M. Ballauff, Nano Lett. 2007, 7, 167. 

[15] H. Csetneki, G. Filipesei, M. Zrinyi, J. Am Chem Soc. 2006. 

[16] P. Broz, S. Driamov, J. Ziegler, N. Ben-Haim, S. Marsch, W. Meier, P. Hunziker, 

Nano Lett. 2006, 6, 2349. 

[17] T. Breiner, K. Kreger, R. Hagen, M. Hackel, L. Kador, A. H. E. Müller, E. J. Kramer, 

H.-W. Schmidt, Macromolecules 2007, 40, 2100. 

[18] J. K. Bosworth, M. Y. Paik, R. Ruiz, E. L. Schwartz, J. Q. Huang, A. W. Ko, D.-M. 

Smilgies, C. T. Black, C. K. Ober, ACS Nano 2008, 2, 1396. 

[19] S. B. A. Ludwigs, A. Voronov, N. Rehse, R. Magerle, G. Krausch, Nature materials 

2003, 2, 744. 

[20] M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, C. K. Ober, Chem. 

Mater. 2004, 16, 3800. 

[21] G. R. Whittell, I. Manners, Advanced Materials 2007, 19, 3439. 

[22] S. Z. D. A. R. I. M. G. C. W. James K. Li, Advanced Materials 2008, 20, 1989. 

[23] D. A. Rider, J. I. L. Chen, J.-C. Eloi, A. C. Arsenault, T. P. Russell, G. A. Ozin, I. 

Manners, Macromolecules 2008, 41, 2250. 

[24] D. A. Rider, K. A. Cavicchi, L. Vanderark, T. P. Russell, I. Manners, Macromolecules 

2007, 40, 3790. 

[25] J.-C. Eloi, L. Chabanne, G. R. Whittell, I. Manners, materialstoday 2008, 11, 28. 

I-23 
 



______________________________________________________________________Introduction 

[26] M. Szwarc, Nature 1956, 178, 1168. 

[27] S. Ludwigs, A. Böker, V. Abetz, A. H. E. Müller, G. Krausch, Polymer 2003, 44, 

6815. 

[28] A. Walther, A. Göldel, A. H. E. Müller, Polymer 2008, 49, 3217. 

[29] Z. Li, G. Liu, Langmuir 2003, 19, 10480. 

[30] J.-F. Gohy, S. Antoun, R. Jerome, Macromolecules 2001, 34, 7435. 

[31] S.-C. Chen, S.-W. Kuo, C.-S. Liao, F.-C. Chang, Macromolecules 2008, 41, 8865. 

[32] S. Jouenne, J. A. Gonzalez-Leon, A. V. Ruzette, P. Lodefier, S. Tence-Girault, L. 

Leibler, Macromolecules 2007. 

[33] B. Schmitt, W. Stauf, A. H. E. Müller, Macromolecules 2001, 34, 1551. 

[34] T. Suzuki, J.-i. Kusakabe, T. Ishizone, Macromolecules 2008, 41, 1929. 

[35] H. Wang, M. A. Winnik, I. Manners, Macromolecules 2007, 40, 3784. 

[36] H. Hückstädt, A. Göpfert, V. Abetz, Macromol. Chem. Phys. 2000, 201, 296. 

[37] Z. Li, M. A. Hillmyer, T. Lodge, Macromolecules 2004, 37, 8933. 

[38] S. Nosov, H. Schmalz, A. H. E. Müller, Polymer 2006, 47, 4245. 

[39] Holger Schmalz, M. G. Lanzendörfer, V. Abetz, A. H. E. Müller, Macromol. Chem. 

Phys. 2003, 204, 1056. 

[40] A. A. Toy, S. Reinicke, A. H. E. Müller, H. Schmalz, Macromolecules 2007, 40, 

5241. 

[41] M. Ulbricht, Polymer 2006, 47, 2217. 

[42] K. V. Peinemann, V. Abetz, P. F. W. Simon, Nature mat. 2007, 6, 992. 

[43] S. P. Nunes, K. V. Peinemann, Membrane Technology, 2nd ed., Wiley-VCH, 

Weinheim, 2006. 

[44] P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg, J. Feijen, J. Membr. Sci. 

1996, 117, 1. 

[45] K. G. Neoh, L. Ying, G. Zhai, A. Y. Winata, E. T. Kang, Journal of Colloid and 

Interface Science 2003, 265, 396. 

[46] L. Ying, E. T. Kang, K. G. Neoh, J. Membr. Sci. 2003, 224, 93. 

[47] J. Xue, L. Chen, H. L. Wang, Z. B. Zhang, X. L. Zhu, E. T. Kang, K. G. Neoh, 

Langmuir 2008, 24, 14151. 

[48] F. Schacher, M. Ulbricht, A. H. E. Müller, Adv. Funct. Mater. 2008, accepted. 

[49] F. Penacorada, A. Angelova, H. Kamusewitz, J. Reiche, L. Brehmer, Langmuir 

1995, 11, 612. 

[50] H. H. Schwarz, K. Richau, D. R. Paul, Polym. Bull. 1991, 25, 95. 

[51] B. W. Boudouris, C. D. Frisbie, M. A. Hillmyer, Macromolecules 2008, 41, 67. 

[52] J. Bang, S. H. Kim, E. Drockenmuller, M. J. Misner, T. P. Russell, C. J. Hawker, 

Journal of the American Chemical Society 2006, 128, 7622. 

I-24 
 



______________________________________________________________________Introduction 

[53] S. Guo, J. Rzayev, T. S. Bailey, A. S. Zalusky, R. Olayo-Valles, M. A. Hillmyer, 

Chemistry of Materials 2006, 18, 1719. 

[54] S. Y. Yang, J. Park, J. Yoon, M. Ree, S. K. Jang, J. K. Kim, Advanced Functional 

Materials 2008, 18, 1371. 

[55] S. Y. Yang, I. Ryu, H. Y. Kim, S. K. Jang, T. P. Russell, Adv. Mater. 2006, 18, 709. 

[56] A. Sperschneider, F. Schacher, M. Gawenda, L. Tsarkova, A. H. E. Müller, M. 

Ulbricht, G. Krausch, J. Köhler, Small 2007, 3, 1056. 

[57] M. Burkhardt, N. Martinez-Castro, S. Tea, M. Drechsler, I. Babin, I. Grishagin, R. 

Schweins, D. V. Pergushov, M. Gradzielski, A. B. Zezin, A. H. E. Muller, Langmuir 

2007, 23, 12864. 

[58] X. André, M. Zhang, A. H. E. Müller, Macromolecular Rapid Communications 2005, 

26, 558. 

[59] R. S. Yelamanchili, A. Walther, A. H. E. Müller, J. Breu, Chem. Commun. 2008, 

489. 

[60] P. Lim Soo, A. Eisenberg, Journal of Polymer Science Part B: Polymer Physics 2004, 

42, 923. 

[61] C. A. Fustin, V. Abetz, J. F. Gohy, Eur. Phys. J. E 2005. 

[62] H. Cui, T. K. Hodgdon, E. W. Kaler, L. Abezgauz, D. Danino, M. Lubovsky, Y. 

Talmon, D. J. Pochan, Soft Matter 2007, 3, 945. 

[63] A. Walther, X. Andre, M. Drechsler, V. Abetz, A. H. E. Müller, Journal of the 

American Chemical Society 2007, 129, 6187. 

[64] R. K. O'Reilly, C. Hawker, K. L. Wooley, Chem. Soc. Rev. 2006, 35, 1068. 

[65] X. Jiang, S. Luo, S. P. Armes, W. Shi, S. Liu, Macromolecules 2006, 39, 5987. 

[66] G. R. GueÌrin, H. Wang, I. Manners, M. A. Winnik, Journal of the American Chemical 

Society 2008, 130, 14763. 

[67] T. Lodge, A. Rasdal, Z. Li, M. A. Hillmyer, J. Am Chem Soc. 2005, 127, 17608. 

[68] Z. Li, M. A. Hillmyer, T. Lodge, Langmuir 2006, 22, 9409. 

[69] J. Hu, G. Njikang, G. Liu, Macromolecules 2008, 41, 7993. 

[70] A. Walther, A. H. E. Müller, Soft Matter 2008, 4, 663. 

[71] S. Kubowicz, J.-F. Baussard, J.-F. Lutz, A. Thünemann, H. v. Berlepsch, A. 

Laschewsky, Angew. Chem. int. Ed. 2005, 44, 5262. 

[72] H. Cui, Z. Chen, S. Zhong, K. L. Wooley, D. J. Pochan, Science 2007, 317, 647. 

[73] R. Zheng, G. Liu, X. Yan, J. Am Chem Soc. 2005, 127, 15358. 

[74] H. Schmalz, J. Schmelz, M. Drechsler, J. Yuan, A. Walther, K. Schweimer, A. M. 

Mihut, Macromolecules 2008, 41, 3235. 

[75] R. Erhardt, A. Boker, H. Zettl, H. Kaya, W. Pyckhout-Hintzen, G. Krausch, V. Abetz, 

A. H. E. Müller, Macromolecules 2001, 34, 1069. 

I-25 
 



______________________________________________________________________Introduction 

I-26 
 

[76] Y. Liu, V. Abetz, A. H. E. Müller, Macromolecules 2003, 36, 7894. 

[77] D. V. Pergushov, E. V. Remizova, J. Feldthusen, A. B. Zezin, A. H. E. Mueller, V. A. 

Kabanov, J. Phys. Chem. 2003, 107, 8093. 

[78] M. Burkhardt, M. Ruppel, S. Tea, M. Drechsler, R. Schweins, D. V. Pergushov, M. 

Gradzielski, A. B. Zezin, A. H. E. Müller, Langmuir 2008, 24, 1769. 

[79] D. V. Pergushov, E. V. Remizova, M. Gradzielski, P. Lindner, J. Feldthusen, A. B. 

Zezin, A. H. E. Müller, V. A. Kabanov, Polymer 2004, 45, 367. 

[80] K. N. Bakeev, V. A. Izumrudov, S. I. Kuchanov, A. B. Zezin, V. A. Kabanov, 

Macromolecules 1992, 25, 4249. 

[81] P. S. Chelushkin, E. A. Lysenko, T. K. Bronich, A. Eisenberg, V. A. Kabanov, A. V. 

Kabanov, The Journal of Physical Chemistry B 2008, 112, 7732. 

[82] A. Harada, K. Kataoka, Science 1999, 283, 65. 

[83] P. S. Chelushkin, E. A. Lysenko, T. K. Bronich, A. Eisenberg, V. A. Kabanov, A. V. 

Kabanov, J. Phys. Chem. B 2007, 111, 8419. 

[84] L. S. Z. J. M. K. W. Y. A. Wangqing Zhang, Macromolecular Chemistry and Physics 

2005, 206, 2354. 

[85] H.-M. Buchhammer, G. Petzold, K. Lunkwitz, Langmuir 1999, 15, 4306. 

[86] S. Förster, M. Antonietti, Adv. Mater. 1998, 10, 195. 

[87] A. Haryono, W. H. Binder, Small 2006, 2, 600. 

[88] J. Shan, H. Tenhu, Chem. Commun. 2007, 4580. 

[89] J. Yuan, H. Schmalz, Y. Xu, N. Miyajima, M. Drechsler, M. W. Möller, F. Schacher, 

A. H. E. Müller, Advanced Materials 2008, 20, 947. 

[90] J. Yuan, M. Drechsler, Y. Xu, M. Zhang, A. H. E. Müller, Polymer 2008, 49, 1547. 

[91] G. R. Whittell, I. Manners, Advanced Materials 2007, 19, 3439. 

[92] R. H. A. Ras, M. Kemell, J. de Wit, M. Ritala, G. ten Brinke, M. Leskelä, O. Ikkala, 

Advanced Materials 2007, 19, 102. 

[93] S. b. Maria, A. S. Susha, M. Sommer, D. V. Talapin, A. L. Rogach, M. Thelakkat, 

Macromolecules 2008, 41, 6081. 

[94] M. Schrinner, F. Polzer, Y. Mei, Y. Lu, B. Haupt, M. Ballauff, A. Göldel, M. 

Drechsler, J. Preussner, U. Glatzel, Macromolecular Chemistry and Physics 2007, 

208, 1542. 

[95] M. Schrinner, S. Proch, Y. Mei, R. Kempe, N. Miyajima, M. Ballauff, Advanced 

Materials 2008, 20, 1928. 

[96] E. J. W. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D. M. 

Smilgies, G. E. S. Toombes, M. A. Hillmyer, S. Ludwigs, U. Steiner, H. J. Snaith, 

Nano Letters, ASAP. 

 



                                                                                                     Thesis Overview 
 

II-1 
 

Thesis Overview 

This dissertation contains 8 publications, presented from chapter 3 to 10.  

The main focus of this work was the application of well-defined block copolymers 

and their self-assembled structures for the generation of functional architectures 

with features in the nanometer size. These self-assembly studies involved solution 

based preparation pathways, thin films via spin coating onto different substrates, 

and equilibrium morphologies formed in the bulk. All block copolymers were 

synthesized via anionic polymerization procedures and characterized with SEC, 1H-

NMR, and MALDI-ToF mass spectrometry. The formed assemblies were further 

analyzed through scattering (SAXS, SLS, DLS), electron microscopic (TEM, SEM, 

cryo-TEM), and scanning force techniques (SFM). 

Both thin film and bulk investigations aimed at the preparation of novel, stimuli-

responsive membranes with advanced functionalities, e.g. separation properties 

that may be tuned through external stimuli like pH, temperature, or light. In the 

case of polymer thin films, controlled solvent annealing was utilized to enhance 

phase separation. Suitable films should then be transferred onto commercially 

available support membranes, generating composite structures. As an attractive 

alternative, self-supporting, asymmetric, and double stimuli-responsive membranes 

could be directly prepared via the non-solvent induced phase separation (NIPS) 

process from amphiphilic diblock copolymers. 

Self-assembly in selective solvents was employed for different ABC block 

terpolymers, resulting in further compartmentalized micellar structures, pH- and 

salt-responsive systems, and dynamic interpolyelectrolyte complexes. Furthermore, 

different strategies for a controlled crosslinking of the micellar core were 

successfully tested. 

The chapters can basically be subdivided into three topics. First, in chapters 3 and 

4, the synthesis and characterization of BVT block terpolymers as well as their 

behavior in thin films on different substrates is described. The chapters 5 - 7 deal 

with the synthesis of diblock copolymers with a smart, hydrophilic second block, 

poly(N.N-dimethylaminoethyl methacrylate), and their application as stimuli-

responsive asymmetric ultrafiltration membranes. Finally, chapters 8 – 10 specify 
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the results obtained for BVT block terpolymers in selective solvents, their 

modification, and their interpolyelectrolyte complexes. 

Subsequently, a summary of the key results is presented for each individual 

chapter. For a complete description of a particular topic, the reader is referred to 

the respective chapter. 
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Synthesis, Characterization, and Bulk Crosslinking of Polybutadiene-

block-poly(2-vinylpyridine)-block-poly(tert-butyl methacrylate) 

Block Terpolymers 

Several BVT block terpolymers were synthesized via sequential living anionic 

polymerization in THF and their bulk morphology was investigated with SAXS and 

TEM. The diversity of the obtained structural patterns is shown in Figure 2-1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: Ternary phase diagram obtained for several series of BVT block terpolymers, the 
grey phase resembles polybutadiene, the red phase poly(2-vinylpyridine), and the green phase 
poly(tert-butyl methacrylate; morphologies are lamellar (∆), cylindrical (○), or either mixtures 
(lamellae coexisting with cylinders) or unsual structures (spheres on cylinders or helices on 
cylinders). 

Among “classical” examples like lamellae or core-shell cylinders, also more 

complex patterns like spheres on cylinders or helices on cylinders could be found. 

We believe that the driving force for the formation of a non-continuous shell 

around the PB cylindrical core is the high incompatibility between PB and P2VP. To 

elucidate the use of such self-assembled structures as templates, e.g. for the site-

specific generation of inorganic nanoparticles within the P2VP domain, the PB 

phase was crosslinked via addition of an UV-crosslinker. Afterwards, sonication-
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assisted re-dissolution of the polymer films resulted in size-tunable, further 

compartmentalized polymeric cylinders. Exemplarily, this is highlighted for 

B18V8T74
133 in Figure 2-2. 

 

Figure 2-2: TEM micrograph for B18V8T74
133 after 10 minutes sonication and drop-coating onto a 

TEM grid (A); enlargement of one single cylinder (B); enlargement of several cylinders after 
staining with iodine (C); schematic drawing of the proposed bulk structure, PB cylinder (grey) 
bearing P2VP spheres (red) embedded in a PtBMA matrix (D); DLS autocorrelation functions for 
B18V8T74

133 after crosslinking in the bulk and subsequent sonication in THF for 1 (-□-), 3 (-○-), 5 
(-∆-), and 10 minutes (solid black line) (E), the inset shows a zoom of the relevant region; DLS 
CONTIN plots at Ө = 90° for B18V8T74

133 cylinders in THF after sonication for 1 (solid black line, 
<Rh> = 65 and 310 nm) and 10 minutes (solid grey line, <Rh> = 185 nm) (F). 
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Towards Nanoporous Membranes based on ABC Triblock Terpolymers 

Thin films of two suitable BVT block terpolymers (synthesis and characterization is 

described in chapter 3) showing core-shell cylindrical patterns in the bulk were 

cast onto different substrates and the resulting morphologies compared to 

previously investigated SVT systems. Particular emphasis was put upon structures 

that could be further processed into porous membrane precursors through, e.g., 

the degradation of one of the compartments via UV treatment, in this case 

poly(tert-butyl methacrylate). Representative SEM micrographs for a SVT and a BVT 

system are shown in Figure 2-3. 

 

Figure 2-3: SEM image of a S16V21T63
140 thin film after annealing in chloroform vapor (pCHCl3 = 0.8 

p0; t = 100) with an acceleration voltage of 1.0 kV showing different morphologies in 
dependence of terrace height. Inset (A) SFM height image (size 1 x 1 µm2). The sample surface 
is covered with a smooth rigid layer of PtBMA (left image); SEM image of a B16V21T63

145 film, 
solely cylinders oriented perpendicular and parallel to the substrate surface (right image). 

It turned out that the surface tension of the first blocks (PS, PB) played a major 

role for the final structure formation after solvent annealing with chloroform 

vapor. Although almost exactly the same molecular weights and compositions were 

used, hexagonally perforated lamellae were formed in the case of SVT terpolymers, 

whereas core-shell cylinders oriented either parallel or perpendicular to the 

substrate occurred for BVT samples. With longer annealing times, the fraction of 

perpendicular aligned cylinders could be dramatically increased. This could be 

explained through the distinctly lower surface tension of PB. For both systems, the 

PtBMA compartment could be degraded via UV irradiation, generating an 
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interconnected core-shell cylindrical network for SVT and freestanding arrays of PB 

core and P2VP cylinders for BVT block terpolymers. Both polymers were considered 

as attractive precursors for the fabrication of composite membranes. For BVT, this 

would require a further thin-film modification, e.g. ozonolysis to remove the PB 

core of the cylinders. Moreover, several very useful features with respect to the 

membrane technology have been identified, namely a similar equilibrium 

morphology on substrates with different wettability, the feasibility of a film 

transfer to another (porous) substrate and the stabilization of the films by internal 

cross-linking. This is exemplarily demonstrated for a thin-film of B14V18T68
165 after 

spin casting onto a NaCl wafer, crosslinking via UV, and subsequent transfer onto a 

TEM grid (Figure 2-4). 

 

 

 

 

 

 

 

 

 

Figure 2-4: TEM image of a thin film of B14V18T68
165 triblock terpolymer spin-cast onto a NaCl 

wafer from chloroform solution and transferred onto a TEM grid, revealing hexagonally packed 
core-shell cylinders: polybutadiene core and poly(2-vinyl pyridine) shell in a poly(tert-butyl 
methacrylate) matrix. 
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New Block Copolymers with Poly(N,N-dimethylaminoethyl 

methacrylate) as Double Stimuli-responsive Block 

Novel, amphiphilic block copolymers with a narrow molecular weight distribution 

were synthesized via sequential anionic polymerization in THF: Polystyrene-block-

poly(N,N-dimethylaminoethyl methacrylate) (PS-b-PDMAEMA), polybutadiene-block-

poly(N,N-dimethylaminoethyl methacrylate) (PB-b-PDMAEMA), and poly(p-tert-

butoxystyrene)-block-PDMAEMA. The corresponding SEC traces are shown in Figure 

2-5. 

 

 

 

 

 

 

 

 

 

 

Figure 2-5: SEC elution traces (A) for PtBS450 (black solid line; PDI=1.02), PtBS450-b-PDMAEMA11 
(dashed black line; PDI=1.04) and PtBS450-b-PDMAEMA49 (dashed grey line; PDI=1.04) in THF as 
eluent, (B) for B290 (solid black line, PDI=1.02) and B290-b-DMAEMA240 (dashed grey line, 
PDI=1.07), (C) for B810 (solid black line, PDI=1.02) and B810-b-DMAEMA65 (solid grey line, 
PDI=1.05), and (D) for PS243 (solid grey line, PDI=1.02) and PS243-b-DMAEMA37 (solid black line, 
PDI=1.04) in THF and 0.25 wt. % TBAB as eluent. 

 

Furthermore, a new strategy for the direct synthesis of poly(ethylene oxide)-

block-PDMAEMA (PEO-b-PDMAEMA) diblock copolymers was exploited: using sec-BuLi 

as initiator in the presence of the t-BuP4 phosphazene base, a facile changeover 

from an oxyanion to a carbanion could be performed. In this way PEO-b-PDMAEMA 

with a moderately narrow molecular weight distribution (PDI ≈ 1.40) was obtained. 
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Further investigations revealed that in this case slow initiation is taking place upon 

addition of DMAEMA to the reaction mixture. The reaction scheme is shown in 

Figure 2-6. 

 

 

 

 

 

 

 

Figure 2-6: Synthesis of PEO-b-PDMAEMA diblock copolymers via sequential anionic 
polymerization in THF with Li+ counterion in the presence of t-BuP4 phosphazene base. 

 

All polymerizations were monitored using a NIR probe. In this way it could be 

shown that the addition of the phosphazene base causes a distinctly slower 

propagation rate for the DMAEMA block compared to the corresponding homo-

polymerization in the presence of alkoxides. Finally, the blocking efficiency of this 

approach (>95%) was compared to commercially available PEO macroinitiators with 

one single OH-function. After initial deprotonation with the same phosphazene 

base, polymerization of DMAEMA resulted in significantly lower blocking 

efficiencies (80%). 
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Self-supporting, Double Stimuli-responsive Porous Membranes from 

Polystyrene-block-poly(N,N-dimethylaminoethyl methacrylate) 

Diblock Copolymers 

The non-solvent induced phase separation process was used to fabricate 

asymmetric membranes from amphiphilic PS-b-PDMAEMA diblock copolymers, which 

were synthesized and characterized in the previous chapter. Here, concentrated 

polymer solutions were applied onto polished glass substrates with a doctor blade 

and, after the so-called “open-time”, immersed into a non-solvent bath filled with 

water for coagulation and final film formation. These membranes exhibited a thin 

separation layer on top with pores in the nanometer-sized range and are supported 

from underneath by a macroporous volume structure. Two representative SEM 

micrographs are shown in Figure 2-7. 

 

Figure 2-7: SEM micrographs of an asymmetric membrane prepared from S81D19
75 in a mixture of 

50% THF and 50% DMF, “open-time” was 60 seconds; (A) cross section, (B) enlargement 
highlighting the top separation layer. 

The high content of PS ensured an immediate precipitation upon contact with 

water. The hydrophilic PDMAEMA covered the pore walls and, due to the rapid 

demixing process, also was incorporated into the pore walls to a certain extent. 

Through the exploitation of the “smart” properties of PDMAEMA, response to pH 

and temperature, these membranes turned out to be double stimuli-responsive. 

The pH- and temperature-dependent water flux for such a system is shown in 

Figure 2-8. 
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Figure 2-8: Water flux for S81D19
75 asymmetric membranes; depending on pH values and 

temperatures; the membranes were tempered at 65°C for 120 minutes in both cases. 

At low pH, PDMAEMA is fully protonated, atmost swollen, and the lowest flux was 

obtained. No response to a rise in temperature could be detected. Upon elevating 

the pH to 6, PDMAEMA is less charged, the LCST was applicable and significantly 

higher flux values were achieved at 65 °C. At pH 10, the flux was already 

considerably higher at room temperature, attributed to uncharged and less 

extended PDMAEMA chains. Surprisingly, even under these conditions a further flux 

increase could be detected upon heating to 65 °C. 

For a better estimation of the true pore size, pH-dependent filtrations were carried 

out with silica particles of different sizes. It turned out that under acidic conditions 

these membranes exhibited barrier pores in the separation layer with a size of 

about 15 - 30 nm. The inherent features of these systems were that they are 

defect-free on an area of several hundred µm2, high and tunable flux values, and a 

controllable pore size. 
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Double Stimuli-Responsive Ultrafiltration Membranes from 

Polystyrene-block-poly(N,N-dimethylaminoethyl methacrylate) 

Diblock Copolymers 

After initial characterization and filtration tests carried out for S81D19
75, as 

described in the previous chapter, now the influence of the different variables 

during the membrane formation process was thoroughly investigated: solvent 

composition, “open-time”, initial film thickness, and pH- or temperature present in 

the coagulation bath. Moreover, all experiments were carried out for two different 

block copolymers, S81D19
75 and S68D32

100, to probe whether the content in 

hydrophilic PDMAEMA material plays an important role as well. 

It turned out that for S81D19
75 the solvent composition for membrane casting was 

not crucial but both initial film thickness and “open-time” were, in terms of 

membrane structure. Contrary, for S68D32
100, the initial solvent composition strongly 

determined the resulting membrane morphology, whereas the effects of film height 

and “open time” induced certain changes, but by far not as pronounced as found 

for the other diblock copolymer. Exemplarily, the effect of the “open-time” on the 

membrane structure for S68D32
100 is shown in Figure 2-9. 

 

 

 

 

 

 

 

 

Figure 2-9: SEM micrographs for membranes from S68D32
100 cast from a mixture of THF (60%) and 

DMF (40%) after different “open-times”: 0 seconds (A), 60 seconds (B), 2 minutes (C), and 10 
minutes (D); the upper insets show an enlargement of the respective separation layer, the 
lower insets display the morphology obtained at the bottom of the membrane. 
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It can be nicely seen that for an “open-time” exceeding 60 seconds a transition 

from an integrally asymmetric cross section towards a condensed, sponge-like 

membrane occurred. These findings were ascribed to the higher compatibility of 

S68D32
100 with the coagulation bath, water, caused by the higher content in 

hydrophilic material, PDMAEMA. This also resulted in more well-defined 

morphological features throughout the obtained membranes for S68D32
100 and can be 

explained by slower phase separation during coagulation compared to S81D19
75, 

where the PS content is more dominating. 

Finally, pH- and temperature-dependent water flux measurements were carried out 

for representative membrane systems of both diblock copolymers. In all cases, 

double stimuli-responsive membrane systems could be obtained. 
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Multicompartment Core Micelles of ABC Block Terpolymers in 

Organic Media 

The self-assembly of BVT block terpolymers in acetone as selective solvent for the 

first block, polybutadiene, was studied. Almost monodisperse, spherical micelles 

were formed. According to theory, these should consist of a PB core, a P2VP shell 

and a PtBMA corona. DLS CONTIN plots and the decay rate vs. q2 are shown in 

Figure 2-10. 

 

 

Figure 2-10: A: CONTIN plots (intensity weighted) for B800V190T380 (grey line, <Rh>z = 43 nm) and 
B800V190T550 (black line, <Rh>z = 44 nm) at Ө = 90° in acetone solution (c = 1 g/L); B: Γ vs. q2 for 
B800V190T550. 

As it turned out, the core of these micelles was further compartmentalized. P2VP 

formed spherical domains on the PB core, resulting in multicompartment core 

micelles. A possible explanation for this behavior is the high chi-interaction 

parameter for this particular system as P2VP is supposed to be soluble in acetone. 

A representative TEM micrograph and a schematic depiction of the proposed 

micellar structure are shown in Figure 2-11. To facilitate the transfer of these 

aggregates into different, non-selective solvents like dioxane or THF different core-

crosslinking strategies were successfully carried out: either cold-vulcanization or 

UV-initiator assisted photopolymerization. Both methods resulted in well-defined, 

core-crosslinked micelles. Furthermore, the effect of reaction time and the amount 

of employed crosslinking agent were investigated. Crosslinking efficiencies were 

determined through a combination of 1H-NMR and soxhlett extraction with THF. 
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Figure 2-11: TEM images of multicompartment micelles from B800V190T550, drop-coated (A) and 
freeze-dried (B) from 0.1 g/L acetone solution onto carbon-coated gold TEM grids. C: single 
micelle at high magnification; D: proposed solution structure of the micelles. 

 

Finally, the proposed micellar structure was proven through cryo-TEM 

measurements of core crosslinked aggregates after transfer to dioxane. This is 

shown in Figure 2-12. 
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Figure 2-13: Schematic depiction of the two different pathways for the preparation of micellar 
solutions of B800V190MAA550 in water. 

After dialysis into aqueous solutions at high pH (10), different micellar aggregates 

were formed, depending on the previously carried out modification reactions. If 

only the PtBMA was hydrolyzed to PMAA, core-shell-corona micelles were formed, 

exhibiting a soft PB core, a P2VP shell, and a negatively charged PMAA corona. The 

proposed solution structure as well as cryo-TEM micrographs are shown in Figure 2-

14. If P2VP was quaternized prior to hydrolysis of the PtBMA, the situation 

changed: now, under these conditions, the middle block was hydrophilic and 

positively charged whereas the PMAA still beard negative charges. Therefore, 

interpolyelectrolyte complexes between quaternized P2VP and PMAA were formed. 

As such structures become hydrophobic again, the IPECs collapsed and formed a 

patchy shell onto the soft PB core. This is shown in Figure 2-15. The difference in 

length between P2VP and PMAA ensured that the micelles were still water-soluble. 

We assume that after IPEC formation around 360 units of uncomplexed PMAA 

remained for each polymer chain. 
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Figure 2-14: Cryo-TEM micrographs of B800V190MAA550 in aqueous solution at pH 10 (0.05M CsCl, 
c = 1 g/L), Overview (A) and single core-shell-corona micelle (B; at pH 4 (c = 1 g/L) (C), the inset 
shows an enlargement; schematic depiction of the proposed solution structure of B38V18MAA44

110 
in solution depending on the pH; core-shell-corona structure with an expanded PMAA corona at 
pH 10 with additional CsCl (E) and a collapsed PMAA corona at pH 4 (D). 
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Figure 2-15: Cryo-TEM micrographs of B800Vq190MAA550 in aqueous solution; (A+B) pH 10, (c = 1 
g/L); (C) grey-scale analysis of a micellar cross-section; (D) proposed solution structure at pH 
10, expanded PMAA corona; (E) cryo-TEM micrograph at pH 4, (c = 1 g/L), the inset shows a 
single micelle; (F) proposed solution structure at low pH, collapsed PMAA corona. 
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Both type of micellar aggregates showed response to changes in pH or salinity, 

rendering intelligent and dynamic colloids. These kinds of aggregates with 

intramicellar IPECs could serve as model systems for the control of charge and 

shape in polymeric micelles. The further complexation of the charged micellar 

aggregates with, for example, functional particles and block copolymers will be the 

subject of further studies. 
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Interpolyelectrolyte Complexes of Dynamic Multicompartment 

Micelles 

In the previous chapter the preparation and the characterization of polybutadiene-

block-poly(N-methyl-2-vinylpyridinium)-block-poly(methacrylic acid) 

(B800Vq190MAA550) block terpolymer micelles with a soft polybutadiene core, an 

interpolyelectrolyte complex (IPEC) shell made out of poly(N-methyl-2-

vinylpyridinium) and poly(methacrylic acid), and a negatively charged PMAA corona 

was described. Now these micelles were mixed with positively charged poly(N-

methyl-2-vinylpyridinium)-block-poly(ethylene oxide) (VqEO) diblock copolymers. 

Under these conditions, mixing resulted in the formation of a second IPEC shell 

onto the B800Vq190MAA550 precursor micelles, surrounded by a PEO corona. The 

resulting multicompartmental IPECs exhibited dynamic behavior, highlighted 

through structural relaxation within a period of 10 days, followed by DLS, cryo-

TEM, and SFM. The principle is shown shown in Figure 2-16. 

 

Figure 2-16: scheme for the formation of IPECs between negatively charged B800Vq190MAA550 
block terpolymer micelles and positively charged Vq94EO1245 diblock copolymers at charge 
neutrality (Z = 1); 
 

Moreover, during the mixing of precursor micelles with oppositely charged diblock 

copolymers, a transition state could be identified. Here, the aggregates showed a 

rather star-like appearance, caused by the fast electrostatic attraction between 

stretched oppositely charged polymer chains and followed by a slow relaxation 
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towards the equilibrium structure. The intermediate state is displayed in Figure 2-

17. 

 

Figure 2-17: A, B: cryo-TEM micrograph of an IPEC at Z = 1 and pH 10 after 1h mixing time at 
different locations of the same sample; C, D: SFM images of an IPEC solution at Z = 1 and pH 10 
after deposition on a carboncoated TEM grid, C displaying an enlargement of D. 
 
Finally, the generation of hybrid structures through the in-situ formation of gold 

nanoparticles within the shell of both precursor micelles and equilibrated IPECs was 

investigated. For the B800Vq190MAA550 micelles, uniform nanoparticles could be 

observed, almost exclusively located within the PMAA shell. As for the IPECs, Au 

nanoparticles could be synthesized within the block ionomer complex shell, further 

protected from the outside by the PEO shell. The results are shown in Figure 2-18. 
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Figure 2-18: TEM micrograph of B800Vq190MAA550 terpolymer micelles loaded with Au NPs on a 
carbon-coated copper grid (A), the inset displays an enlargement; cryo-TEM micrograph of the 
IPEC at Z = 0.2 loaded with Au NPs (B), the inset shows an enlargement; UV-VIS spectra of both 
the B800Vq190MAA550 micelles (solid black line) and the IPEC (solid grey line) loaded with Au NPs 
(C), the inset are photos taken of the IPEC solutions before (left) and after (right) nanoparticles 
formation; grey-scale analysis of two adjacent IPECs in (B), highlighting the location of the 
nanoparticles inside the structure (D). 
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Individual Contributions to Joint Publications 

The results presented in this dissertation were obtained in close collaboration with 

other people and published or submitted as indicated below. In the following, the 

contributions of all the coauthors to the different chapters will be specified. The 

asterisk denotes the corresponding author(s). 

 

 Chapter 3 

This work has been submitted to Polymer under the title 

“Synthesis, Characterization, and Bulk Crosslinking of Polybutadiene-block-

poly(2-vinylpyridine)-block-poly(tert-butyl methacrylate) Block Terpolymers” 

by F. Schacher*, J. Yuan, and A. H. E. Müller*. 

I wrote the publication and performed most of the experiments. 

J. Yuan performed some of the TEM measurements. 

H. Schoberth and K. Schmidt performed most of the SAXS measurements. 

A. Müller was involved in discussions and corrected the manuscript. 

 

Chapter 4 

This work is published in Small 2007, 3, p. 1056 – 1063 under the title 

“Towards Nanoporous Membranes based on ABC Triblock Terpolymers” by A. 

Sperschneider, F. Schacher, M. Gawenda, L. Tsarkova, M. Ulbricht, G. Krausch, J. 

Köhler, and A. H. E. Müller*. 

A. Sperschneider and I wrote the publication. 

I synthesized most of the polymers, performed the TEM experiments and was 
involved in all discussions. 

A. Sperschneider performed the SEM and SFM measurements. 

M. Gawenda, L. Tsarkova, M. Ulbricht, J. Köhler, and A. Müller were involved in 
discussions and corrected the manuscript. 
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Chapter 5 

This work is published in Macromol. Chem. Phys. 2009, 210, p. 256 – 263 under the 

title 

“New Block Copolymers with Poly(N,N-dimethylaminoethyl methacrylate) as 

Double Stimuli-responsive Block” by F. Schacher*, M. Müllner, H. Schmalz, and A. 

H. E. Müller*. 

I wrote the publication and performed most of the experiments. 

M. Müllner synthesized part of the polymers during his advanced labcourse under 
my supervision. 

H. Schmalz and A. Müller were involved in discussions and corrected the 
manuscript. 

 

Chapter 6 

This work is published in Adv. Funct. Materials, 2009, 19, p. 1040 – 1045 under the 

title 

“Self-supporting, Double Stimuli-responsive Membranes from Polystyrene-block-

poly(N,N-dimethylaminoethyl methacrylate) Diblock Copolymers” by F. 

Schacher*, M. Ulbricht, and A. H. E. Müller*. 

I wrote the publication and performed most of the experiments. 

C. Schenk performed some of the water flux measurements. 

T. Rudolph was involved in some of the filtration experiments under my guidance. 

B. Goßler performed all the SEM measurements. 

M. Ulbricht and A. Müller were involved in discussions and corrected the 
manuscript. 
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Chapter 7 

This work is in press in ACS Applied Materials & Interfaces under the title 

“Double Stimuli-responsive Ultrafiltration Membranes from Polystyrene-block-

poly(N,N-dimethylaminoethyl methacrylate) Diblock Copolymers” by F. 

Schacher*, T. Rudolph, F. Wieberger, M. Ulbricht, and A. H. E. Müller*. 

I wrote the publication and performed most of the experiments. 

T. Rudolph was involved in membrane preparation, water flux measurements, and 
filtration tests under my guidance as a HiWi. 

B. Goßler performed most of the SEM measurements. 

F. Wieberger performed some of the SEM measurements and was involved in 
discussions. 

M. Ulbricht and A. Müller were involved in discussions and corrected the 
manuscript. 

 

Chapter 8 

This work is published in Macromolecules 2009, 42, p. 3540 – 3548 (cover article) 

under the title 

“Multicompartment Core Micelles of ABC Block Terpolymers in Organic Media” 

by F. Schacher*, A. Walther, M. Ruppel, M. Drechsler, and A. H. E. Müller*. 

I wrote the publication and performed most of the experiments. 

A. Walther performed some of the cryo-TEM experiments and was involved in the 
discussions. 

M. Drechsler performed some of the cryo-TEM experiments and was involved in the 
discussions. 

M. Ruppel and A. Müller were involved in discussions and corrected the manuscript. 

 

 

 

 



                                                                                                     Thesis Overview 
 

II-26 
 

Chapter 9 

This work is in press in Langmuir under the title 

“Dynamic Multicompartment-Core Micelles in Aqueous Media” by F. Schacher*, 

A. Walther, and A. H. E. Müller*. 

I wrote the publication and performed most of the experiments. 

A. Walther performed the cryo-TEM experiments and was involved both in the 
corrections and the discussions. 

A. Müller was involved in discussions and corrected the manuscript. 

 

Chapter 10 

This work has been submitted to ACS Nano under the title 

“Interpolyelectrolyte Complexes of Dynamic Multicompartment Micelles” by F. 

Schacher*, E. Betthausen, A. Walther, H. Schmalz, D. Pergushov, and A. H. E. 

Müller*. 

I wrote the publication and performed most of the experiments. 

E. Betthausen performed some of the experiments during her advanced labcourse 
under my guidance. 

A. Walther performed the cryo-TEM experiments and was involved in the 
discussions. 

H. Schmalz, D. Pergushov, and A. Müller were involved in discussions and corrected 
the manuscript. 

 

 

 

 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                        Synthesis of BVT Block Terpolymers 

 

Synthesis, Characterization, and Bulk Crosslinking of 

Polybutadiene-b-poly(2-vinylpyridine)-b-poly(tert-butyl 

methacrylate) Block Terpolymers 

 

Felix Schacher, Jiayin Yuan, and Axel H. E. Müller 

 

Makromolekulare Chemie II and Bayreuther Zentrum für Kolloide und Grenzflächen, 

Universität Bayreuth, 95440 Bayreuth, Germany 

Email: Felix.schacher@uni-bayreuth.de; axel.mueller@uni-bayreuth.de 

 

 

 

III-1 

 

 

 

 

 

 

 

 

 

 

mailto:Felix.schacher@uni-bayreuth.de
mailto:axel.mueller@uni-bayreuth.de


                                                                        Synthesis of BVT Block Terpolymers 

Abstract 

We report on the synthesis and characterization of novel ABC triblock terpolymers, 

polybutadiene-b-poly(2-vinylpyridine)-b-poly(tert-butyl methacrylate) (BVT), via 

sequential living anionic polymerizations in THF at low temperatures using sec-

butyl lithium as initiator. In this work, 18 BVT terpolymers were produced with 

volume fractions ΦB : ΦV : ΦT in the range of 1 : 0.4 – 1.2 : 0.2 – 4.6. All polymers 

exhibit a very narrow molecular weight distribution (PDI < 1.1). They were 

characterized in terms of bulk morphology with small angle x-ray scattering and 

transmission electron microscopy, unveiling mostly lamellar patterns or hexagonally 

arranged cylindrical structures. B44V20T36
98 displayed a partial gyroid structure 

coexisting with lamellar parts while B18V8T74
133 exhibited cylinders with a non 

continuous shell around the PB core and could serve as an interesting template for 

the facile generation of multicompartmental self-assembled structures. Same 

accounts for B14V18T68
165, here the middle block, P2VP, is forming a helix around the 

PB core. Crosslinking of the polybutadiene compartment of B18V8T74
133 and 

B14V18T68
165 with an UV-photoinitiator was performed at different ratios, followed 

by sonication assisted dissolution of the aggregates to elucidate further use of the 

terpolymers for the generation of soft polymeric nanoparticles with controlled 

functionality. 

 

Keywords 

Soft polymeric nanoparticles; Block Terpolymers; Anionic Polymerization; 

Crosslinking; 

 

Introduction 

Block copolymers are an interesting and versatile class of materials and their tailor-

made properties, in particular thin-film and bulk morphology and domain spacing, 

render them suitable for the demand of smaller and smaller feature sizes in 

nanotechnology.[1] Characteristic dimensions for the domain spacing of such 

microphase separated systems are in the range of 10 – 100 nm and the generation 
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of nanostructured assemblies with different chemical properties raises 

opportunities for applications in the fields of catalysis, membrane research, 

molecular templating or drug delivery.[2, 3] The peculiar advantage of block 

copolymers here for are their intrinsic dimensions, the ease of synthesis and the 

facile control over architecture and chemical functionality, turning them into 

manageable nanoscale tools.[4-7] In general, there are two possible ways for the use 

of block copolymer templates: either “as they are” or after the selective removal 

of one component through a chemical process like etching or photodegradation.[8, 9] 

In order to provide a sufficient control over domain spacing and topology, well-

defined block copolymers are required. Usually, this is achieved by a variety of 

controlled / “living” polymerization methods, among them typically are anionic / 

cationic polymerization, atom transfer radical polymerization (ATRP), reversible 

addition-fragmentation polymerization (RAFT) and group transfer polymerization 

(GTP). Once obtained, block copolymers self-assemble into a large variety of 

morphologies, depending on composition, architecture, block sequence and 

molecular weight.[10] Compared to AB diblock copolymers, considerably less work 

has been carried out on the synthesis and bulk properties of ABC block 

terpolymers.[11] Here the resulting microphase separated structures are governed 

by several independent composition variables: the volume fractions (ΦA, ΦB, ΦC), 

the three interaction parameters (χAB, χBC, χAC), the respective interfacial tensions 

(γAB, γBC, γAC) and previously mentioned factors like the chain topology.[12-15] 

Stadler et al. studied the phase behavior of polystyrene-b-polybutadiene-b-

poly(methyl methacrylate) (SBM) block terpolymers and among the classical 

morphologies obtained for ABC type terpolymers like lamellae, core-shell cylinders 

and core-shell spheres they also reported on more complex microphase separated 

structures featuring chiral assemblies,[16] “knitting pattern” morphologies,[17] and a 

new structural motif where two different cylindrical domains are formed instead of 

core-shell cylinders.[18] In our group, the self-assembly of polystyrene-b-

polybutadiene-b-poly(tert-butyl methacrylate) (SBT) and SBM block terpolymers is 

used to generate janus structures featuring nanometer-sized particles with two 

chemically different sides.[19-21] 

The aim of this work is the synthesis and characterization of polybutadiene-b-

poly(2-vinylpyridine)-b-poly(tert-butyl methacrylate) (BVT) block terpolymers with 
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different ratios of the block segments. Well-defined terpolymers were obtained 

through sequential living anionic polymerization in THF at low temperatures using 

sec-butyl lithium as initiator. Different series of BVT terpolymers were produced 

with volume fractions ΦA : ΦB : ΦC in the range of 1 : 0.4 – 1.2 : 0.2 – 4.6. All 

polymers exhibit a very narrow molecular weight distribution (below 1.1) as shown 

via size exclusion chromatography. Microphase separation of the BVT terpolymers 

was investigated in solution through small angle X-ray scattering in THF above the 

order-disorder transition and in the bulk via transmission electron microscopy. 

Phase allocation in the latter is accomplished through selective staining of either 

polybutadiene with OsO4 [22] or poly(2-vinylpyridine) with iodine.[14] The strongest 

incompatibility here is between the first block, polybutadiene, and the second 

block, poly(2-vinylpyridine) (χN, BV = 0.325).[23] Among the morphologies obtained 

are for the most part lamellae and core-shell cylinders with a polybutadiene or 

poly(tert-butylmethacrylate) core and a poly(2-vinylpyridine) shell. If the content 

of P2VP is kept low, the shell formed around the PB cylinders is not continuous any 

more, like in the case of B18V8T74
133. In one case for B44V20T36

98,( the subscripts refer 

to the weight fraction of the corresponding block and the superscript to the overall 

molecular weight in kg/mol.) a coexistence of lamellae and a gyroidal structure 

exists. For the terpolymers forming core-shell cylinders with a polybutadiene core 

in the bulk, in particular B16V21T63
145, several useful features with respect to the 

membrane technology could be identified in thin films studied on different 

substrates after controlled annealing in solvent vapor, as already reported 

elsewhere.[24] It could further be shown that for B14V18T68
165 the formation of a 

P2VP helix around the cylindrical PB core occurs in the bulk. B30V14T56
141 was used 

to generate multicompartment micelles either in organic solvents or in aqueous 

systems.[25] 

Moreover, the polybutadiene compartment of the terpolymers is susceptible for 

crosslinking reactions. Fixation of the polymer morphologies after self-assembly 

was achieved through UV-light induced photo-polymerization of the cast polymer 

films after the incorporation of a suitable crosslinking agent, Lucirin-TPO® in this 

case. Films of block terpolymers showing bulk morphologies suitable for the 

generation of novel nanostructures, B18V8T74
133 and B14V18T68

165, were cast with 

additional crosslinking agent. After fixation of the self-assembled structures, these 
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were subjected to sonication procedures. In this way, multicompartmental 

polymeric nanoparticles could be prepared on a gram scale. Within the scope of 

this work, no effect of the crosslinking procedure on the bulk morphologies is 

observed for different amounts of crosslinking agent in the range of 1 – 10 wt. %. 

Experimental 

Synthesis 

The linear BVT triblock terpolymers were synthesized via sequential living anionic 

polymerizations of butadiene, 2-vinylpyridine and tert-butyl methacrylate in THF 

at low temperatures using sec-butyl lithium as initiator.[26] All polymerizations took 

place in the presence of alkoxides (c = 0.013 mol/L, typically this corresponds to a 

roughly 20-fold excess compared to the concentration of growing polymer chains). 

1,3-butadiene was initiated at -70°C and polymerized for 5 hours at -10°C. 

Subsequently, 2-vinyl pyridine was added to the stirred tank reactor via ampoules. 

After polymerization of the second block, the living polybutadiene-b-poly(2-

vinylpyridine) chain ends were endcapped with 1,1-diphenylethylene (DPE) in order 

to attenuate the nucleophilicity of the propagating species. In that way, transfer 

reactions upon addition of the third monomer, tBMA, due to too high 

nucleophilicity could be suppressed.[27, 28] During the polymerizations of the PtBMA 

block, samples were taken after different reaction times and precipitated into 

degassed isopropanol. Therefore we could obtain several series of BVT block 

terpolymers with a constant ratio of first to second block and increasing PtBMA 

content. Overall, in this work we synthesized 18 polymers with volume fractions ΦB 

: ΦV : ΦT in the range of 1 : 0.4 – 1.2 : 0.2 – 4.6. 

Crosslinking 

Crosslinking of the as-cast and annealed polymer films was carried out with a UV-

lamp for 2h (Hoenle VG UVAHAND 250 GS, cut-off at 300 nm wavelength to avoid 

the polymerization of  the methacrylic compartment). 

Structural characterization 

For structural characterization films of the BVT terpolymers were cast from THF by 

slow evaporation of the solvent over several days. The films were afterwards dried 
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under vacuum at room temperature first for 24h and at 50 °C thereafter for 

another 24h. Subsequent annealing at elevated temperatures above the glass 

transition of all three blocks (130 °C) under vacuum did not lead to any change in 

the microdomain structure of the samples except the polymer films with high 

polybutadiene content. For scattering experiments in solution the polymers were 

dissolved at concentrations above the order-disorder transition in THF over several 

days. Typically, the order-disorder transition (ODT) was in the range of 26 – 30 wt. 

% polymer. 

Ultrathin (30 – 80 nm) samples for the transmission electron microscopy (TEM) were 

cut from the as-cast polymer films with a Reichert-Jung Ultracut E equipped with a 

diamond knife. For polymer samples with a higher polybutadiene content than 30 

wt. %, microtome cutting at temperatures below the glass transition of PB (-16 °C) 

was performed. TEM micrographs were taken on either a Zeiss CEM 902 operating 

at 80 kV or a LEO 922 OMEGA operating at 200 kV, both in the bright field mode. In 

order to selectively enhance the electron density in one of the three compartments 

and therefore improve the contrast the samples were stained with either OsO4 or 

iodine. The latter preferentially reacts with poly(2-vinylpyridine),[14] forming a 

charge-transfer complex while OsO4 attacks the polybutadiene segments.[22] Thus, 

after iodine treatment the P2VP compartments should appear darker whereas PB 

comprises the same after OsO4 staining. In both cases the PtBMA domains are not 

supposed to be affected. The methacrylic compound though is deteriorated through 

the electron beam and therefore considerable volume shrinkage of the respective 

microphase domain during the TEM measurement can lead to erroneous values. [29] 

The electron densities calculated for the three different compartments are as 

follows: ρe(PB) = 0.53 mol / cm3 [30]; ρe(P2VP) = 0.611 mol / cm3 and ρe(PtBMA) = 

0.561 mol / cm3. [28] 

Small Angle X-Ray Scattering (SAXS) 

Small angle X-ray scattering (SAXS) measurements were performed on the ID2 

beamline at the European Synchrotron Radiation Facility (ESRF, Grenoble, France). 

The typical photon flux obtained at the ID2 sample position is 8 x 1012 photons/s, 

the energy bandwidth is ΔE / E = 2 x 10-4 . All experiments were obtained at 12.5 

keV corresponding to an X-ray wavelength of 0.1 nm. The scattering intensities 
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were detected via a CCD camera. The detector system is housed in a 10 m 

evacuated flight tube. The scattering patterns were corrected for the beam stop, 

the background, the used cuvettes, and the solvent prior to evaluations. 

Size exclusion chromatography (SEC) 

Size exclusion chromatography (SEC) with THF as eluent was performed on an 

apparatus equipped with PSS SDVgel columns (30 x 8 mm, 5 µm particle size) with 

102, 103, 104 and 105 Å pore sizes using RI and UV detection (λ = 254 nm) at a flow 

rate of 1.0 mL / min (T= 40°C). The calibration was based on polybutadiene 

standards. 

Matrix assisted laser desorption ionization – time of flight mass spectrometry 

MALDI-ToF MS 

The number-averaged molecular weight of the polybutadiene precursors in each 

case were determined with matrix assisted laser desorption ionization – time of 

flight mass spectrometry (MALDI-ToF) on a Bruker Reflex III equipped with a 337 nm 

N2 laser in the linear mode and 20 kV acceleration voltage. Sodium trifluoroacetate 

(NaTFA, Fluka, 99.5 %) was used as salt for ion formation. 

Nuclear magnetic resonance spectroscopy 1H-NMR 

1H-NMR measurements were performed on a 250 MHz Bruker AC spectrometer using 

CDCl3 or THF-d8 as solvent and tetramethylsilane (TMS) as internal standard. The 

molecular weights of the P2VP and the PtBMA block were calculated from the 

number-averaged molecular weight of the precursor obtained through MALDI-ToF 

mass spectrometry and the ratio of characteristic NMR signals. The molecular 

characteristics of the BVT triblock terpolymers are summarized in Table 1. 

Dynamic light scattering (DLS) 

Dynamic light scattering (DLS) measurements were performed in sealed cylindrical 

scattering cells (d = 10 mm) at a scattering angle of  90° on an ALV DLS/SLS-SP 

5022F equipment consisting of an ALV-SP 125 laser goniometer with an ALV 5000/E 

correlator and a He-Ne laser with the wavelength λ = 632.8 nm. The CONTIN 

algorithm was applied to analyze the obtained correlation functions. Apparent 

hydrodynamic radii were calculated according to the Stokes-Einstein equation. 
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Ultrasound sonication treatment 

Sonication treatment was performed in solution in small glass vials. The used 

instrument was a Branson Digital Sonifier equipped with a tungsten tip. Amplitude 

was kept at 20% and typical sonication times were 1 second followed by a brake of 

4 seconds. Total sonication times are always the summarized seconds of real 

sonication without breaks. Samples were always water cooled during the sonication 

procedure 

Table 1: triblock terpolymer characteristics 

Polymera 
Molecular weight 

distributionb 

Volume fractionsc 

ΦA : ΦB : ΦC 
Bulk morphologyd 

B47V19T34
61 (1)e 1.09 1 : 0.4 : 0.7 LL 

B38V16T46
82 (1) 1.09 1 : 0.4 : 1.1 LL 

B29V12T59
86 (1) 1.08 1 : 0.4 : 1.9 CYL 

B22V9T69
109 (1) 1.08 1 : 0.4 : 2.9 CYL 

B18V8T74
133 (1) 1.08 1 : 0.4 : 3.9 CYLf 

B55V26T19
77 (2) 1.04 1 : 0.4 : 0.3 CYL 

B44V20T36
98 (2) 1.04 1 : 0.4 : 0.8 LL / GYR 

B38V18T44
112 (2) 1.03 1 : 0.4 : 1.1 LL 

B37V17T46
117 (2) 1.03 1 : 0.4 : 1.2 LL 

B32V15T53
132 (2) 1.02 1 : 0.4 : 1.6 LL 

B30V14T56
141 (2) 1.02 1 : 0.4 : 1.8 LL 

B29V14T57
145 (2) 1.02 1 : 0.4 : 1.8 LL 

B34V17T49
136 (3) 1.02 1 : 0.5 : 1.4 LL 

B16V21T63
145 (4) 1.02 1 : 1.2 : 3.7 CYL 

B14V18T68
165 (4) 1.02 1 : 1.2 : 4.6 CYLg 

B58V27T15
78 (5) 1.03 1 : 0.4 : 0.2 CYL 

B53V24T23
84 (5) 1.02 1 : 0.4 : 0.4 CYL 

B49V23T28
88(5) 1.02 1 : 0.4 : 0.5 LL 

 

a: subscripts denoting the weight fraction of the corresponding block in % and the superscript the 
overall molecular weight in kg/mol, determined through a combination of THF-SEC and 1H-NMR 
measurements; b: determined via THF-SEC, calibrated with 1,4-polybutadiene standards; c: 
calculated according to the density of the different blocks in combination with the finally 
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determined composition; d: determined via a combination of SAXS and TEM measurements; LL 
lamellar morphology; CYL hexagonally packed core-shell cylinders; GYR gyroidal motif, core-shell; 
e: polymers with the same number in brackets were synthesized within the same series; f: a non-
continuous shell was observed for the polymer with the lowest P2VP content, B18V8T74

133; g: 
butadiene cylinders which exhibit a P2VP helix around the core were found to be hexagonally 
arranged in a PtBMA matrix; 

 

Results and discussion 

Synthesis and characterization of the block terpolymers 

All polymers were synthesized via sequential anionic polymerization in THF in the 

presence of alkoxides and exhibit very low molecular weight distributions. Some 

exemplarily THF-SEC traces for B34V17T49
136 including the precursors and the series 

of B58V27T15
78, B53V24T23

84, and B49V23T28
88 are shown in Figure 1. All obtained elution 

traces are monomodal. Furthermore, Figure 1C displays a MALDI-ToF MS spectrum 

of B34V17T49
136. 
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Figure 1: THF-SEC elution traces for B46 (solid black line), B66V34
69 (dashed black line) and 

 

B34V17T49
136 (solid grey line) (A); THF-SEC elution traces for B58V27T15

78 (solid black line), 
B53V24T23

84 (dashed black line), and B49V23T28
88 (solid grey line) (B); MALDI-ToF MS spectrum for 

B34V17T49
136, the red line is a smoothened curve and a guide to the eye. 
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Two populations are observed in the MALDI-ToF mass spectrum. The main peak 

with 136.500 g/mol is the block terpolymer, the second one with 69.400 g/mol 

almost half and, hence, double ionized block terpolymer. Please note that mass 

spectrometry of block copolymers, especially at molecular weights exceeding 

100.000 g/mol, is a challenging task.[31] Double ionization most probably occurs due 

to the middle block, P2VP. 

 

Structural characterization 

The following chapter summarizes the results obtained for the microphase 

separated bulk morphologies of the synthesized BVT block terpolymers by slow 

casting from THF solutions. For the most samples, either lamellae or hexagonally 

arranged core-shell cylinders could be identified, barely B44V20T36
98 showed 

coexisting lamellae and gyroidal parts. This composition in combination with 

examples for lamellae, B30V14T56
141, and hexagonally arranged helical cylinders, 

B14V18T68
165 with B core, V helix winding around the cylindrical core, and T matrix 

or B53V24T23
84 with T core, V shell, and B matrix, are discussed here in more detail. 

Furthermore, the block terpolymer with the lowest content of P2VP, B18V8T74
133, is 

forming an incontinuous shell of P2VP around the PB core in the bulk state, 

rendering it interesting for the generation of multicompartment polymeric 

nanoparticles. For B18V8T74
133 and B14V18T68

165, also the aggregates present in 

solution after crosslinking of the as-cast bulk films and subsequent sonication 

assisted dissolution are investigated and shown in detail. The rest of the 

synthesized block terpolymers mentioned in Table 1 appears only to present a 

complete view. It is noteworthy that B44V20T36
98 and B30V14T56

141 are from the same 

polymer series and in an analogous way, B16V21T63
145 and B14V18T68

165 originate from 

another series as indicated by the numbers in brackets (cf. Table 1). 
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B44V20T36
98: coexistence of lamellae / gyroid 

According to TEM, B44V20T36
98 shows a coexistence of two morphologies (Figure 2). 

Most parts of the sample, however, show lamellae, as depicted in Figure 2A. A 

partial gyroidal structure is shown in Figure 2B. In both cases, the dark phase 

corresponds to the polybutadiene compartment due to OsO4 staining prior to the 

TEM measurements. 

 

Figure 2: TEM micrographs of B44V20T36
98 cast from THF after staining with OsO4 (A, B); the black 

part corresponds to polybutadiene; SAXS pattern of B44V20T36
98 at 35 wt.% in THF (C), the inset 

shows the intensity profile obtained at the detector. 

 

Figure 2A illustrates the lamellar structure. In the upper left corner of the same 

TEM micrograph the transition from the lamellar into the gyroid structure is visible. 

A comparable location is enlarged in Figure 2B. In Figure 2C the corresponding SAXS 
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pattern in THF (35 wt. %) is shown, the inset shows the intensity profile obtained at 

the detector. It is rather complex and seems to contain reflexes of at least two 

miscellaneous structural motifs. The two maxima with the relative positions 1:2 are 

typical for a lamellar structure (reflections [001]; [002]). Besides, the reflexes with 

the relative positions √3 : √4 : √7 could be assigned to a gyroidal motif assuming 

that the peak at the relative position of √3 corresponds to the [211] reflection. 

According to the literature, the relative ratios of the maxima for a scattering 

pattern of a gyroidal morphology are √3 : √4 : √7 : √10 : √11 as discussed before.[32, 

33] The long period for the lamellar structure can be calculated to dSAXS = 61 nm (Eq. 

1). Through the assignment of the [211] reflection one can deduce the lattice 

pattern parameter for the gyroidal structure, aSAXS = 71 nm (Eq. 2). 

ሺ1ሻ ݀SAXS ൌ
ߨ2݊
SAXSݍ

                ሺ2ሻ aSAXS ൌ 
ݔ√ߨ2
SAXSݍ

 

With n being the peak order (n = 1 for the first peak of the lamellar pattern), qSAXS 

being the peak value obtained from the SAXS measurement (0.102 nm-1 for [100] 

and 0.116 nm-1 for [211]), and x the order of the peak from the gyroid pattern, in 

this case x = √3 due to hkl = [211]. It is well-known that the interpretation of SAXS 

patterns from ABC triblock terpolymers bears much more complexity than for 

simple AB diblock copolymers. Here, the relative electron densities affect both 

scattering contrast and the relative scattering intensities, producing SAXS patterns 

where certain reflexes can be nearly extinguished.[34] Hence, the pattern shown in 

Figure 2C for B44V20T36
98 may not exhibit all the relevant reflexes necessary for a 

complete assignment of a gyroidal motif. Unfortunately, the signal to noise ratio in 

Figure 2C strongly diminishes at q > 0.3 nm-1, making it difficult to assign any 

further peaks. According to the volume / weight fractions of the three building 

blocks, we assume a poly(2-vinylpyridine) core with a poly(tert-butyl methacrylate) 

shell for the gyroidal motif embedded in a polybutadiene matrix. 
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B30V14T56
141: lamellae 

An increase of the PtBMA volume fraction within this terpolymer series to ΦB : ΦV : 

ΦT = 1 : 0.4 : 1.8 leads to a complete lamellae formation in the bulk. This is 

illustrated in Figure 3. The TEM micrograph (Figure 3A) depicts uniformly aligned 

lamellae in a micron sized range. The dark part (central lamella) in Figure 3B 

corresponds to the polybutadiene compartment, stained through the treatment 

with OsO4 and flanked by smaller grey poly(2-vinylpyridine) microdomains on each 

side. The light parts represent the poly(tert-butyl methacrylate). As mentioned 

earlier, the microdomain dimensions from TEM do not necessarily coincide with the 

calculated volume fractions, caused through the electron beam damage of the 

methacrylic phase. Hence, the PtBMA domains are not significantly larger than the 

PB compartments, although the volume fraction is almost the double. It has been 

reported that methacrylic domains may shrink to less than half of the expected 

value in that way.[35] 
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igure 3: TEM micrographs of B30V14T56
141 cast from THF after staining with OsO4 (A, B); the 

black phase resemble polybutadiene; after staining with iodine, the dark parts resemble P2VP 
), scale bar corresponds to 200 nm; SAXS pattern of B30V14T56

141 at 35 wt.% in THF (C), the 
set shows the intensity profile obtained at the detector. 
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lla. The lightest parts again 

re PtBMA, which is not at all affected through the staining procedure. The long 

13

h the lowest content of P2VP, 8 %, exhibits a core-shell 

ylindrical morphology. The hexagonal arrangement, although slightly distorted, is 

shown in Figure 4A, the corresponding FFT pattern in the inset, Figure 4B. In the 

lightly ill-shaped. To 

Figure 3C shows a TEM micrograph after staining with iodine. Here, the dark 

domains correspond to P2VP. The ll morphology can be nicely seen. Two parallel 

dark P2VP domains are adjacent to a lighter PB lame

a

periods obtained from TEM are around 60 nm in both cases. In Figure 3D the SAXS 

pattern in solution (35 wt. % in THF) is depicted, the inset shows the intensity 

profile at the detector of the beamline. The lamellar morphology is again 

confirmed and the characteristic peaks for such structural motifs at integer 

multiples of the first order peak are visible. The relative reflex positions 1 : 2 : 3 : 

4 are related to the [100] : [200] : [300] : [400] reflections. From the SAXS 

measurements, the long period was calculated to dSAXS = 57 nm (cf. Eq. 1 above, 

with qSAXS = 0.111 nm-1 for [100]) and is in good agreement with the results 

obtained from TEM. 

 

B18V8T74
3: core shell cylinders with a non continuous shell 

The terpolymer wit

c

enlargement, Figure 4C, it can be seen that the cylinders are s

our opinion, the low content of P2VP results in the formation of a non-continuous 

shell around the PB core. This then results in the generation of an additional 

interface between PB and PtBMA, although, according to the block sequence, these 

compartments are not directly interconnected. In Figure 4D the microtome cut has 

been stained with iodine, enhancing the electron density in the P2VP phase. Here, 

the disrupted nature of the P2VP shell is more evident, as it appears darker. 

Several, unconnected black dots are surrounding the PB cylindrical core. 
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Figure 4: TEM micrographs of B18V8T74
133 cast from THF after staining with OsO4 (A); the black 

phase resembles PB; the inset (B) shows a FFT pattern obtained from A; enlargement from A 
(C); TEM micrograph of B18V8T74

133 cast from THF after staining with iodine (D), the black phase 
shows P2VP; SAXS pattern of B18V8T74

133 at 35 wt.% in THF (E), the inset shows the intensity 
profile obtained at the detector. 

 

The formation of an additional interface between first and end-block of block 

terpolymers upon drastically reducing the volume fraction of the middle block has 

already been reported before.[36] If the χ-parameters for the BVT block terpolymers 

are compared, χBT = 0.01, χBV = 0.13-0.26, and χBV = 0.325,[37, 38] PB and PtBMA are 

supposed to show the lowest incompatibility. Moreover, PB and P2VP should avoid 

each other most. Therefore, it seems possible that the breaking up of an existing 

continuous P2VP shell reduces the interfacial tension of the whole system even 

though a new interface between PB and PtBMA is generated. The SAXS pattern of 
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B18V8T74
133 in THF (35 wt. %) is shown in Figure 4E. The inset displays the intensity 

profile obtained at the detector. All important reflections for hexagonally arranged 

cylinders are present and could be successfully assigned, [100], [110], [200], [210], 

[300], [220], and [310]. Calculation of the long period from the SAXS pattern 

results in dSAXS = 67 nm (Eq. 3). 

ሺ3ሻ  ܮ ൌ  
݀SAXS

sin ሺ60°ሻ ൌ  
2
√3

݀SAXS 

With dSAXS calculated according to Eq. 1. A further evaluation gives rise to the 

cylinder radius, RCyl = 20 nm. From TEM, the cylinder radius was estimated to be 

slightly larger, RCyl = 25 nm, probably due to distortion of the structure occurring 

during the microtome cutting. Besides that, both TEM and SAXS confirm the 

formation of a hexagonally packed cylindrical structure. 

To further elucidate the structure of this P2VP shell, the PB core of the cylinders 

was crosslinked in the bulk. Therefore, films with up to 10% UV crosslinking agent, 

Lucirin-TPO®, were cast from THF and exposed to UV-light for 2h afterwards. 

Subsequent swelling and further sonication of the polymer films in THF lead to 

dissolution of the self-assembled structures. Soxhlett extraction of the crosslinked 

polymer samples with THF was used to estimate the degree of crosslinking, around 

75 % in this case. These were then drop-coated onto carbon-coated grids and 

analyzed via TEM. Also dynamic light scattering (DLS) was performed to assess the 

average size of the particles in dependence of the sonication time. The results are 

shown in Figure 5. 
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Figure 5: TEM micrograph for B18V8T74
133 after 10 minutes sonication and drop-coating onto a 

TEM grid (A); enlargement of one single cylinder (B); enlargement of several cylinders after 
staining with iodine (C); schematic drawing of the proposed bulk structure, PB cylinder (grey) 
bearing P2VP spheres (red) embedded in a PtBMA matrix (D); DLS autocorrelation functions for 
B18V8T74

133 after crosslinking in the bulk and subsequent sonication in THF for 1 (-□-), 3 (-○-), 5 
(-∆-), and 10 minutes (solid black line) (E), the inset shows a zoom of the relevant region; DLS 
CONTIN plots at Ө = 90° for B18V8T74

133 cylinders in THF after sonication for 1 (solid black line, 
<Rh>z = 65 and 310 nm) and 10 minutes (solid grey line, <Rh>z = 185 nm) (F). 

 

In Figure 5A a TEM micrograph of B18V8T74
133 cylinders deposited from THF solution 

after 10 minutes sonication is depicted. The cylinders are very uniform in diameter 

but show a rather large length distribution due to the sonication process. The 
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diameter measured via TEM in this case is around 75 nm, significantly larger than 

via calculation from dSAXS. This is be due to swelling of the partially crosslinked 

structure in THF, a good solvent for all the three blocks. In Figure 5B and C 

enlargements of the same sample are displayed. Here, the non-continuous P2VP 

shell is more evident. Especially in Figure 5B, a rather random distribution of small 

black dots along the cylinder can be seen. We suppose that these are spherical 

P2VP domains located on the PB cylinder. Through the dissolution in THF, P2VP also 

swells and, in some cases, this than may lead to a partially continuous corona and a 

tubular appearance of the polymeric cylinders, as displayed in Figure 5C, despite 

the low volume fraction of the middle block. Together with the results presented in 

Figure 4, we propose the following bulk morphology for B18V8T74
133, depicted in 

Figure 5D: hexagonally arranged PB cylinders (grey) covered by P2VP spheres (red) 

embedded in a PtBMA matrix. Figure 5E shows the DLS autocorrelation functions 

after different sonication times. A clear shift with increasing sonication towards 

lower decay times is observable. The corresponding CONTIN plots at Ө = 90° for 1 

(solid black line) and 10 minutes (solid grey line) are displayed in Figure 5F. In the 

beginning, after 1 minute sonication, hydrodynamic radii of 65 and 310 nm are 

observed. After 10 minutes sonication this is decreasing to a single, although far 

broadened, peak at <Rh>z = 185 nm. The broadening can be explained through the 

rather harsh sonication treatment. 

 

B14V18T68
165: P2VP helix around hexagonally arranged PB cylinders 

The terpolymer with a rather high content of PtBMA, ΦB : ΦV : ΦT = 1 : 1.2 : 4.6, 

also exhibits a core-shell cylindrical morphology, as illustrated in Figure 6. The 

dark phase represents polybutadiene, the core of the cylinders, due to the OsO4 

staining (Figure 6A). The grey compartments correspond to the surrounding poly(2-

vinylpyridine) shell and the light parts show poly(tert-butyl methacrylate), the 

matrix. As for the other BVT terpolymer morphologies discussed here, the PtBMA 

compartment suffers from considerable shrinkage caused through radiation 

damage. The inset, Figure 6B, shows a FFT pattern from Figure 6A, confirming the 

hexagonal arrangement of the cylinders. Figure 6C presents an “on-top” view onto 
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the cylinders heads, being slightly distorted. Here, the microtome cut has been 

stained with iodine, which enhances the electron density in the P2VP shell. 

 

Figure 6: TEM micrographs of B14V18T68
165 cast from THF after staining with OsO4 (A); the black 

phase resembles PB; the inset (B) shows a FFT pattern obtained from A; TEM micrograph of 
B14V18T68

165 cast from THF after staining with iodine (C), the black phase shows P2VP; Side-view 
onto the cylinders, the inset depicts what we suppose is the bulk morphology, PB cylinders 
(grey) carrying a P2VP helix (red) embedded in a PtBMA matrix (D); SAXS pattern of B14V18T68

165 
at 35 wt.% in THF (E), the inset shows the intensity profile obtained at the detector. 

A dark grey “horse-shoe” around each of the PB cylinders is observed in Figure 6C. 

Surprisingly, the P2VP shell is not continuous, which would result in the formation 

of a complete ring around the PB compartment. In Figure 6D a side-view of the 

cylinders is presented, also stained with iodine for a better visualization of the 

P2VP part. Clearly, the formation of a P2VP helix can be seen. Although, from this 

image, all presented helices seem to be right-handed, typically a mixture of both 

left- and right-handed species was found. The finding of a non-continuous shell 

around the PB core and therefore the generation of an additional interface 
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between PB and PtBMA can be explained like before (3.2.3.). The difference here 

is that the P2VP block is somewhat longer, resulting in a higher volume fraction. 

Helical or chiral morphologies have been reported before for SBM block 

terpolymers.[36, 39] Here, a double-helical morphology containing PS cylinders with a 

PB helix around them embedded in a PMMA matrix were observed. The inset in 

Figure 6D displays the proposed bulk structure in this case, a grey PB cylinder 

coated with a red P2VP helix. The SAXS pattern from THF solution (35 wt. %) is 

shown in Figure 6E. The scattering maxima appear at relative positions of 1 : √3 : 2 

: 3 : √12 : √13 which correspond to the [100], [110], [200], [300], [220] and [310] 

reflections of a hexagonal cylindrical structure. The [210] peak is missing. 

Calculation of the long period from the SAXS pattern (cf. 3.2.3.) results in dSAXS = 72 

nm. A further evaluation gives rise to the cylinder diameter, RCyl = 21 nm (cf. 

Equation 3). From TEM, the cylinder radius was estimated to be slightly larger, RCyl 

= 25 nm. 

To further elucidate the structure of these cylinders in the bulk, the PB core of the 

cylinders was crosslinked like shown before for B18V8T74
133. Again, films were cast 

with addtional 10% UV crosslinking agent, Lucirin-TPO®, from THF and exposed to 

UV-light for 2h afterwards. Figure 7 summarizes the DLS and TEM results. 

In Figure 7A a TEM micrograph of B14V18T68
165 cylinders deposited from THF solution 

after crosslinking with 10% TPO and subsequent sonication for 5 minutes is shown. 

Again, the cylinders are rather uniform in diameter but show a rather large length 

distribution. The helical morphology cannot be definitely confirmed, although the 

cylinders do not exhibit an homogeneous surface. Here, the diameter measured via 

TEM is around 100 nm, almost deviating by a factor of 2 from the SAXS results. This 

can be attributed to the swelling of the partially crosslinked cylindrical core in 

THF. Figure 7B shows the DLS autocorrelation functions after different sonication 

times. The decay times shift with increasing sonication towards lower values. The 

corresponding CONTIN plots at Ө = 90° for 5 (-□-), 10 (-○-), and 15 minutes (-Δ-) 

are displayed in Figure 7C. After 5 minutes sonication a value for <Rh>z of 205 nm 

was obtained. Surprisingly, the population shows a quite narrow distribution (PDIDLS 

= 1.08). After 10 minutes sonication, <Rh>z = 145 nm, and after 15 minutes <Rh>z = 

130 nm were measured. Again, sonication results in a certain broadening of the 

CONTIN plots. 
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Figure 7: TEM micrograph for B14V18T68
165 after 5 minutes sonication and drop-coating onto a 

TEM grid (A); DLS autocorrelation functions for B14V18T68
165 after crosslinking in the bulk and 

subsequent sonication in THF for 5 (-□-), 10 (-○-), and 15 minutes (solid black line) (B), the inset 
shows a zoom of the relevant region; DLS CONTIN plots at Ө = 90° for B14V18T68

165 cylinders in 
THF after sonication for 5 (-□-, <Rh>z = 205 nm), 10 (-○-,<Rh>z = 145 nm), and 15 minutes (-Δ-, 
<Rh>z = 130 nm) (C); TEM micrograph for the same sample as (A) after staining with iodine (D). 

Figure 7D shows basically the same sample like Figure 7A after staining with iodine. 

Dark, round spots with a diameter of approximately 15-20 nm are present on the PB 

core of the cylinders, representing the P2VP compartments. Obviously, upon 

contact with THF, a good solvent for P2VP, the helices swell and upon deposition of 

the cylinders onto the TEM grid the polymer chains collapse again into spherical 

domains. Nevertheless, these cylindrical nanoparticles could serve as interesting 

multicompartmental templates for the generation of hybrid structures. 

B58V27T15
78: inverted core shell cylinders 

The previously discussed terpolymer, B14V18T68
165, was also tested as a precursor for 

the fabrication of thin-film composite membranes.[24] Nicely ordered arrays of core-

shell cylinders aligned perpendicular to the surface on various substrates could be 

produced. However, the removal of the polybutadiene core of these thin-film 

structures to generate porous structures is not so straightforward. It is therefore of 
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interest to invert the structure, resulting in a polybutadiene matrix with embedded 

cylinders consisting of a PtBMA core and a P2VP shell. The genuine advantage 

would be that the cylinder cores could be easily removed through UV-induced 

depolymerization of the PtBMA, giving access to porous materials with pH-

responsive (P2VP) pore walls. Thus, a polymer series with volume fractions ΦB : ΦV 

: ΦT = 1 : 0.4 : 0.2 – 0.5 has been synthesized. As mentioned in Table 1, both 

B58V27T15
78 and B53V24T23

84 show hexagonally packed cylinders with a PtBMA core 

although only B58V27T15
78 is discussed here in more detail. TEM images for this block 

terpolymer cast from THF and stained with iodine as well as SAXS data are shown in 

Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: TEM micrographs of B58V27T15
78 cast from THF after staining with iodine (A, C); the 

black phase resembles P2VP; scale bar corresponds to 1 µm (A) and 200 nm (C); the inset (B) 
shows a FFT pattern obtained from A; SAXS pattern obtained from B58V27T15

78 at 30 wt. % in THF 
(D), the inset shows the intensity profile at the detector. 
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In Figure 8A an “on-top” view onto the cylinders is shown. Clearly, a hexagonal 

pattern can be observed. This is highlighted in the FFT in Figure 8B. Figure 8C 

displays an enlargement where the cylinder fine structure can be seen. The light 

core of the cylinders is PtBMA, already deteriorated through the incident electron 

beam. The dark ring resembles the P2VP shell, darkened through the staining 

treatment with iodine, surrounded by the grey PB matrix. If measured via TEM, the 

long period for this hexagonally packed morphology is 55 nm and the average 

cylinder diameter is 40 nm (20 nm for the PtBMA core and 2 x 10 nm for the P2VP 

shell). It is apparent that the as-cut films are rather strongly bended and distorted 

as a result of the high polybutadiene content. Microtome cutting had to be 

performed at low temperatures (-30 °C) to reduce the softness of the material. 

The SAXS pattern from THF solution (30 wt. %) is shown in Figure 8D. The scattering 

maxima appear at relative positions of 1 : √3 : 2 : √7 : √12 : √13 : 4 which 

correspond to the [100], [110], [200], [210], [220], [310] and [400] reflections of a 

hexagonal cylindrical structure. Calculation of the long period from the SAXS 

pattern results in dSAXS = 64 nm (Eq. 3) and is in good agreement with the values 

obtained via TEM measurements. 

 

Phase Diagram for BVT Block Terpolymers 

The results from the previous chapters are summarized in a ternary phase diagram 

(Figure 9). The terpolymers discussed within the scope of this manuscript are 

highlighted (red circles) and their proposed bulk morphologies are schematically 

depicted around the phase diagram. Within each polymer series the grey arrow 

indicates an increasing volume fraction of PtBMA. 
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Figure 9: Ternary phase diagram obtained for several series of BVT block terpolymers, the grey 
phase resembles polybutadiene, the red phase poly(2-vinylpyridine), and the green phase 
poly(tert-butyl methacrylate; morphologies are lamellar (∆), cylindrical (○), or either mixtures 
(3.2.1.) or unsual structures (spheres on cylinders 3.2.3. or helices on cylinders 3.2.4.). 

 

Open spheres resemble cylindrical morphologies, open triangles lamellar 

structures. All non-typical examples are represented by open rectangles: the 

helical morphology for B14V18T68
165 (3.2.5.), the cylinders with a non-continuous 

shell for B18V8T74
133 (3.2.4.), and the coexisting between lamellae and gyroid for 

B44V20T36
98 (3.2.1.). In Table 1 the different block terpolymers of one series are 

marked by the numbers in brackets. Within series 1, the morphology changes from 

LL for B47V19T34
61 and B38V16T46

82 to hexagonally arranged core-shell cylinders, PB 

core and P2VP shell for B29V12T59
86, B22V9T69

109, and B18V8T74
133. The content of P2VP 

for B29V12T59
86 and B22V9T69

109 is still high enough to form a continuous shell. For 

B18V8T74
133, this is not the case. The lowest content of P2VP, 8 wt. %, results in the 

formation of spherical domains situated on the PB core of the cylinder. For series 
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2, the high butadiene content of B55V26T19
77 leads to the formation of PtBMA 

cylinders with a P2VP shell in a PB matrix. With increasing PtBMA content, a mixed 

volume structure consisting of lamellae and a gyroidal motif was found for 

B44V20T36
98 (3.2.1.). Higher volume fractions of PtBMA resulted in the formation of 

purely lamellar morphologies for B38V18T44
112, B37V17T46

117, B32V15T53
132, B30V14T56

141 

(3.2.2.), and B29V14T57
145. Same accounts for the only block terpolymer of series 3, 

B34V17T49
136. For series 4, hexagonally arranged core-shell cylinders with a PB core 

and a P2VP shell are obtained for B16V21T63
145. The cylindrical arrangement of the 

PB segments is also present in the case of B14V18T68
165 although here the middle 

block forms a helix along the PB cylinders. For the last series, 5, inverted core shell 

cylinders with a PtBMA core and a P2VP shell are obtained for B58V27T15
78 and 

B53V24T23
84. Upon further increasing the PtBMA volume fraction, a lamellar 

morphology is found for B49V23T28
88. 

 

Conclusion 

Several series of polybutadiene-block-poly(2-vinylpyridine)-block-poly(tert-

butylmethacrylate) (BVT) block terpolymers have been synthesized and 

exhaustively characterized. Among the morphologies obtained are lamellar (LL), 

cylindrical (C┴), a mixture of gyroidal and lamellar (GYR/LL), and cylindrical 

morphologies with a noncontinuous P2VP shell (spheres on cylinders for B18V8T74
133 

and helices on cylinders for B14V18T68
165). Especially the latter two block 

terpolymers were shown to be very interesting precursors for the generation of 

novel multicompartmental core-crosslinked polymeric cylindrical polymeric 

nanoparticles. For this, a sonication-assisted pathway developed in our group has 

been adopted and it could be demonstrated that the size of the generated 

nanoparticles can be tuned by the sonication time in a fashionable way. The results 

presented here in combination with earlier work nicely show that the BVT system 

provides a suitable platform for the preparation of advanced and sophisticated 

nanostructured systems in the bulk, in solution, and in thin films. 
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Abstract 

Block copolymers represent an exciting class of complex materials as they self-

assemble into highly regular structures of nanoscopic dimensions. When pre-

pared in thin films, such structures can be used for a variety of applications in-

cluding lithographic masks or nanoporous membranes. In this contribution we 

report about nanostructures in thin films of structurally analogous polybuta-

diene-block-poly(2-vinyl pyridine)-block-poly(tert-butyl methacrylate) (BVT) 

and polystyrene-block-poly(2-vinyl pyridine)-block-poly(tert-butyl methacry-

late) (SVT) triblock terpolymers which were synthesized via sequential living 

anionic polymerization. The morphological behavior of annealed SVT and BVT 

films was investigated by scanning force and scanning electron microscopies. 

We demonstrate that the difference in the terpolymer composition results in 

the formation of ordered perforated lamella phase in SVT films and of hexago-

nally packed core-shell cylinders in BVT films. Further, the BVT films show high 

potential for the fabrication of composite membranes using track-etched 

poly(ethylene terephthalate) macroporous filters as a support. 

 

Keywords: triblock terpolymer, composite membranes, anionic polymerization, 

thin film morphology, self-assembly 

 

Introduction 

The development of synthetic membranes has always been inspired by nature, 

in particular by the fact that the selective transport through biological mem-

branes is enabled by highly specialized macro- and supramolecular assemblies 

based on and involved in molecular recognition. The success of membrane 

technology has already been impressively demonstrated for the first large-scale 

industrial processes, water purification by reverse osmosis and blood detoxifi-

cation by dialysis or ultrafiltration. The search for novel synthetic membranes, 

in particular those with higher transport selectivity, is still a challenge of out-

standing relevance for the field. Currently, most of the technically used mem-

branes are produced from organic polymers via phase inversion methods, i.e. a 
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controlled phase separation of polymer solutions induced by non-solvent addi-

tion, solvent evaporation or temperature change.[1, 2] Many scientifically inter-

esting, technically challenging, and commercially attractive separation prob-

lems cannot be solved with membranes according to the state-of-the-art. Novel 

membranes with a higher chemical selectivity, e.g. for isomers, enantiomers or 

larger biomolecules, or with a selectivity which can be switched by an external 

stimulus or which can adapt to the environment / process conditions are re-

quired. In addition, minimizing the thickness of the membrane barrier layer is 

essential. Approaches to develop synthetic membranes of the “next genera-

tion” have been reviewed recently.[3] 

The potential of block copolymers with incompatible blocks for nanotechnology 

applications has been realized in the past decade and a considerable number of 

examples has been described in the literature.[4] Nanoporous materials may be 

generated by the selective removal of one of the components from a self-

assembled block copolymer. Through adjusting chain length, composition, and 

molecular architecture, these materials are able to exhibit pore sizes and to-

pology of parent structures and they can therefore be employed as nanolitho-

graphic masks, templates or even separation membranes. The first group re-

porting about a porous membrane-like structure from an ordered block copo-

lymer precursor was Lee et al.[5] Porous films generated in that way were then 

characterized employing adsorption measurements as well as gravimetric and 

spectroscopic methods. Three years later Smith and Meier were the first ones 

to show that ozonolysis can effectively remove the polydiene component in po-

lystyrene-block-polybutadiene (PS-BB) or polystyrene-block-polyisoprene (PS-PI) 

diblock copolymers without altering the structure of the uncrosslinked PS do-

mains.[6] In 2003, Sidorenko et al. used a mixture of a polystyrene-block-poly(4-

vinyl pyridine) (PS-P4VP) diblock copolymer and 2-(4-hydroxybenzene-

azo)benzoic acid (HABA). Depending on the casting conditions, the annealing 

solvent and polymer-analogous reactions thin films with pores perpendicular to 

the surface could be generated.[7] An elegant way to nanoporous materials 

without the need of cross-linking or degradation steps was shown by Zalusky et 
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al.[8] Mesoporous polystyrene monoliths were prepared by hydrolytical removal 

of the polylactide block from a polystyrene-block-polylactide (PS-PLA) diblock 

copolymer. Pore sizes within this system were adjustable via the molecular 

weight of the diblock copolymer. They also presented rather simple methods 

for alignment of the PLA cylinders.[9] Nanoporous PS generated in this way has 

the solubility and thermal characteristics of bulk polystyrene homopolymer and 

any potential application of these materials that requires pore structure stabil-

ity must work within these limitations. 

A different approach was published by Ndoni et al. in 2003.[10] Here the poly-

diene component of a diblock copolymer was not removed through ozonolysis 

but kept as matrix material. They report on the synthesis and radical cross-

linking of polybutadiene-block-poly(dimethylsilane) (PB-PDMS) followed by re-

moval of the silane compound through HF etching. Unfortunately, the morphol-

ogy was strongly affected by the rather rigorous cross-linking conditions. When 

replacing polybutadiene by polyisoprene and performing the etching step with 

tetrabutylammonium fluoride (TBAF) instead of HF, Cavicchi et al. received 

better results.[11] They reported on the formation of porous PI monoliths from 

ordered, aligned and crosslinked PI-PDMS. Structures and porosity were investi-

gated with SEM and SAXS measurements after removal of the silyl component 

with TBAF in THF. These experiments showed that nanoporous rubbers may be 

generated, having potential as functionalizable porous materials through the 

remaining double bonds. 

It was shown earlier that the microdomain structures in thin films of SVT trib-

lock terpolymer show pronounced dependence on the film thickness.[12] Among 

those, the perforated lamella morphology (PL) is the most suitable for the fa-

brication of novel composite membranes. It was demonstrated in experiments, 
[13-16] and in computational simulations,[17] that in thin films of cylinder-forming 

block copolymers the PL phase is stabilized by the strong surface fields. Moreo-

ver, the PL structure was successfully converted into a pH-responsive layer 

through the hydrolysis of the ester moiety of the PtBMA component.[18] Fur-

thermore, additional morphologies such as short standing cylinders or complex 
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gyroid structures, which provide a complex but regular channel geometry, are 

potentially of high interest. 

Despite the impressive microscopic, spectroscopic and other characterization 

studies of the ordered porous morphologies based on di- or triblock copoly-

mers, a direct demonstration of the membrane function, i.e. permeability 

measurements or even a selective permeation controlled by the nanoporosity 

of the polymer film, is yet to be accomplished. 

Here we demonstrate the effect of the triblock terpolymer composition on the 

resulting complex morphology in thin films of polystyrene-block-poly(2-vinyl 

pyridine)-block-poly(tert-butyl methacrylate) (SVT) and of polybutadiene-

block-poly(2-vinyl pyridine)-block-poly(tert-butyl methacrylate) (BVT) triblock 

terpolymers. Additionally, we varied the nature of the substrate, the molecular 

weight of the BVT terpolymer and the annealing conditions. By replacing the 

rather brittle polystyrene block in the SVT terpolymer through rubbery polybu-

tadiene, we optimize the matrix properties, yielding a more flexible system. 

Furthermore, cross-linking of the polybutadiene compartment enhances the 

thin film stability. The morphological behavior of annealed SVT and BVT films 

was investigated by scanning force microscopy (SFM), transmission electron mi-

croscopy (TEM) and scanning electron microscopy (SEM). The strategic aim of 

this work is to explore the potential of the fabrication of composite membranes 

from thin nanoporous blockcopolymer films on macroporous filters as supports.   

 

Experimental 

Synthesis of Block Terpolymers. The synthesis and characterization of the li-

near SVT triblock terpolymers have already been described.[19] The BVT triblock 

terpolymers were synthesized via sequential living anionic polymerization in 

THF using sec-butyl lithium as initiator. After polymerization of butadiene and 

2-vinyl pyridine at -10 °C and -70°C respectively, 1,1-diphenylethylene was 

added to reduce the nucleophilicity of the living chain ends. During the poly-

merization of the PtBMA block at -35 °C, samples were taken from the reactor 

after different polymerization times and were precipitated into degassed me-
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thanol. The number-average molecular weight of the polybutadiene precursor 

and the molecular weight distributions of the triblock terpolymers were deter-

mined by gel permeation chromatography (GPC). All polymers exhibit a narrow 

molecular weight distribution characterized by polydispersity indices between 

1.01 and 1.05. Additionally, 1H NMR spectra were acquired using CDCl3 as sol-

vent and tetramethylsilane (TMS) as internal standard. The molecular weights 

of the P2VP and the PtBMA blocks were calculated using the terpolymer compo-

sition determined by NMR and the polystyrene molecular weights from GPC. 

The molecular parameters of the triblock terpolymers are listed in Table 1 and 

GPC eluograms of BVT terpolymers are shown in Figure 1. 

Size Exclusion Chromatography (SEC) measurements were performed on a set 

of 30 cm SDV-gel columns of 5 �m particle size having nominal pore sizes of 

105, 104, 103 and 102 Å with refractive index and UV (λ=254 nm) detection. An 

elution rate of 1 ml/min with THF as solvent was used. 
1H-Nuclear Magnetic Resonance Spectroscopy (NMR). 1H NMR spectra were 

recorded on a Bruker 250 AC spectrometer using either CDCl3 or THF-d8 as sol-

vent and tetramethylsilane (TMS) as internal standard. 

 

Table 1: Molecular Characteristics of Triblock Terpolymer 

 

Polymer a Mw/Mn 
b ΦPS/PB : ΦP2VP : ΦPtBMA c 

S16V21T63
140 1.03 1 : 1.3 : 3.90 

B16V21T63
145 1.02 1 : 1.3 : 3.90 

B14V18T68
165 1.02 1 : 1.3 : 4.85 

 

a subscripts represent the weight fractions of the respective block (in weight %); the super-
script denotes  the total weight-average molecular weight in kg/mol 
b polydispersity determined by GPC 
c relative volume fractions of blocks 
 

Thin Film Preparation.  SVT and BVT polymer thin films were prepared by 

spin-casting 5 g/L solutions in chloroform onto polished silicon wafers and NaCl 

surfaces, respectively. In order to improve the chain mobility and equilibrate 
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the microdomains, the thin films were annealed under controlled solvent vapor 

pressure. Subsequently, the samples were quenched by a flow of pure dried air 

in order to freeze the developed morphologies. The fast quenching procedure 

ensures reproducibility. 

For cross-linking of the polybutadiene block in BVT thin films, 3 wt.-% of the 

photoinitiator Lucirin-TPO (BASF) was added to a 5 g/L polymer solution. After 

spin-casting onto NaCl (crysTec GmbH, Germany) and annealing in controlled 

solvent vapor, the samples were subsequently exposed to UV light with a cutoff 

at 300 nm for 60 minutes leaving the PtBMA block undamaged. 

Scanning Force Microscopy (SFM). Microdomain structures and film thickness 

were investigated with SFM (Dimension 3100, Veeco Metrology) operated in 

Tapping Mode. The spring constant of the silicon cantilevers was in the range 

between 35-92 nN/m. The corresponding resonance frequency varies between 

285 and 385 kHz. Phase images were recorded at free amplitudes of about 30-

50 nm at a setpoint of 90 % of the free cantilever amplitude. Height measure-

ments were performed by scratching the polymer films with a scalpel (see also 
[20]) and measuring the height of the polymer film surface with respect to the 

underlying substrate. The phase contrast was resolved due to the different 

physical properties of the components. Polybutadiene is liquid at room temper-

ature whereas poly(tert-butyl methacrylate) and poly(2-vinyl pyridine) are in a 

glassy state at temperatures below 100 °C. 

Field-Emission Scanning Electron Microscopy (SEM). We used SEM (LEO 1530, 

Zeiss) for further characterization of the polymer thin films. Due to the depo-

lymerization of the PtBMA matrix phase by the electron beam, new insights in-

to the morphology were gained [21]. Applying the InLens detector with a slow 

acceleration voltage of 0.5 kV, we received a sufficient material contrast be-

tween the two remaining polymer phases without staining or sputtering, 

Transmission Electron Microscopy (TEM). For creating new polymer composite 

membranes, it is essential to remove the triblock terpolymers from the sub-

strates enabling the transfer to template membranes. For this end we prepared 

thin films of B14V18T68
165 on NaCl substrates (as explained above). After solvent 
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annealing, the NaCl plates were dissolved in bidestilled water and the free-

floating film was picked up with carbon-coated copper grids (Plano, Wetzlar). 

Subsequently, the samples were checked with TEM (CEM 902, Zeiss, 80 kV) 

looking for defects caused by the transfer.  

 

Results and Discussion 

In order to induce long-range order of microstructures of block copolymer thin 

films, typically thermal or solvent annealing procedures are applied. The as-

sembly of microdomains on a microscale is accompanied by the surface rough-

ening on a macroscale, i.e. the formation of terraces (coexisting flat regions 

with equilibrium film thickness) and of dewetting patterns. These two other 

dynamic processes are considered to affect pronouncedly and destructively (in 

case of dewetting) thin films from block copolymers with a relatively low total 

molecular weight. Thin polymer films consisting of comparatively long chains 

(with a total molecular weight of above 100 kg/mol) are relatively stable to-

wards dewetting[22] on an experimental timescale. In addition, in thin films of 

high molecular weight block copolymers, such as presented in this study, the 

terrace formation is considerably retarded due to the high viscosity of the po-

lymers.[23] 

 

 

 

 

 

 

 

 

 

 

Figure 1: GPC eluograms of polybutadiene, polybutadiene-b-poly(2-vinyl pyridine), and two 
BVT triblock terpolymers. 
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Thin Film Phase Behavior of S16V21T63
140. After spin-casting from a chloroform 

solution, the samples were annealed for 100 h in chloroform vapor (pCHCl3 = 0.8 

p0, with p0 representing the vapor pressure of chloroform at 295 K). Under 

these annealing conditions the polymer volume fraction  in swollen films is φ = 

0.36 ± 0.04. Due to the polymer swelling, the chain mobility is considerably in-

creased, facilitating the diffusion-driven transport and the development of the 

equilibrium macro- and microstructures. 

The annealed S16V21T63
140 samples show macrostructures (terraces) on a scale of 

tens of µm (visible in optical microscopy). Large-scan SFM height images (not 

shown here) reveal coexisting terraces with the heights of T0 = 16 ± 3 nm and 

T1 = 36 ± 2 nm with characteristic microstructures in each terrace, which can 

only be visualized in SEM measurements (Figure 2). On a µm scale the SFM 

height and phase images show no lateral structure (inset in Figure 2A). The 

whole polymer surface is covered with a smooth, stiff layer of one component. 

In contrast, in SEM measurements the surface layer turned out to be unstable 

during the electron beam exposure despite of a low acceleration voltage of 0.5 

kV. Comparing all three polymer components, poly(tert-butyl methacrylate) 

(PtBMA) is the only block which is depolymerized via photolysis during UV or 

electron beam exposure.[24] In addition, PtBMA represents the phase with the 

lowest surface tension (see Table 2) which is expected to form a glassy 

(Tg,(PtBMA) = 135oC) continuous cover layer which then minimizes the interfacial 

tension between the polymer film and air [25, 26]. The other two components, 

polystyrene (γ PS=41 mN/m [27]) and poly(2-vinyl pyridine) (γ P2VP =40 mN/m [28]) 

remain underneath this surface layer independent of the resulting morphology. 
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Table 2: Surface Tensions of used Polymer Components 

 

polymer surface tension [mN/m] 

polystyrene (PS) 41.0[27]
 

polybutadiene (PB) 24.5 – 32.0[29, 30] 

poly(2-vinyl pyridine) (P2VP) 40.0[28] 

poly(tert-butyl methacrylate) (PtBMA) 30.5[27] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: SEM image of a S16V21T63
140 thin film after annealing in chloroform vapor (pCHCl3 = 

0.8 p0; t = 100) with an acceleration voltage of 1.0 kV showing different morphologies in 
dependence of terrace height. The scale bar corresponds to 400 nm. Inset (A) SFM height 
image (size 1 x 1 µm2; height scale Δz = 0-20 nm). The sample surface is covered with a 
smooth rigid layer of PtBMA. 
 

We now describe in more detail the microdomain structures as revealed by the 

SEM measurements. The thinnest part of the film (T0 in Figure 2) is often re-

ferred to as a disordered phase or wetting layer. With increasing film thickness, 
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T0 transforms into cylinders orientated parallel to the substrate which form the 

first terrace, T1. Moreover, with further increase of the film thickness to 47 ± 2 

nm the cylindrical structure changes to PL morphology resembling a typical fil-

ter or membrane surface. The associated changes in height within one terrace 

may be due to different characteristic spacings of cylinder and PL morpholo-

gy.[14] The molecular architecture of SVT suggests that a PL unit cell consists of 

a polystyrene core surrounded by a poly(2-vinyl pyridine) shell and penetrated 

by well-defined PtBMA pores (for further information see also [12, 13, 31]). The 

SEM image of a S16V21T63
140 thin film in Figure 3A indicates the formation of the 

PL phase over macroscopically large areas. The hexagonal order of perforations 

(pores) with an average diameter of 35 ± 3 nm is confirmed by the Fourier 

transformation (inset in Figure3B). The estimated porosity of such nanostruc-

ture is about 21%. 

We note that the observed microstructures and terrace heights are in agree-

ment with the combinatorial studies of Ludwigs et al.[31] 

 

 

Figure 3: (A) Typical SEM image of a S16V21T63
140 triblock terpolymer thin film after spin-

casting from chloroform solution and solvent annealing for 100 h; acceleration voltage 1.0 
kV. The scalebar corresponds to 400 nm; (B) Fourier transformation confirms the hexago-
nally arranged PL structure.  
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Thin Film Phase Behavior of B16V21T63
145. Spin-casted 30 ± 2 nm thick films 

were annealed in chloroform vapor under the same conditions as described for 

S16V21T63
140. SFM height measurements reveal a macroscopically smooth surface 

of the film with no terraces formed upon the annealing procedure. On a small-

er scale, the lateral nanostructures become visible. 

SFM height image in Figure 4A reveals coexisting morphology represented by 

channels (dark and white stripes) and by wells (dark dots) surrounded by mesh-

like walls (bright color). In the corresponding phase image (Figure 4B) two 

phases with different mechanical properties are clearly distinguished. The dark 

color in the phase image corresponds to the PB block which is the only soft 

component in the presented system. The mesh-like hard matrix is presumably 

composed of the two other glassy components, i.e. P2VP and PtBMA. We note 

that in contrast to the S16V21T63
140 films, in this case the PL morphology was not 

observed. 

 

Figure 4: (A) Typical SFM height image of a B16V21T63
145 triblock terpolymer thin film spin-

cast from chloroform solution after annealing for 100 h in chloroform vapor (image size 2.5 
x 2.5 µm2; height scale Δz = 0-20 nm) showing coexisting morphologies. The low, dark areas 
correspond to the soft PB compartment which is distorted due to strong SFM tapping condi-
tions. The higher, brighter mesh-like matrix around is presumably composed of the other 
two rigid polymer compartments P2VP and PtBMA. The contrast differences in the corres-
ponding phase image (B) confirm this observation (image size 2.5 x 2.5 µm2; phase contrast 
30°).  
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The nanostructured free surface of B16V21T63
145 films, as revealed by SFM mea-

surements, indicates that PtBMA does not form the continuous surface layer 

that was detected for S16V21T63
140 films (inset to Figure 1). This effect can be 

explained by the modified polymer composition, the consequential changes in 

the glass-transition temperature and the surface tension (Table 2) of the BVT 

components. Both, PB and PtBMA blocks show comparable surface tension 

enabling both components to segregate to the free surface. Therefore, the lat-

eral nanopattern can be resolved in solvent annealed films by SFM measure-

ments. 

Additional information concerning the composition of the mesh-like hard matrix 

was obtained in SEM measurements. Figure 5 displays microdomain pattern in 

the B16V21T63
145 film, which was described above (Figure 4). The structure is 

represented by core-shell stripes and dots, which we identify with the core-

shell cylinders oriented parallel and perpendicular to the film surface, respec-

tively, with an average diameter of 67.8 ± 9.0 nm (Figure 5). The mesh-like 

hard matrix, which was clearly visualized in SFM images (Figure 4), is decom-

posed upon electron-beam-exposure, which points to its composition of PtBMA 

compartment. 
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Figure 5: SEM image of the B16V21T63
145 film shown in Figure 2 (acceleration voltage 0.5 kV). 

Solely cylinders oriented perpendicular and parallel to the substrate surface are found 
whereas the surrounding matrix phase, which was clearly resolved in the SFM height mea-
surements (Figure 2), is depolymerized by the electron beam. The scalebar corresponds to 
400 nm. 
 

The stripes and distorted dots, which appear as defects in the hexagonally or-

dered structure of perpendicular cylinders, annihilate with increasing the time 

of equilibration. By step-wise annealing, we followed the evolution of lying cy-

linders into cylinders oriented perpendicular to the substrate. The TEM image 

in Figure 6 displays the mechanism of such transformation via interfacial undu-

lations along the lying cylinder axis and the resulting break-up into spherical 

domains.[32] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: TEM image of a B16V21T63
145 thin film successfully transferred after controlled sol-

vent annealing for two hours reveals an intermediate stage in the cylinder transformation 
mechanism.  The cylinders orientated parallel to the substrate show a rather undulated 
shape resulting in a break-up into spherical domains. The scalebar corresponds to 500 nm. 
 

 

 

IV-14 
 



                               Nanoporous Membranes based on ABC Triblock Terpolymers

Thin Film Phase Behavior of B14V18T68
165. For further investigation of the mo-

lecular architecture effects on the resulting morphology and long-range order, 

we studied a BVT terpolymer with increased total molecular weight. A 39 ± 3 

nm thick film was prepared under the conditions described above. SFM height 

measurements revealed a smooth film surface on a macroscale (no terrace de-

velopment). 

SEM measurements (not shown) reveal vertically oriented core-shell cylinders 

with an average diameter of 64 ± 5 nm which look similar to the structures de-

scribed above for B16V21T63
145 films (Figure 5). In order to get close insight into 

microdomain structure, we performed SFM measurements of the BVT films af-

ter exposure to the electron beam in SEM.  

SFM height and phase images in Figure 7 clearly confirm the core-shell mor-

phology. We note that due to removal of the PtBMA block, the film surface ap-

pears in the height image rough with an averaged roughness of 6 ± 1 nm.  

 

 

Figure 7: (A) Typical 3D-SFM height image (image size 2.5 x 2.5 µm2; height scale Δz = 0-20 
nm) of a B14V18T68

165 triblock terpolymer (spin-cast from chloroform solution, solvent an-
nealed for 100 h) after electron beam exposure. The resulting morphology of vertical cy-
linders can be easily observed. The corresponding phase image (B) confirms the structure 
of core-shell cylinders whereas the soft PB compartment forms the core (black color) and 
the stiff P2VP compartment equals the surrounding shell (bright color) (image size 2.5 x 2.5 
µm2; phase contrast = 20°). 
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In order to probe the prospective of BVT nanostructures in membrane technol-

ogy, we replaced the silicon oxide substrate by the crystalline sodium chloride 

(NaCl) surface, which makes the transformation of the polymer film from the 

solid substrate for the further analysis and usage more feasible. Immediately 

after annealing on NaCl substrate, BVT films were transferred onto carbon-

coated TEM grids. Carbon coating enhances film stability during the electron- 

beam-exposure. The TEM image in Figure 8A clearly reveals the core-shell 

morphology which confirms the successful film transfer. A further step towards 

optimization of the mechanical properties and chemical stability of the mem-

brane prototypes was achieved by selective cross-linking of the PB component 

via UV-initiator. The above procedure considerably improves physical proper-

ties of the polymer films and facilitates the film transfer to the technologically 

approved substrates. Importantly, the desired film nanostructure is perfectly 

preserved after the cross-linking (Figure 8B). 
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Figure 8:  (A) TEM image of a thin film of B14V18T68
165 triblock terpolymer spin-cast onto a 

NaCl wafer from chloroform solution and transferred onto a TEM grid, revealing hexagonal-
ly packed core-shell cylinders: polybutadiene core and poly(2-vinyl pyridine) shell in a 
poly(tert-butyl methacrylate) matrix. The scalebar corresponds to 200 nm. (B) TEM image 
of a cross-linked B14V18T68

165 thin film displaying comparable structures as shown in (A). The 
scalebar corresponds to 500 nm. 
 

In order to characterize and probe the size/charge-based permeation selectiv-

ity of block copolymer nanostructures, thin polymer films must be transformed 

onto suitable substrates providing sufficient mechanical stability of a potential 

membrane. Considering the diameters of the pore precursors identified in this 

work (~35 nm; SVT), moderately thick (membrane) filters with pore diameters 

between ~0.2 and ~5 µm are suitable base materials for the fabrication of 

block copolymer thin-film composite membranes. Surface-functionalized track-

etched PET membranes, which had already been well established as model sys-

tems for selective and stimuli-responsive transport through well-defined pores 

in the nano- and micrometer range,[3, 33] are the first choice. The transfer to 

other supports, for example to silicon nitride-based microsieves,[34] is another 

perspective. The results of our study demonstrate that upon annealing under 

sufficient solvent vapour pressure, the resulting microdomain structure is not 
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sensitive to the chemical nature of the substrate (NaCl or silicon oxide) due to 

the strong screening effect of the solvent. On the other side, the transfer of 

the polymer films to the supporting membranes is considerably facilitated by 

the improved mechanical properties of the films. 

 

Conclusion 

SFM, TEM and SEM reveal the nanostructures in thin films of structurally ana-

logous polybutadiene-block-poly(2-vinyl pyridine)-block-poly(tert-butyl metha-

crylate) (BVT) and polystyrene-block-poly(2-vinyl pyridine)-block-poly(tert-

butyl methacrylate) (SVT) triblock terpolymers. The difference in the terpoly-

mer composition results in the formation of ordered perforated lamella phase 

in SVT films and of hexagonally packed core-shell cylinders in BVT films. Both 

morphologies are considered to be attractive precursors for nanoporous separa-

tion membranes. This requires further processing of the films via selective deg-

radation of one component in order to “open” the pores. 

For the novel BVT terpolymers, several very useful features with respect to the 

membrane technology have been identified, namely a similar equilibrium mor-

phology on substrates with different wettability, the feasibility of film transfer 

to another (porous) substrate and the stabilization of the films by internal 

cross-linking. Thin SVT films demonstrated membrane-suitable morphology and 

feasibility of their transfer to support membranes. Further processing of ter-

polymers microstructures towards nanoporous separation membranes is cur-

rently under investigation. 
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Abstract 

The synthesis of several diblock copolymers with N,N-dimethylaminoethyl metha-

crylate (DMAEMA) via anionic polymerization is presented; PS-b-PDMAEMA, PB-b-

PDMAEMA, poly(p-tert-butoxystyrene)-b-PDMAEMA and PEO-b-PDMAEMA. The latter 

was synthesized using sec-butyllithium as initiator in presence of the phosphazene 

base t-BuP4, enabling a facile changeover from an oxyanion to a carbanion. All 

reactions resulted in narrowly distributed block copolymers (PDI < 1.1). For PEO-b-

PDMAEMA, diblock copolymers with a high blocking efficiency and a near-narrow 

molecular weight distribution (PDI < 1.40) could be prepared. The advantage of the 

presented one-pot synthesis is a significantly higher blocking efficiency compared 

to commercially available PEO macroinitiators under similar conditions. 

 

Introduction 

Living anionic polymerization is a demanding but nevertheless versatile tool for the 

preparation of well-defined polymers. Since Szwarc’s pioneering work in 1956,[1, 2] 

the number of polymers prepared via this technique is huge, especially in the field 

of block copolymers. In particular, amphiphilic block copolymers have attracted 

strong interest due to their usability in aqueous systems and therewith a certain 

number of potential applications.[3, 4] The interest in stimuli-responsive (“smart”) 

polymers, i.e. polymers whose properties change in response to environmental 

changes, has increased tremendously.[5] 

N,N-Dimethylaminoethyl methacrylate (DMAEMA) is known to be a both pH- and 

temperature-sensitive polymer.[6] The LCST of PDMAEMA is strongly pH-dependent 

but may also be tuned by molecular weight orpolymer architecture. By choosing 

the right mono- or multivalent counterions even UCST behavior has been re-

ported.[7-10] Quaternization leads to a strong polyelectrolyte. 

Synthesis of block copolymers with DMAEMA as a “smart” block has been achieved 

via reversible addition-fragmentation chain transfer (RAFT) polymerization,[11] by 

atom transfer radical polymerization (ATRP),[6, 7, 10, 12] group transfer polymeriza-

tion (GTP)[13-15] and anionic polymerization. For the latter, selection of an appro-

priate initiating system plays an important role, e.g., carbanion,[16] nitranion,[17] 

ester enolate,[18] and alkoxide[18-20] initiated anionic polymerizations have been re-
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ported. However, the number of anionically prepared well defined block copoly-

mers with DMAEMA is still rather limited. Jérôme and his coworkers[18, 21] used anio-

nic polymerization to synthesize block copolymers of DMAEMA with methyl metha-

crylate, tert-butyl methacrylate, styrene, α-methylstyrene, and 2-vinyl pyridine 

with narrow molecular weight distributions. However, the molecular weights of the 

PDMAEMA part were always below 15,000 g/mol. More often, block copolymers 

with PDMAEMA are made by a block extension of modified macroinitiators by means 

of RAFT and ATRP.[19, 20] Drawbacks here often are either incomplete end-

functionalization of the macroinitiator or low blocking efficiencies upon polymeri-

zation of the second block resulting in unreacted initiating species leftover in the 

product. Therefore, one-pot reactions yielding well-defined block copolymers with 

DMAEMA segments are of great interest, especially if the polymerization of the 

other monomer is only achievable under certain conditions. This is the case for 

poly(ethylene oxide) (PEO), accessible only via ionic ring-opening polymerization. 

In this communication we describe the synthesis and characterization of several di-

block copolymers with DMAEMA as second block and molecular weights for the 

PDMAEMA ranging up to 38,000 g/mol or, in terms of repeating units, 240. First, 

polystyrene-block-PDMAEMA, poly(1,2-butadiene)-block-PDMAEMA, and poly(p-tert-

butoxystyrene)-block-PDMAEMA, were synthesized via sequential anionic polymeri-

zation in THF at low temperatures with sec-butyllithium as initiator in the presence 

of lithium alkoxides. The amphiphilic diblock copolymers PB-b-PDMAEMA and PtBS-

b-PDMAEMA have not been reported before. The latter may be further modified 

through the removal of the tert-butoxy protecting group under acidic conditions in 

order to render poly(p-vinylphenol)-block-PDMAEMA (PpVP-b-PDMAEMA) diblock 

copolymers with narrow molecular weight distributions. PpVP is a pH-responsive 

polymer, becoming water-soluble at high pH through deprotonation.[22] The homo-

polymer has been used in photoresists.[22-24] 

The first successful block copolymerization of ethylene oxide (EO) and methacrylic 

monomers was performed by Ulbricht et al. using potassium as counterion.[25, 26] 

However, the polydispersities reported were rather high. The polymerization of 

N,N-diethylaminoethyl methacrylate (DEAEMA) with potassium alkoxide initiation at 

temperatures from 0 to +50 °C was first reported by Nagasaki et al.[27] They as-

cribed the successful reaction to possible complexation of the potassium counte-
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rion by the tertiary amino moiety of the monomer and therefore an increased reac-

tivity of the oxyanion. The polydispersities were in the range of 1.1-1.5, however, 

initiator efficiencies could not be precisely determined due to lack of a suitable 

SEC calibration. In our case, the synthesis of PEO-b-PDMAEMA proceeded with Li+ as 

counterion in the presence of the t-BuP4 phosphazene base. This initiator/ligand 

combination has been shown earlier to enable the ring-opening polymerization of 

EO and derivatives without the use of potassium or caesium counterions.[28-30] Our 

approach for PEO-b-PDMAEMA presents a novel and convenient way to such type of 

block copolymers because the one-pot synthesis provides a manageable and facile 

changeover from an oxyanion to a carbanion without noticeable side reactions and 

leads to a blocking efficiency close to 100%. 

 

Experimental 

Materials. Tetrahydrofuran (Merck, p.a.) was purified by successive distillation 

over CaH2 and potassium and kept under dry nitrogen before usage. Ethylene oxide 

(Linde, 3.0) was condensed onto CaH2 and stirred at 0 °C for 3 h before being 

transferred into glass ampoules for storage. Prior to use ethylene oxide was addi-

tionally purified over n-BuLi and condensed into a sampling ampoule. Tert-

butoxystyrene was distilled twice using a high vacuum line (10-4 - 10-5 mbar); first 

over CaH2 and then after stirring with Bu2Mg. Styrene (BASF) and DMAEMA (Aldrich, 

p.a.) were degassed three times via freeze-pump-thaw cycles. After degassing, sty-

rene was stirred over Bu2Mg and condensed under high vacuum into storage am-

poules and kept frozen under N2 until use whereas DMAEMA was stirred with Oct3Al 

prior to condensation. Butadiene (Messer-Griesheim) was passed through columns 

filled with molecular sieves (4Å) and basic aluminum oxide. Afterwards it was con-

densed into a glass reactor and stored over dibutylmagnesium. Prior to polymeriza-

tion the calculated amount of monomer was condensed into a pre-cooled burette. 

1,1-Diphenylethylene (Aldrich, 97%) was purified by stirring with sec-BuLi under N2 

followed by distillation. The phosphazene base t-BuP4 (Fluka, 1 M in hexane), sec-

BuLi (Acros, 1.3 M in cyclohexane/hexane: 92/8), n-BuLi (Acros, 1.6 M in hexane), 

Bu2Mg (Aldrich, 1 M in heptane), Et3Al (Aldrich, 1 M in hexanes) were used as re-

ceived. 
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Polymerizations. Polymerizations were carried out in a thermostated laboratory 

autoclave (Büchi) under dry nitrogen atmosphere. The synthesis of all block copo-

lymers except PEO-b-PDMAEMA was accomplished in THF (500 mL) by sequential 

anionic polymerization of the corresponding monomers using sec-BuLi as initiator. 

At -70 °C sec-BuLi was added to THF followed by fast addition of the first mono-

mer. The conversion of the first monomer was always monitored via the NIR probe. 

After a reaction time of 1 hour (S, tBS) at -70 °C or 10 hours at -10 °C (B), 2eq 1,1-

diphenylethylene were added via syringe to end cap the living chain ends. After 1h, 

DMAEMA was added to the reaction mixture via syringe and stirred for two hours at 

-50 °C. The polymer was purified by precipitation in water. For a typical example, 

24 g styrene (26.4 ml, 0.23 mol), 6 g DMAEMA (6.45 ml, 0.038 mol), 0.7 ml sec-BuLi 

(1 mmol, [P] = 0.5 mmol / L), and 0.36 g DPE (0.36 ml, 2 mmol) were employed. 

PEO-b-PDMAEMA was prepared in THF using 1,1-diphenyl-3-methylpentyllihium 

(DPMPLi) as initiator. DPMPLi was prepared in-situ by the reaction of sec-BuLi with 

1,1-diphenylethylene ([sec-BuLi]/[DPE] = 1/1.1) in THF at -70 °C. After addition of 

EO the reaction was kept at -70 °C for 1 h. Subsequently, the temperature was in-

creased stepwise (1 h at -30 °C, -10°C, and 30 min at 0 °C) to 10 °C in order to 

avoid side reactions. Then the phosphazene base t-BuP4 ([DPMPLi]/[t-BuP4] = 

1/0.95) was added to start the polymerization of EO. Complete conversion of EO at 

50 °C was achieved after 2 days. Afterwards, the temperature was lowered to 10 

°C and DMAEMA was added via syringe. After the polymerization of the second 

block was complete, the living chain ends were terminated with degassed isopro-

panol. The polymer was precipitated in cold hexane (-20°C). 

Online FT-NIR Spectroscopy. NIR spectra were recorded with a Nicolet Magna 560 

FT-IR optical bench equipped with a white light source and a PbS detector. Online 

monitoring was accomplished using a laboratory autoclave (Büchi) equipped with an 

all-glass low-temperature immersion transmission probe (Hellma) with an optical 

path length of 10 mm and connected to the spectrometer via 2 m fiber-optical 

cables. The probe was fed through a port in the stainless steel top plate of the 

reactor and immersed into the reaction mixture. Data processing was performed 

with Nicolet’s OMNIC software. Each spectrum was accumulated from 16 scans with 

a resolution of 4 cm-1. The total collection time per spectrum was about 10 s. Con-

versions, xp, were calculated using the following equation (1): 

V-5 
 



                                                                      New Block Copolymers with DMAEMA 

 

     
∞−

−
=

AA
AA

X t
p

0

0      (1) 

Where At is the absorbance at time t, A0 = initial absorbance, and A∞ = absorbance 

at full conversion. The apparent rate constants of propagation were extracted from 

the linear regime in the corresponding first-order time-conversion plots, -ln(1-xp) 

versus time, by the slope of the linear fit at values of 1 ≤ -(ln(1-xp) ≤ 2. 

Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry 

(MALDI-ToF MS) was performed on a Bruker Reflex III with a UV laser operating at 

337 nm and an accelerating voltage of 20 kV. 1,8,9-trihydroxyanthracene (dithra-

nol) and silver triflate as cationizing agent were used for the PS and PB homopoly-

mers. Samples were dissolved in THF (10 mg/mL) and mixed with matrix (20 

mg/mL in THF) and salt (10 mg/mL in THF) at a mixing ratio of 20 : 5 : 1 (v/v, ma-

trix : analyte : salt). 1 µL of this mixture was spotted onto the target and allowed 

to dry. 200 – 500 laser shots were accumulated for a spectrum.  

Size Exclusion Chromatography (SEC) experiments were performed on a Waters 

instrument calibrated with narrowly distributed PEO standards for the PEO homo-

polymer, PS standards for the PS homopolymer and 1,4-PB standards for the PB 

homopolymer at 40 °C. Four PSS-SDV gel columns (5µm) with a porosity range from 

102 to 105 Å (PSS, Mainz, Germany) were used together with a differential refrac-

tometer and a UV detector at 254 nm. Measurements were performed in THF with a 

flow rate of 1 mL/min using toluene as internal standard. 

SEC experiments for the block copolymers containing DMAEMA were performed on a 

Waters instrument calibrated with narrowly distributed polystyrene standards. Four 

PSS-SDV gel columns (5µm) with a porosity range from 102 to 104 Å (PSS, Mainz, 

Germany) were used together with a differential refractometer and a UV detector 

at 254 nm. Measurements were performed in THF with additional 0.25-wt% tetrabu-

tylammonium bromide (TBAB) as eluent and 0.5 ml/min as flow rate. 

The absolute number-average molecular weights, Mn, of the synthesized block co-

polymers were determined by 1H-NMR in CDCl3 (Bruker AC 250 spectrometer) using 

the Mn of the first block, as determined by MALDI-ToF MS or SEC, and suitable NMR 

signal areas of the corresponding blocks. 
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Results and Discussion 

The results presented in this report will be divided into two parts; first, a brief 

overview is given on the PS-b-PDMAEMA, PB-b-PDMAEMA and PtBS-b-PDMAEMA dib-

lock copolymers and in the second part the results concerning PEO-b-PDMAEMA are 

discussed. 

PS-b-PDMAEMA, PB-b-PDMAEMA and PtBS-b-PDMAEMA diblock copolymers were syn-

thesized via sequential living anionic polymerization in THF at low temperatures 

using sec-BuLi as initiator. The first monomer was polymerized at -70 °C for 30 mi-

nutes (styrene), -10 °C for 10 hours (butadiene) or -70 °C for 1 hour (p-tert-

butoxystyrene). The conversion of the first monomer was always monitored via the 

NIR probe. The reaction times were chosen to assure complete conversion of the 

first monomer. Subsequently, the living chain ends were capped with 1,1-

diphenylethylene at -70°C for one hour in order to reduce the nucleophilicity and 

to enable a smooth start of the second methacrylic monomer.[31, 32] Afterwards, 

DMAEMA was added and the reaction was allowed to slowly warm up to -50 °C. 

DMAEMA was allowed to polymerize for one hour, followed by termination with 2-

propanol. The THF-SEC traces for the PtBS450 precursor, PtBS450-b-PDMAEMA11 and 

PtBS450-b-PDMAEMA49 diblock copolymers (subscripts denote the degree of polyme-

rization) are shown in Figure 1A, indicating the living nature of the reaction. Fig-

ure 1B displays the SEC traces for the B290 precursor and B290DMAEMA240 with THF 

and 0.25 wt. % TBAB as eluent. Please note that for B290DMAEMA240 a noticeable 

amount of termination (12%, calculated via a combination of SEC and 1H-NMR) oc-

curred. We believe that in this case a small amount of residual butadiene monomer 

prevailed. This may have added again to the DPE chain end, leading to a nucleo-

philic attack of the ester group upon addition of DMAEMA. Figure 1C shows the SEC 

traces for B810 and B810-b-DMAEMA65. No side-reactions were observed in this case. 

Finally, Figure 1D displays the results obtained for PS243 and PS243-b-DMAEMA37. The 

obtained results for all PS-b-PDMAEMA, PB-b-PDMAEMA and PtBS-b-PDMAEMA dib-

lock copolymers are summarized in Table 1. As can be seen, the polymerizations 

resulted in narrowly distributed block copolymers (PDI < 1.1). 
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Table 1. Molecular characterization of the synthesized block copolymers. 

samplea 

10-3 Mn (precur-

sor) 

[g/mol] 

10-3 Mn (copolymer)b 

[g/mol] 
Mw/Mn 

S243DMAEMA37 24.3c 30.0 1.04c 

B810DMAEMA65 43.7d 54.0 1.05c 

B290DMAEMA240 15.7d 53.5 1.07c 

tBS450DMAEMA11 80.1e 82.0 1.04f 

tBS450DMAEMA49 80.1e 88.0 1.04f 
a) The subscripts denote the degree of polymerization of the corresponding block; 
b) Calculated from 1H-NMR spectra in CDCl3 using the absolute Mn of the first block; 
c) Determined by SEC in THF with additional 0.25 wt. % TBAB calibrated with PS standards; 
d) Determined by MALDI-ToF MS spectrometry; 
e) Determined by SEC in THF equipped with a MALLS detector; 
f) Determined by SEC in THF calibrated with PS standards. 

 

Figure 1: SEC elution traces (A) for PtBS450 (black solid line; PDI=1.02), PtBS450-b-PDMAEMA11 
(dashed black line; PDI=1.04) and PtBS450-b-PDMAEMA49 (dashed grey line; PDI=1.04) in THF as 
eluent, (B) for B290 (solid black line, PDI=1.02) and B290-b-DMAEMA240 (dashed grey line, 
PDI=1.07), (C) for B810 (solid black line, PDI=1.02) and B810-b-DMAEMA65 (solid grey line, 
PDI=1.05), and (D) for PS243 (solid grey line, PDI=1.02) and PS243-b-DMAEMA37 (solid black line, 
PDI=1.04) in THF and 0.25 wt. % TBAB as eluent. 
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PEO-b-PDMAEMA was synthesized via sequential anionic polymerization in THF with 

1,1-diphenyl-3-methylpentyllithium (DPMP-Li) as initiator as depicted in Scheme 1. 

DPMP-Li was formed in situ at -70 °C through the addition of 1,1-diphenyl ethylene 

and sec-BuLi. After stirring for 10 minutes at this temperature, ethylene oxide (EO) 

was added and the reaction mixture was stirred at -70 °C for one hour. Subse-

quently, the temperature was raised slowly to 10 °C, followed by addition of the 

phosphazene base t-BuP4 in order to promote polymerization of EO, which was 

conducted at 50 °C for 2 days. The ratio of [sec-BuLi]/[t-BuP4] was kept at 1/0.95. 

After complete conversion of the first monomer the temperature was lowered to 10 

°C (below this value the living PEO chains start to crystallize in THF) and DMAEMA 

was added. The reaction was terminated after 30 minutes with degassed methanol. 

 

Scheme 1: Synthesis of PEO-b-PDMAEMA diblock copolymers via sequential anionic polymeriza-

tion in THF with Li+ counterion in the presence of t-BuP4 phosphazene base. 
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Table 2: Molecular characterization of the syn  PEO-b-PDMAEMA block copolymers. 

samplea initiating system 

thesized

10-3 Mn  

recursor)(p  

[g/mol] 

10-3 Mn  

opolymer(c ) 

[g/mol]b 

Mw/Mn
c fd 

EO325DMAEMA157 
PEO-[ P4]+, Li, t-Bu  

10 °Ce 
14.3f 40.5 1.40 96.6% 

EO45DMAEMA51
g 

PEO45 uP4,-OH, t-B  

20 °C 
2.0f 10.9 1.70 80% 

PEO45- 4,OH, t-BuP  
EO45DMAEMA51

g 

5 °C 
2.0f 11.0 1.60 80% 

a) The subscripts denote the degree of polymerization of the corresponding block; 
b) Determined via a combination of SEC and 1H-NMR measurements; 

Determined by SEC in THF wc) ith additional 0.25 wt. % TBAB calibrated with PS standards; 
bsolute Mn of the 

rization; 

 Theoretical composition calculated for 100% macroinitiator efficiency. 

igure 2: SEC elution traces of PEO325 (solid black line; PDI=1.02) and PEO325-b-PDMAEMA157 
olid grey line; PDI=1.40) with THF and additional 0.25 wt. % tBAB as eluent. 

 

d) the initiation efficiency was calculated from 1H-NMR spectra in CDCl3 using the a
first block for calibration; 

e) DMAEMA added according to scheme 1; sequential living anionic polyme
f) Determined by MALDI-ToF MS; 
g)
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The advantage of this synthetic approach is the possibility of a one-pot synthesis. 

Alternatively, the polymerization technique has to be changed from anionic to a 

controlled radical technique, potentially coupled with a considerable loss of ma-

croinitiator. Furthermore, ABC triblock terpolymers with PEO as a water-soluble 

middle block and methacrylic monomers as endblock become feasible. The addi-

tional advantage of anionic polymerization is the control of the resulting micro-

structure, like in the case of butadiene or isoprene. The SEC traces in THF with 

0.25 wt. % tetrabutylammonium bromide (TBAB) of PEO325 and PEO325-b-PDMAEMA157 

are given in Figure 2. The molecular characteristics of the PEO325-b-PDMAEMA157 

diblock copolymer are shown in Table 2. The well-controlled nature of the polyme-

rization is demonstrated by the PEO325 precursor with a PDI of 1.02. As can be seen, 

a small amount of precursor is left in the SEC trace of PEO325-b-PDMAEMA157, but 

this corresponds to below 4 mol %, calculated by integration of the SEC eluograms, 

normalized by the molecular weights of the precursor and block copolymer, ob-

tained via MALDI-ToF MS and 1H-NMR, respectively. The molecular weight distribu-

tion is much broader (PDI = 1.40, PS calibration). To investigate the polymerization 

kinetics, NIR spectra were recorded during the polymerization and after solvent 

subtraction the vinylic =C-H overtone vibration of DMAEMA at 6162 cm-1 was used 

for the calculation of the conversion. The results are shown in Figure 3A. 

 

 

Figure 3: First-order plot of the kinetics of DMAEMA polymerization initiated by PEO-Li/t-
BuP4 in THF at 10 °C (A), first-order plot of the kinetics of the DMAEMA polymerization initiated 
by DPMPLi in THF at -70 °C (B). 
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Figure 3 clearly shows that slow initiation occurs upon addition of DMAEMA to the 

living PEO chain ends. This is expected since alkoxide anions are much less reactive 

than ester enolate ones. After ca. 20 s (ca. 20% monomer conversion), the first-

order plot becomes linear (slope, kapp = 0.031 s-1), indicating a living polymeriza-

tion. Taking into account the concentration of active chain ends, [P*] = 9.24x10-4 

mol/L, results a rate constant, kp = 33.5 L mol-1s-1. Given the elevated tempera-

ture, the obtained polymerization rate is very low. In contrast, the homopolymeri-

zation of DMAEMA at –70 °C initiated by DPHLi in the absence of phosphazene base 

but in presence of an excess of alkoxides (0.013 mmol/L) yielded a rate constant of 

kp = 60.8 L mol-1s-1 (Figure 3B). Apparently, the phosphazene base dramatically de-

creases the reactivity of the PDMAEMA-Li chain end. According to theory,[33] slow 

initiation should result in a maximum PDI of 1.33, explaining the obtained results 

for PEO-b-PDMAEMA with a PDI of ca. 1.40. The slightly higher value could be due 

to partial adsorption on the column during the SEC measurements as the copolymer 

has a rather long PDMAEMA block compared to most of the other block copolymers 

presented here. We suppose that with increasing content of PDMAEMA the effect of 

salt addition to the SEC eluent, which should prevent adsorption to the column, 

diminishes. A similar effect can be seen in the SEC traces for B290DMAEMA240 (Figure 

1B). To further evaluate the distribution of the PEO325-b-PDMAEMA157 diblock copo-

lymer MALDI-ToF mass spectrometry was performed. The results are depicted in 

Figure 4. The lower trace shows the PEO325 precursor with a peak maximum at Mn = 

14 300 g/mol whereas the upper curve corresponds to the PEO325-b-PDMAEMA157 

diblock copolymer. The residual amount of PEO325 precursor is clearly visible, al-

though easily overestimated due to the fact that ionization discriminates different 

polymers and that shorter chains are more easily ionized. For the diblock copoly-

mer, MALDI results in a molecular weight of Mn = 39 100 g/mol and a polydispersity 

of 1.02. It is known that MALDI rather underestimates polydispersities, so the true 

value for the molecular weight distribution of PEO325-b-PDMAEMA157 should be si-

tuated between the SEC and MALDI results.[34] The molecular weight for PEO325-b-

PDMAEMA157, though, is in quite good accordance with 1H-NMR (Mn =  40 500 g/mol, 

Table 2). 
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Figure 4: MALDI-ToF mass spectra of PEO325 (lower curve, smoothed curve depicted in light 
gray; Mpeak=14300 g/mol; matrix (DHB): salt (AgTFA): polymer = 10:1:1) and PEO325-b-
PDMAEMA157 (upper curve, smoothed curve displayed in white; Mpeak=39100 g/mol; matrix 
(DCTB): salt (KTFA): polymer = 10:1:1). 

 

To point out the advantages of the one-pot synthesis presented here, comparable 

anionic polymerizations were performed employing a commercially available mono-

functional PEO-OH as a macroinitiator with a molecular weight of 2 000 g/mol 

(EO45-OH) and a polydispersity index of 1.03. The polymer was purified through re-

peated precipitation in methanol and afterwards dried over night on a high vacuum 

line at 50 °C. Then it was dissolved in dry THF and cooled to 5°C. Below this value, 

the polymer starts to crystallize; the temperature is lower compared to PEO325 due 

to its lower molecular weight. Afterwards, t-BuP4 phosphazene base (1 eq) was 

added and the reaction mixture was stirred for one hour to ensure complete depro-

tonation of PEO-OH. Then DMAEMA was added and after 30 minutes the polymeriza-

tion was terminated with methanol. The results are shown in Table 2. SEC traces 

(THF with 0.25 wt.-% TBAB as eluent) are provided in Figure 5. The remaining un-

reacted macroinitiator can be clearly seen underneath the precursor. The two dif-

ferent polymerization temperatures (5 °C and 25 °C) do not seem to affect the 

reaction significantly. In both cases, blocking efficiency was around 80mol% (de-
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termined through a combination of SEC and 1H-NMR), i.e. significantly lower com-

pared to that of the one-pot synthesis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: SEC elution traces of PEO45 (light grey line) and PEO45-b-PDMAEMA51 (grey and 
black line) with THF and additional 0.25 wt. % TBAB as eluent; the difference between both 
PEO45-b-PDMAEMA51 samples is the polymerization temperature (25°C for (grey line) and 5°C for 
(black line)); blocking efficiency is comparable and around 80 mol%. 

 

Conclusions 

Several diblock copolymers with DMAEMA as a second “smart” block were success-

fully synthesized. PS-b-PDMAEMA, PB-b-PDMAEMA and PtBS-b-PDMAEMA were ade-

quately characterized and their behavior in the bulk as well as in solution as build-

ing block for self-organized nanostructures will be reported in the near future. PS-

b-PDMAEMA diblock copolymers show potential in the field of stimuli-responsive 

membranes.[35] In the case of PEO-b-PDMAEMA, the characterization is still not ab-

solutely conclusive, but a living manner of the polymerization is definitely indi-

cated. Online FT-NIR measurements indicate a slow initiation taking place and, 

thus, polydispersities in the range of 1.3 are to be expected. It will now be the sub-

ject of further research to extend these results to ABC triblock terpolymers with 

PEO as middle block and PDMAEMA as end block and also their possible application 

as, e.g. stimuli-responsive polymeric hydrogels. 
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Abstract 

Asymmetric membranes are prepared via the non-solvent induced phase separation 

(NIPS) process from a polystyrene-block-poly(N,N-dimethylaminoethyl methacry-

late) (PS-PDMAEMA) block copolymer. The polymer was prepared via sequential liv-

ing anionic polymerization. Membrane surface and volume structures were charac-

terized by scanning electron microscopy. Due to their asymmetric character, re-

sulting in a thin separation layer with pores below 100 nm on top and a macropor-

ous volume structure, the membranes are self-supporting. Furthermore, they exhi-

bit a defect-free surface over several hundred µm2. Polystyrene serves as the 

membrane matrix, whereas the pH- and temperature-sensitive minority block, 

PDMAEMA, renders the material double stimuli-responsive. Therefore, in terms of 

water flux, the membranes are able to react on two independently applicable sti-

muli, pH and temperature. Compared to the conditions where the lowest water 

flux is obtained, low temperature and pH, activation of both triggers results in a 7-

fold permeability increase. The pore-size distribution and the separation properties 

of the obtained membranes were tested through the pH-dependent filtration of 

silica particles with sizes of 12-100 nm. 

 

Introduction 

Block copolymers represent an ambitious class of materials as their scope of appli-

cability is still rising. Mostly, this is due to their inimitable self-assembling proper-

ties, rendering them suitable for applications in solution,[1] in thin films[2, 3] or as 

components of porous composite membranes.[4, 5] Also in the field of industrially 

important membrane production processes, in particular via controlled phase sepa-

ration (“phase-inversion”) of polymer solutions, block copolymers are becoming 

more and more popular. This is mainly attributed to the constantly increasing num-

ber of processes in which the desired separation problem cannot be solved with 

state-of-the-art membranes.[6] Characteristic problems are uneven pore size distri-

butions or insufficient long-term stability, especially due to membrane fouling. A 

very important issue is also the additional functionalization of membrane mate-

rials.[6] Often, membrane surfaces are post-functionalized through “grafting-to”,[7] 

“grafting-from”[8] or reactive coating with polymers.[9] 
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An alternative are additives to the membrane polymer, and special graft or block 

copolymers have already been found to be rather efficient in rendering the surface 

of porous membranes from standard engineering polymers such as poly(vinylidene 

fluoride) or polyethersulfone more hydrophilic and less susceptible to fouling.[10, 11] 

One of the key features of block copolymers is the facile implementation of “smart” 

materials, containing compartments with the ability to change conformation or 

properties upon application of environmental stimuli like pH, temperature or 

light[12]. Hence, in combination with their ability to create well-defined patterns on 

a mesoscopic length scale, block copolymers embody promising candidates for the 

fabrication of stimuli-responsive functional membranes with high selectivity, tuna-

ble properties and narrowly distributed pores. 

Non-solvent-induced phase separation (NIPS) is the most important industrial 

process for the fabrication of “asymmetric” membranes, having a very thin “skin” 

layer supported by a macroporous substructure.[13] Recently, this process has been 

applied for the first time to well-defined block copolymers, polystyrene-block-

poly(4-vinylpyridine) (PS-b-P4VP).[14] Asymmetric membranes with a narrow pore 

size distribution in a ~250 nm thin separation layer could be obtained. Here, P4VP 

should act as a weak polyelectrolyte and therefore a pH-sensitive block; however 

the stimuli-responsive transport through the membranes was not reported in that 

work. Other attempts use stimuli-responsive polymeric additives in already estab-

lished NIPS processes in order to enhance the properties of the resulting mem-

branes through co-precipitation.[15, 16] However, the reported procedures generate 

membranes which can react to a single stimulus only. 

Here we present the formation of double stimuli-responsive membranes for the 

possible applications in ultrafiltration or microfiltration. These materials combine a 

rather narrow pore-size distribution with mechanical stability and high water flux. 

The membranes were prepared via NIPS from amphiphilic polystyrene-block-

poly(N,N-dimethylaminoethyl methacrylate) (PS-b-PDMAEMA) diblock copolymers in 

THF/DMF mixtures. The resulting structures are self-supporting and defect-free 

over several hundred µm2. The advantage of using PDMAEMA as the hydrophilic 

block is that its solubility in aqueous solution can be triggered by two stimuli, pH 

and temperature.[17-19] Temperature response is related to a lower critical solution 

temperature (LCST). The corresponding phase transition temperature (cloud point, 
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Tcl) strongly depends on solution pH, the cloud point can get close to room temper-

ature at pH ≥ 10 for high molecular weights. The polymer is completely soluble 

over the whole accessible temperature range below pH 6 due to partial or full pro-

tonation. In presence of small amounts of multivalent counterions, in addition to 

the LCST, even an upper critical solution temperature (UCST) can be obtained for 

such systems.[19] There have been attempts to incorporate PDMAEMA into ultrafil-

tration membranes through random copolymerization with acrylonitrile,[20] but the 

content of switchable material was rather low, and the recovery of the PDMAEMA 

conformation after stimuli-response was hampered.[21] 

 

Experimental 

Materials 

sec-Butyllithium (Acros) was used as delivered. THF (Fluka) was distilled from CaH2 

and K. Afterwards, the solvent was directly transferred into the stirred glass reac-

tor. Styrene was kindly provided by BASF and was stirred over Bu2Mg and after-

wards condensed on a vacuum line into glass ampoules. N,N-dimethylaminoethyl 

methacrylate (Aldrich) was stirred with tri-octylaluminium and afterwards con-

densed on a vacuum line. 1,1-diphenylethylen (Aldrich) was distilled from sec-

butyllithium. The 12 nm particles were purchased from Aldrich (LUDOX AM-30, sus-

pension in water). The particles with 22, 36, 60, and 104 nm were synthesized us-

ing the Stöber method.[24] 

Synthesis 

Polystyrene-block-poly(2-dimethylaminoethyl methacrylate) was synthesized via 

sequential living anionic polymerization in THF (500 ml) at low temperatures in the 

presence of alkoxides to stabilize the living chain end.[25] First, styrene (25 g, 0.24 

mol) was initiated with sec-butyllithium (0.35 ml, 0.49 mmol) at -70°C. Afterwards, 

the reaction was allowed to proceed at -70°C for 30 minutes. For polymerization of 

the second block, the polystyrene chains were end-capped with 1,1-diphenyl ethy-

lene (0.18 ml, 1 mmol) at -50°C in order to attenuate the reactivity of the anions. 

Otherwise, attack of the ester moiety would occur upon addition of 2-

dimethylaminoethyl methacrylate. The latter (5.86 g, 37.3 mmol) was injected via 

syringe into the reaction vessel and was polymerized for 1 h at -40°C. Finally, the 
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reaction was stopped through addition of 3 ml of degassed isopropanol, and the 

polymer was purified through dialysis against THF and dioxane and freeze-dried. 

Membrane preparation 

Membranes were prepared via the NIPS process. 200 µm thick films were cast from 

a solution of PS-b-PDMAEMA (1.5 g, 15 wt. %), DMF (4.25 g, 42.5 wt. %) and THF 

(4.25 g, 42.5 wt. %) with a doctor blade onto polished glass substrates. After 60 

seconds exposure to air (relative humidity was 30-40% and temperature was ~20°C), 

the as-cast films were immersed into a bath containing de-ionized water for final 

formation of the membrane morphology. During the next 60 minutes, the films 

started to lift off the glass surface. After 12 hours, the membranes were taken out 

of the water bath, stored in de-ionized water until used and characterized as fol-

lows. 

Water flux measurements 

Water flux measurements were carried out in a stirred ultrafiltration test cell 

(Amicon 8010, Millipore, effective membrane diameter 22 mm) connected to a wa-

ter reservoir at a constant height of the water column of 25 cm, providing a trans-

membrane pressure of 0.025 bar. The membrane was placed in this cell which was 

immersed in a water bath kept at constant temperature. pH was adjusted through 

dilute solutions of NaOH and HCl in deionized water; after each change in pH a 

time span of 2 hours under flow-through was used to allow equilibration. Tempera-

ture ramps were performed through keeping the whole ultrafiltration cell in a tem-

pered water bath. Steps were 10 K, equilibration time in between two points was 1 

hours, except for the highest temperature (65°C: 2 hours). 

Filtration of silica particles 

Filtrations of colloidal silica particles were carried out in the same ultrafiltration 

cell as described above, but at a pressure of 0.1 – 0.2 bar supplied by nitrogen. The 

feed solutions were prepared through diluting the particle stock solutions with de-

ionized water and adjusting the pH with NaOH or HCl. Typically, 10 ml of the feed 

solutions were filled into the Amicon cell. After the filtration of 8 ml, the remain-

ing 2 ml were kept as retentate solution. Upon changing the particle size, the cell 

was rinsed 5 times with de-ionized water, and afterwards 50 ml were passed 

through the membrane to remove adsorbed silica particles. 
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Characterization 

NMR 

1H-NMR measurements were performed on a Bruker 250 MHz AC spectrometer in 

CDCl3 as solvent. The block copolymer composition was determined through the 

integral ratio between the styrene protons (5H, δ ~ 7.2 ppm) and the CH2 protons 

adjacent to the tertiary amino group of DMAEMA (2H, δ = 4.1 ppm). 

Size exclusion chromatography 

Gel permeation chromatography (GPC) measurements were performed on a set of 

30 cm SDV-gel columns of 5 mm particle size having a pore size of 105, 104, 103 and 

102 Å with refractive index and UV (λ = 254 nm) detection. GPC was measured at an 

elution rate of 1 ml/min with THF containing 0.25 wt.% TBAB as eluent. 

Scanning electron microscopy 

SEM was carried out on a Leo Gemini 1530. The specimens were dried under va-

cuum over night and coated with approximately 2 nm Pd. For cross section, a piece 

of the sample was frozen together with the sample holder and broken afterwards. 

Dynamic light scattering 

Dynamic light scattering (DLS) measurements were performed in sealed cylindrical 

scattering cells (d = 10 mm) at a scattering angle of  90° on an ALV DLS/SLS-SP 

5022F equipment consisting of an ALV-SP 125 laser goniometer with an ALV 5000/E 

correlator and a He-Ne laser with the wavelength λ = 632.8 nm. The CONTIN algo-

rithm was applied to analyze the obtained correlation functions. Apparent hydro-

dynamic radii were calculated according to the Stokes-Einstein equation. 
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Results and Discussion 

Synthesis and Characterization 

The selected block copolymer was synthesized via sequential living anionic polyme-

rization has a number average molecular weight of 75,000 g/mol and exhibits a 

narrow molecular weight distribution with Mw/Mn = 1.04. The final composition was 

determined as PS81PDMAEMA19
75. The subscripts denote the weight fractions in % 

and the superscript the molecular weight in kg/mol. The corresponding degrees of 

polymerization are 607 for polystyrene and 92 for PDMAEMA. The SEC traces with 

THF and additional 0.25 % tetrabutylammonium bromide (TBAB) as eluent are 

shown in Figure 1. The molecular weight of the PS block was determined via a PS 

calibration curve. For the second block, PDMAEMA, the 1H-NMR integral ratios be-

tween characteristic signals of the two blocks (PS: 5H, δ = 6.8 – 7.3 ppm; 

PDMAEMA: 2H, -CH2-, δ ≈ 4 ppm) were compared. 

 

 

16 17 18 19 20

Elution volume [mL]

 

 

 

 

 

 

 

Figure 1: SEC traces for the PS precursor (solid line) and the S81D19
75 diblock copolymer (dashed 

line). 

 

Membrane Preparation via Phase Inversion 

The NIPS process is a straightforward and fast one-step procedure. Membranes 

formed by this preparation process usually exhibit an integrally anisotropic cross-

section and are classical examples for high-performance materials for pressure-

driven separation processes like ultrafiltration, nanofiltration or reverse osmosis.[6] 

An intrinsic feature is the thin separation layer on top (thickness ~50 nm up to sev-

VI-7 



                                 Self-supporting, Double Stimuli-responsive Porous Membranes 

eral µm), supported from underneath through the main macroporous part of the 

membrane. Typically, polymer solutions of about 10-20 wt. % in organic solvents or 

solvent mixtures that are miscible with water are cast on a substrate, e.g. glass, 

using a doctor blade, and afterwards they are immersed in a non-solvent bath for 

coagulation and final film formation. We used a mixture of THF (50%) as a highly 

volatile solvent with DMF (50%). After film-casting, the solvent was allowed to eva-

porate for 60 seconds before the whole substrate was immersed into a non-solvent 

bath filled with de-ionized water (pH ≈ 6). During the time before immersion, 

mostly THF evaporates, the polymer enriches at the polymer-air interface and pre-

sumably phase separation starts in the top layer of the “proto-membrane”. We 

suppose that this step is crucial for the formation of the pores of the separation 

layer. Generally, PDMAEMA is water-soluble at ambient temperature but the high 

content of hydrophobic polystyrene in PS-b-PDMAEMA assured immediate precipita-

tion upon contact with water. This is even more pronounced as THF is the better 

solvent for polystyrene, and the composition of the solvent mixture in the top layer 

region is strongly shifted towards DMF already before non-solvent contact. After 

immersion in the precipitation bath, final solvent exchange and solid film forma-

tion take place. The membranes were taken out of the water bath after 12 hours 

and dried in vacuum for scanning electron microscopy (SEM) analysis. The resulting 

micrographs are shown in Figure 2. 
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Figure 2: SEM micrographs of the membranes prepared via phase inversion (NIPS); A: on-top 
view onto the membrane surface; B: view onto the bottom of the membrane; C-E: cross sections 
at different magnifications. 

 

Figure 2A presents a view onto the outer membrane surface at high magnification. 

The structure does not seem to be well-ordered; the appearance is rather sponge-

like without any long-range order. We ascribe this to the rapid precipitation occur-

ring upon the immersion of the “proto”-membrane into the non-solvent bath. The 

pore size is in the range of 20-80 nm, positioning this membrane at the borderline 

between ultra- and microfiltration.[6] However, no larger pores or defects are 

present; the membrane exhibits a regular porous surface over several hundred µm2. 

Figure 2B is the view onto the bottom surface, formerly in contact with the glass 
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substrate. Here, the membrane exhibits larger pore sizes up to 1 µm. This is not 

undesirable because larger pores in the supporting sublayer are the precondition 

for a high flux. Figures 2C, D and E show cross-sectional cuts of the asymmetric 

membrane at different magnifications. Clearly, a distinguished separation layer is 

obtained on the top with a thickness of around 1 µm (E). Beneath this fragment, 

broader channels appear with an evident arrangement perpendicular towards the 

former glass substrate (C). These are the so-called macrovoids, developed during 

the immersion and final film formation in the water bath. This cross-section struc-

ture is typical for polymer membranes obtained by NIPS with rapid precipitation 

(“instantaneous demixing”), the anisotropy is due to the time delay and changing 

compositions during non-solvent / solvent exchange over film thickness.[22] The rea-

son for instantaneous demixing is the incompatibility of the PS blocks in PS-b-

PDMAEMA with water. Membrane thickness as determined via SEM or a dial gauge 

was 85 ± 10 µm. Unfortunately, the sponge-like morphology of the membrane top 

layer prohibited the calculation of the effective membrane porosity and therefore, 

neither Hagen-Poiseuille’s law[14] nor the Guerout-Elford-Ferry equation[23] could be 

employed for the estimation of an average pore diameter. 

 

Water Flux Measurements 

The water flux through the membrane was measured as function of the applied 

transmembrane pressure. At 0.5 bar and 25°C, a flux of 560 L/m2h could be ob-

tained. Compared to the values reported for the PS-b-P4VP asymmetric membranes 

(20 L/m2h),[14] the flux is considerably higher. This could probably be explained by 

a smaller effective pore size of the membranes from this previous work. The de-

pendence of flux on pressure is shown in Figure 3A, and as expected for a stable 

porous membrane, flux increases in a linear manner. 
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Figure 3: Water flux for S81D19
75 asymmetric membranes; depending on the applied transmem-

brane pressure and linear regression (A); for different pH values and temperatures (B, over-
view); for pH 6 (C) and pH 10 (D) depending on the temperature; the membranes were tem-
pered at 65°C for 120 minutes in both cases; the black lines in B, C, and D are just a guide to 
the eye; please note that the decrease of flux to a new constant value upon decrease of tem-
perature from 65 to 25°C occurs within 2 h at pH 10 and 12 h at pH 6. 

 

Next, environmental conditions were varied to trigger the two possible stimuli for 

PDMAEMA. To reach a new equilibrium state under flow-through conditions, each 

change in pH was performed over a time span of 2 hours. The waiting time in be-

tween two temperature segments was 1 hour (except for 65°C: 2 hours). Figure 3B 

provides an overview over all the performed steps. All flux values except those in 

Figure 3A are corrected with respect to viscosity. Figure 4 shows a schematic de-

piction of our conclusion with respect to the membrane pore walls at the different 

stages of the experiment. 
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Figure 4: Schematic depiction of the different states of the inner part of membrane pores for 
S81D19

75 depending on pH and temperature; idealized illustration as PDMAEMA also is incorpo-
rated into the pore walls. 

 

At pH 2 and ambient temperature, a viscosity-corrected flux value of 0.025 L/m2 

was obtained. No flux increase could be detected upon raising the temperature to 

65 °C. This is due to full protonation of the PDMAEMA segments, keeping the 

charged polymer chains extended at all temperatures (Figure 3, left hand part). At 

pH 6, PDMAEMA is still partially protonated (pKb = 7.78[17]). The measured flux at 

room temperature is not significantly higher and does not change until 55°C (Figure 

4, upper middle part). However, at 65 °C, flux increased by a factor of 4. Here, the 

charge density along the polymer chain segments is considerably lower than at pH 2, 

resulting in a certain collapse upon heating above the phase transition temperature. 

Though, some charge is present and hence the chains cannot completely collapse 

(Figure 4, lower middle part). Therefore, the transmembrane flux does not reach 

its maximum value. At pH 10 and 25 °C, the flux is already high. At this pH, the 

polymer chains are uncharged and less extended (Figure 4, upper right part). At 

65 °C the flux further increased, indicating a further collapse of the PDMAEMA 
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segments (Figure 4, lower right part). To fortify our conclusions drawn in Figure 4, 

the relative change in flux should be higher for pH 6 than for pH 10. Indeed, whe-

reas flux increases by a factor of 4 for pH 6, heating to 65 °C at pH 10 alters the 

water flux by a factor of 1.6. If the flux at pH 2 and 25 °C is compared to the final 

value at pH 10 and 65 °C, permeability increases by a factor of 7. Assuming stan-

dard pore flow models (cf. above), this corresponds to a change in effective pore 

radius by a factor of 2 to 3. Former work in our group compared the LCST behavior 

of linear and star-shaped PDMAEMA depending on molecular weight, concentration, 

and pH.[17] Here, the cloud point for a PDMAEMA with a degree of polymerization of 

108 (similar to that of the PDMAEMA in our block copolymer) was determined Tcl = 

76 °C at pH 6 and 39 °C at pH 10. For the case reported here, no difference could 

be seen between the phase transition temperatures at pH 6 and pH 10. For pH 6, 

the phase transition temperatures are comparable to our former work. Note that 

the situation for an asymmetric membrane is distinct from a dissolved linear poly-

mer chain. A more appropriate model would be a polymer brush confined on the 

pore surface. 

Please note that Figure 4 is drawn in an idealized way. As the block copolymer does 

not undergo complete phase separation it is very likely that PDMAEMA is not only 

covering the pore walls but is also incorporated into them. Compared to the mem-

branes of Peinemann et al.,[14] the phase-separated morphology of the S81D19
75, es-

pecially in the separation layer is less developed. If responsive chain segments are 

part of the pore walls the “switching” of PDMAEMA should include two steps: first, 

the collapse of the freely mobile expanded chains inside the pores and, second, a 

certain “de-swelling” of chains buried in the wall material consisting mainly of po-

lystyrene. Indeed, the novel membranes require a certain time until the increase 

or decrease in permeability is finished. This is highlighted in Figure 3C for pH 6 and 

3D for pH 10. In both cases, the filtration cell was kept at 65 °C for 2 hours and the 

flux development was monitored. After this time span, no further increase in per-

meability could be detected. Furthermore, the flux at both pH 6 and 10 shows a 

certain hysteresis after cooling down to 25 °C; again, less pronounced for the latter 

case. The responsive chain segments do not seem to be able to fully recover their 

original state under conditions where they are partially deswollen. It is noteworthy, 

that the partial recovery of PDMAEMA chain conformation after cooling down to 

25 °C is somewhat faster for pH 10 (2 h) than for pH 6 (12 h). This further amplifies 
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the impression we try to give in Figure 4. The chain segment collapse resulting 

from the application of the LCST is more pronounced at pH 6. At higher pH, the 

polymer chains are already far less stretched in solution. Also, the relative gain in 

permeability is higher for pH 6. However, if the pH is changed to 2, the initial flux 

value can be fully recovered within 2 hours. This is due to complete protonation of 

PDMAEMA, leading to increased mobility for free and wall-buried chain segments. 

 

Filtration of Silica particles 

To evaluate the actual pore size distribution of the membranes filtration experi-

ments with synthetic silica colloids at different pH-values were carried out. To mi-

nimize adsorption to the membrane, the concentrations were kept low (0.1 – 0.2 %) 

in all cases. Silica particles with diameters of 12, 22, 36, 60, and 104 nm were used. 

The silica particles with 12 nm were the only ones being stable under acidic condi-

tions, in all the other cases the particles started to aggregate. The particle solu-

tions were filtered at a pressure of 0.2 bar. Retention was determined by the com-

parison of the count rate obtained via dynamic light scattering (DLS) for feed, re-

tentate and permeate solutions. Silica colloids with 22, 36, 60, and 104 nm diame-

ter were filtered at pH 6 and pH 10, the colloids with 12 nm diameter at pH values 

of 2, 6 and 10. The results are shown in Figure 5. 

 

Figure 5: Retention of the S81D19
75 membrane for silica colloids with 12, 22, 36, 60, and 104 nm 

at pH 2 (-○-), pH 6 (-□-) and pH 10 (-∆-) (A); intensity weighted CONTIN plots for the particle 
size distributions of the 12 nm feed solution before (-□-) and the retentate solution (- -) after 
filtration (B) at pH 2. 
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As depicted in Figure 5A, at pH 6 almost no silica particles are able to pass the 

membrane. This is due to the swelling of the PDMAEMA chains covering the pore 

walls at this pH (cf. Figure 4). Even for the particles with a diameter of 22 nm more 

than 95 % are rejected. This situation changes upon increasing the pH. At pH 10, 

again, the silica colloids with 36, 60, and 104 nm are not able to pass the mem-

brane. The particles with 22 nm, however, now can pass through the pores. The 

amount of rejected particles in this case was measured to be 37 %. This can be ex-

plained by the collapse of the PDMAEMA chains under these conditions. Thus, the 

membrane pores are more “opened”, enabling a significantly less hindered per-

meation of the 22 nm silica particles through the pore channels. 

As shown in Figure 3 and 4, at pH 6 the PDMAEMA chains are partially protonated 

and the pore interior of the membranes is swollen. Nevertheless, a considerable 

water flux can be detected. The lowest flux was measured at pH 2, with fully pro-

tonated and, thus, at most extended PDMAEMA chains inside the pores. Therefore, 

silica particles with a diameter of 12 nm and with an improved stability under acid-

ic conditions were used for ultrafiltration at all three pH values. However, despite 

the low concentration, adsorption occurs onto the pore surface of the membrane. 

This results in an initial apparent rejection of around 50% even for pH 6. However, 

after two filtration cycles, the PDMAEMA chains are saturated with the silica par-

ticles, and for the following filtrations no rejection can be seen. This is analogous 

to the breakthrough behavior of membrane adsorbers with weak anion-exchange 

groups.5,6 Attempts to quantify the desorption from the membranes with water 

were unsuccessful because the count rate obtained by DLS was too low to give reli-

able values. Therefore, at least five filtration cycles were carried out in each case. 

The effective rejection was calculated by the average of the last three filtration 

cycles. At both pH 6 and pH 10 all particles passed the membrane, no rejection 

could be detected. However, at pH 2, only about 7 % of the particles could be de-

tected in the permeate. This, in combination with the polydispersity of silica par-

ticles (PDI = 1.2, determined by DLS for the feed solution) gives a convenient 

measure for the effective pore diameter under these conditions. If feed and reten-

tate solutions are compared via DLS, as shown in Figure 5B, the hydrodynamic ra-

dius increases (<Rh>z,feed = 6 nm and <Rh>z,retentate = 7.5 nm; the concentration of the 

permeate solution was too low to determine Rh with sufficient accuracy). Thus, we 

conclude that at pH 2 only particles with a diameter of less than 15 nm are able to 
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pass the membrane. Since the membrane barrier has a positive charge under these 

conditions (cf. Figure 4), and the colloids have no positive surface charge, a Don-

nan exclusion mechanism5 can be excluded, and the membrane selectivity is based 

on their stimuli-responsive pore size.  

 

Conclusion 

We successfully prepared double stimuli-responsive porous membranes via the non-

solvent induced phase separation method from an amphiphilic diblock copolymer. 

The structures exhibit a thin separation layer with pores in the range of 20-80 nm 

and a thickness of around 1 µm. Both stimuli could be reversibly applied. Triggering 

the LCST of the membranes takes place within 60-120 minutes, presumably due to 

incorporation of “smart” PDMAEMA material both into pore interior and pore walls. 

After pH-response, acidic conditions have to be adopted in order to ensure com-

plete recovery of the most swollen conformation leading to smallest effective pore 

sizes. The inherent features of these membranes besides two independently ex-

ecutable switches are constant and reproducible flux values, absence of noticeable 

defects on a scale of several hundred µm2 and their ability to form self-supported 

mechanically stable films. An initial evaluation of the pore size depending on the 

pH at 25°C showed that under acidic conditions silica particles with a diameter of 

15 nm or larger were fully rejected while the same particles could completely pass 

the membranes at pH 6 to 10. At pH 10, even particles with a diameter of 22 were 

able to pass the membrane. Therefore, the novel functional materials are ultrafil-

tration membranes with tunable cut-off pore size. It will now be the subject of fur-

ther investigations to evaluate the usefulness of these novel materials in areas like 

the filtration or removal of viruses, bacteria and other particles. Besides the dif-

ferent size selectivity as function of different combinations of pH and temperature, 

additional effects of pore charge on selectivity will also be investigated. Rejection 

of positively charged particles should be much higher at low pH than at high pH, or 

the “switchable” ion-exchange adsorber properties towards negatively charged par-

ticles could be exploited as well. 
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Abstract 

We report on the formation of self-supporting, double stimuli-responsive 

ultrafiltration membranes via the nonsolvent induced phase separation (NIPS) 

process. The polymers, polystyrene-block-poly(N,N-dimethylaminoethyl 

methacrylate) (PS-b-PDMAEMA), were synthesized via living anionic polymerization 

in THF using sec-butyllithium as initiator. Two amphiphilic diblock copolymers were 

used, S81D19
75 and S68D32

100. The membranes were cast from mixtures of THF and 

DMF. The influence of the solvent composition, the “open-time” before immersion 

into the coagulation bath, and the casting film thickness onto the membrane 

morphology were thoroughly investigated and flux values obtained for the different 

membrane systems were compared. The higher content in hydrophilic polymer for 

S68D32
100 resulted in a better compatibility with the non-solvent bath consisting of 

water, leading to a slower precipitation and, thus, an improved control of the 

phase separation occurring. Under certain conditions, ordered microphase 

separated porous morphologies were observed in parts of the membrane cross-

section. Further, the “smart” properties of those novel materials are shown for two 

representative systems. It could be demonstrated that both stimuli for PDMAEMA, 

pH and temperature, can be reversibly and independently applied in order to 

significantly change the transmembrane water flux. 
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Introduction 

In the last decade, membrane separations have gained high technical relevance in 

a wide range of applications, from water purification to medical applications.1 

Increasing complexity in modern separation processes is accompanied by 

demanding and further specialized requirements for a suitable membrane, by far 

exceeding commonly known properties like chemical inertness, thermal and 

mechanical stability, and mechanical strength. Especially when it comes to new 

technically challenging or commercially attractive separation problems, many 

state-of-the-art membranes are facing their limitations. 

Polymers are by far the most important membrane materials, especially because of 

the relative ease and flexibility to manufacture a large diversity of effective 

barrier structures for different membrane processes. Possible pathways towards 

the design of novel membranes are the modification of already established 

membrane structures, an alteration of the preparation techniques, or the use of 

new building blocks with improved functionalities. Furthermore, attempts have 

been made to blend hydrophobic and hydrophilic compounds, mainly focusing on 

the improvement of both fouling characteristics and membrane morphology.2 The 

activities in this field have been reviewed recently.3 Main challenges for the 

development of novel ultrafiltration membranes are a narrow and adjustable pore 

size distribution and a thin barrier layer so that the tradeoff between high 

selectivity and high flux could be overcome.4 In addition, the fouling tendency 

should be minimized. 

Using block copolymers as building blocks represents a facile and straightforward 

methodology for the simple incorporation of different structural or chemical 

features into bulk materials. Junctions between two compartments are covalent 

and therefore thermodynamically, chemically, and mechanically stable.5, 6 

Especially amphiphilic block copolymers have received considerable interest 

concerning their synthesis via living7 or controlled polymerization techniques8 and 

their self-assembly in the bulk,9-11 in thin-films,12 or in solution.13 Through recent 

advances, block copolymer dimensions on the nanoscale and resulting morphologies 

become more and more predictable. In that way block copolymers are able to 

combine superior mechanical properties of hydrophobic and the wettability and 
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surface chemistry of hydrophilic materials. Moreover, smart polymeric materials 

render these structures sensitive to external stimuli like pH,14 temperature,15 or 

light16 and broaden the scope of possible applications of such systems. First 

attempts had been made to prepare ultrafiltration membranes from diblock 

copolymers by using one block as pore template: after film formation, an annealing 

step was crucial to obtain well-defined micro phase-separated morphologies in the 

bulk of the polymer film, then a selective dissolution or etching step had to be 

performed.17, 18 

One of the most important industrial processes for the fabrication of integrally 

anisotropic (“asymmetric”) polymer membranes is non-solvent-induced phase 

separation (NIPS) where a casted film of a polymer solution is immersed in a 

precipitation bath.19 This is a straightforward and fast one-step procedure. 

Membrane morphology and barrier structure can be controlled by a range of 

parameters; most important are the mutual interactions between membrane 

polymer and solvent (or solvent mixture) on the one hand, and between polymer 

and non-solvent on the other hand (polymer solvent and non-solvent must be 

miscible). In addition to the thermodynamic boundary conditions, the kinetics of 

mass-transfer and phase separation can have a decisive influence.20 The obtained 

materials typically exhibit a very thin “skin” layer which strongly determines the 

separation properties and is mechanically supported by a macroporous 

substructure.20 Such “asymmetric” membranes find their applications in pressure-

driven separation processes such as ultrafiltration, nanofiltration or reverse 

osmosis. If water is used as non-solvent, phase separation of amphiphilic block 

copolymers should result in a hydrophobic matrix featuring pores which are coated 

with the hydrophilic compartment. Recently, this has been demonstrated for well-

defined block copolymers, polystyrene-block-poly(4-vinylpyridine).21 Here, poly(4-

vinylpyridine) should cover the pore interior and serve as a weak polyelectrolyte, 

rendering the membranes pH-sensitive – this, however, had not been studied. 

Other attempts towards stimuli-responsive membranes via immersion precipitation 

are based on statistical22 or grafted23 block copolymers with smart properties. In 

our groups, a well-defined polystyrene-block-poly(N,N-dimethylaminoethyl 

methacrylate) (PS-b-PDMAEMA) block copolymer was shown to form self-supporting 

asymmetric membranes via the NIPS process from solvent mixtures of THF and 
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DMF.24 This polymer, S81D19
75, was synthesized via sequential anionic polymerization 

techniques.7 Note that the subscripts correspond to the weight fractions of the 

corresponding blocks and the superscript is the absolute molecular weight in 

kg/mol. We could show that these membranes are able to react onto two 

independently addressable stimuli, pH and temperature, in terms of water flux and 

effective pore-size, attributed to the smart properties of the hydrophilic block, 

PDMAEMA.15 

Within this contribution we considerably extend our earlier work. A block 

copolymer comprising a higher content of hydrophilic material, S68D32
100, was 

synthesized in an analogous way and also used for the fabrication of stimuli-

responsive asymmetric membranes. The parameters of the membrane casting 

process, NIPS, were systemically varied for both S81D19
75 and S68D32

100. First, the 

influence of the composition of the solvent mixture (THF and DMF) for the casting 

solution on the resulting membrane morphology and performance is thoroughly 

investigated. Further, the influences of different “open-times” in between film 

casting and the immersion into the coagulation bath as well as of varied casted film 

thickness were studied. All obtained membrane structures were analyzed with 

scanning electron microscopic techniques, and the corresponding water fluxes were 

determined. Finally, the double stimuli-responsive character for one representative 

membrane of each polymer is demonstrated through pH- and temperature 

dependent flux measurements. Although not all parameters which have influence 

on membrane structure for the presented system consisting of block copolymer, 

THF, DMF, and water are exhaustively addressed, we are able to point out 

important tendencies, and the results can be interpreted in a conclusive way. 

Please note that we are dealing with a combination of two ternary phase diagrams, 

polymer, solvent, and non-solvent for each of the two blocks, providing a complex 

multi-parameter space. 
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Experimental 

Materials 

sec-Butyllithium (Acros) was used as delivered. THF (Fluka) was distilled from CaH2 

and K. Afterwards, the solvent was directly transferred into the stirred glass 

reactor. Styrene was kindly provided by BASF and was stirred over Bu2Mg (Aldrich) 

and afterwards condensed on a vacuum line into glass ampoules. N,N-

dimethylaminoethyl methacrylate (Aldrich) was stirred with tri-octylaluminium 

(Aldrich) and afterwards condensed on a vacuum line. 1,1-diphenylethylene 

(Aldrich) was distilled from sec-butyllithium and stored under nitrogen. 

Synthesis 

Polystyrene-block-poly(N,N-dimethylaminoethyl methacrylate) was synthesized via 

sequential living anionic polymerization in THF (500 ml) at low temperatures in the 

presence of alkoxides to stabilize the living chain end. The detailed procedure has 

already been described.7 For S68D32
100, first styrene (68 g, 0.65 mol) was initiated 

with sec-butyllithium (1.3 ml, 0.99 mmol) at -70°C. Afterwards, the reaction was 

allowed to proceed at -70°C for 30 minutes. For polymerization of the second 

block, the polystyrene chains were end-capped with 1,1-diphenylethylene (0.36 ml, 

2 mmol) at -50°C in order to attenuate the reactivity of the anions. 25, 26 

Otherwise, attack of the ester moiety would occur upon addition of N,N-

dimethylaminoethyl methacrylate. The latter (32 g, 0.21 mol) was injected via 

syringe into the reaction vessel and was polymerized for 1 h at -40°C. Finally, the 

reaction was stopped through addition of 3 ml of degassed isopropanol, and the 

polymer was purified through dialysis against THF and dioxane and freeze-dried. 

S81D19
75 has been prepared in an analogous way, employing both monomers in the 

appropriate ratio. 

Membrane preparation 

Membranes were prepared via the NIPS process. 200 µm thick films were cast from 

a solution of PS-b-PDMAEMA (1.5 g, 15 wt. %), and a mixture of DMF and THF with a 

doctor blade onto polished glass substrates. After the so-called “open-time” in 

contact with air (relative humidity was 30-40% and temperature was ~20°C), the 

as-cast films were immersed into a bath containing de-ionized water for final 
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formation of the membrane morphology. During the next 60 minutes, the films 

started to lift off the glass surface. After 12 hours, the membranes were taken out 

of the water bath and stored in de-ionized water until used for water flux 

measurements. 

Water flux measurements 

Water flux measurements were carried out in a stirred ultrafiltration test cell 

(Amicon 8010, Millipore, effective membrane diameter 22 mm) connected to a 

water reservoir at a constant height of the water column of 25 cm, providing a 

transmembrane pressure of 0.025 bar. Values provided in Table 1A and 1B were 

obtained through averaging the obtained water fluxes for 3 membranes. Deviations 

in between membranes of the same cast film were in the range of 15 %. The 

membrane was placed in this cell which was immersed in a water bath kept at 

constant temperature. pH was adjusted through dilute solutions of NaOH and HCl in 

deionized water; after each change in pH a time span of 2 hours under flow-

through was used to allow equilibration. Temperature ramps were performed 

through keeping the whole ultrafiltration cell in a tempered water bath. Steps 

were 10 °C, equilibration time in between two points was 1 hour, except for the 

highest temperature (65°C: 2 hours). 

Characterization 

NMR  

1H-NMR measurements were performed on a Bruker 250 MHz AC spectrometer in 

CDCl3 as solvent. The block copolymer composition was determined through the 

integral ratio between the styrene protons (5H, δ = 6.3-7.2 ppm) and the CH2 

protons adjacent to the ester group group of DMAEMA (2H, δ = 4.1 ppm). 

Size exclusion chromatography 

Size exclusion chromatography (SEC) measurements were performed on a set of 30 

cm SDV-gel columns of 5 mm particle size having a pore size of 105, 104, 103 and 

102 Å with refractive index and UV (λ = 254 nm) detection. SEC was measured at an 

elution rate of 1 ml/min with THF containing 0.25 wt.% tetra-

butylammoniumbromide (TBAB) as eluent. 
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Scanning electron microscopy 

SEM was carried out on a Leo Gemini 1530. The specimens were dried under 

vacuum over night and coated with approximately 2 nm Pd. For the cross sections, 

a piece of the sample was frozen together with the sample holder and broken 

afterwards. 

Transmission electron microscopy 

TEM micrographs were taken on a Zeiss CEM 902 operating at 80 kV. 

Dynamic light scattering 

Dynamic light scattering (DLS) measurements were performed in sealed cylindrical 

scattering cells (d = 10 mm) at a scattering angle of  90° on an ALV DLS/SLS-SP 

5022F equipment consisting of an ALV-SP 125 laser goniometer with an ALV 5000/E 

correlator and a He-Ne laser with the wavelength λ = 632.8 nm. The CONTIN 

algorithm was applied to analyze the obtained correlation functions. Apparent 

hydrodynamic radii were calculated according to the Stokes-Einstein equation. 
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Results and Discussion 

Synthesis of the PS-b-PDMAEMA block copolymers 

Two amphiphilic block copolymers were synthesized via sequential anionic 

polymerization in THF. After purification, they were characterized through a 

combination of 1H-NMR and SEC. The final composition was determined to be 

S81D19
75 and S68D32

100. Note that the subscripts refer to the weight fraction of the 

corresponding block and the superscript to the absolute molecular weight in 

kg/mol. The degrees of polymerization were S600D90 (S81D19
75) and S650D205 (S68D32

100). 

Both polymers exhibited a very narrow molecular weight distribution 

(polydispersity index (PDI) = 1.03 for S81D19
75 and 1.08 for S68D32

100). The SEC traces 

with THF and additional 0.25 % TBAB as eluent and the 1H-NMR spectrum for 

S68D32
100 are shown in Figure 1. 

 

Figure 1: SEC traces for the S68 precursor (solid black line) and S68D32
100 (solid grey line) with 

THF and additional 0.25 wt. % TBAB as eluent (A); 1H-NMR spectrum in CDCl3 for S68D32
100, the 

inset shows the chemical structure of the AB diblock copolymer and the assignment of the 
important NMR-signals (B). 

 

During the polymerization of S68D32
100, a small amount of recombination occurred, 

as visible in the SEC trace in Figure 1A. That also explains the slightly increased 

PDI. The molecular weight of the first block, polystyrene, was determined with a 

PS calibration curve. The NMR in Figure 1B was used to determine the length of the 

second block, PDMAEMA, via the comparison of the styrenic protons (a, 5H, δ = 6.2 
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– 7.3 ppm) and the methylene group of DMAEMA adjacent to the ester moiety (e, 

2H, δ = 4.1 ppm). The contribution from the single 1,1-diphenylethylene used for 

endcapping of the living PS chains for the NMR integral of the PS protons was 

negligible.  

Membrane preparation and characterization 

All membranes were prepared via the NIPS process. Mixtures of THF and DMF which 

are supposed to mix ideally and are both miscible with water in the coagulation 

bath were selected as solvent for the block copolymers. THF is supposed to be the 

better solvent for PS, DMF for PDMAEMA. Polymer solutions of 15 wt. % in THF/DMF 

mixtures were cast on a pre-cleaned planar glass substrate using a doctor blade 

with different step heights (50 – 200 µm). After film-casting, the solvent was 

allowed to evaporate for a certain amount of time (up to 10 minutes) before the 

whole substrate was immersed into the non-solvent bath. This is the so-called 

“open-time”. During this step, mostly the higher volatile solvent (here THF) 

evaporates, the polymer enriches at the polymer-air interface and eventually phase 

separation could even start in the top layer of the “proto-membrane”. We suppose 

that this step is crucial for the formation of the pores of the separation layer as 

well as the overall porous membrane structure. After immersion in the 

precipitation bath, final solvent exchange and solid film formation took place. 

In an earlier work, we had shown that for a mixture of THF (50%) and DMF (50%), a 

polymer concentration of 15 wt. %, a doctor blade step height of 200 µm, an 

“open-time” of 60 seconds, and deionized water as the coagulation bath double 

stimuli-responsive membranes with addressable effective pore size could be 

obtained for S81D19
75.24 These asymmetric membranes exhibited two independently 

addressable stimuli, pH and temperature, attributed to the smart properties of the 

second block, PDMAEMA. We now extend this work to another polymer, S68D32
100. 

The higher content of the second block, PDMAEMA, should have an influence on the 

membrane morphology under similar casting/NIPS conditions as the hydrophilic-to-

hydrophobic balance of the diblock copolymer is altered. A higher content of 

DMAEMA should increase the compatibility with the coagulation bath and therefore 

result in a slower, more controlled precipitation or phase separation.  
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The aggregation behavior of PS-b-PDMAEMA in dilute aqueous solution under the 

same conditions was studied. Solutions with a polymer concentration of 1-5 g/L 

were prepared in a mixture of THF (50%) and DMF (50%), and the solvent was then 

exchanged against deionized water via dialysis. Both polymers formed spherical 

core-corona micelles in water at pH 6 with <Rh>z = 35 nm (S81D19
75, DPDMAEMA = 90) 

and <Rh>z = 45 nm (S68D32
100, DPDMAEMA = 205) as revealed via dynamic light 

scattering and transmission electron microscopic techniques (DLS and TEM results 

are not shown here). The size difference can be tentatively explained through the 

block length of the corresponding PDMAEMA compartment. Under these conditions, 

the polymer chains are protonated and moderately stretched. In both cases, the 

length of the PS block is comparable. The details of the phase diagram of such 

block copolymers in the bulk are not known, but according to their composition and 

volume fractions, the equilibrated materials should form cylindrical morphologies. 

We estimated the chi-parameter for this system by using the solubility parameters 

for PS (9.1 (cal/cm3)1/2) and PDMAEMA (9.21 (cal/cm3)1/2).27 This resulted in a value 

of 0.024, which is rather small. If the corresponding degrees of polymerization are 

used (600 + 90 for S81D19
75 and 650 + 205 for S68D32

100), chi*N has a value of 16.8 and 

20.5, indicating phase separation of the two blocks taking place. One may, of 

course, speculate about the applicability of this method for a system where the 

solubility parameters are rather close. 

In the following, first a detailed description of one representative membrane 

structure is given. Thereafter, the influences of solvent composition, “open time”, 

and casted film thickness are discussed in separate sections.  

Asymmetric membrane structure 

The NIPS process typically generates membranes with an anisotropic cross section. 

We obtained this for several combinations of the varied parameters. Exemplarily, 

the structure obtained for a mixture of THF (60%) and DMF (40%), an “open-time” 

of 60 seconds, and a casted film thickness of 200 µm is shown in Figure 2. 
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Figure 2: SEM micrographs of a S81D19
75 membrane prepared via the NIPS process (60% THF / 40% 

DMF, 200 µm; 60 sec); A, B: cross sections at different magnifications; C: on-top view onto the 
membrane surface; D: view onto the bottom surface of the membrane, the inset shows the 
structure obtained in the proximity of the bottom surface. 

Figure 2A displays a cross section of the membrane. The membrane thickness as 

determined via SEM was 80 ± 10 µm, and the anisotropic nature is evident. A thin 

separation layer with a thickness of around 1 µm and a compact sponge-like 

structure was obtained at the surface formerly in contact with air (Figure 2B). 

Beneath the top layer, broader “finger-like” channels appeared, the so-called 

“macrovoids”. These develop during the immersion in the coagulation bath. 

Membrane structures like this are typical for systems which show “instantaneous 

demixing” during the NIPS process.20, 28 Here, the rapid precipitation upon contact 

with water was attributed to the PS part of the PS-b-PDMAEMA block copolymers. 

The anisotropy then results from both time delay and an uneven composition 

distribution throughout the whole film during the solvent / non-solvent exchange. 

Macrovoids like obtained in this case are acceptable for “medium pressure” 

applications like ultra- or microfiltration. Figure 2C presents an on-top view onto 

the membrane surface. The structure is not well-ordered, no long-range order 

could be seen. The appearance was rather sponge-like. Although the pore sizes 

obtained via SEM were in the range of 20-80 nm, the effective barrier pore size for 

a comparable structure was shown to be in the range of 10-30 nm.24 This would 
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position the membrane at the borderline between ultra- and microfiltration.3 The 

bottom surface which has been in contact with the glass substrate is shown in 

Figure 2D. Large pores with sizes up to 20 µm were present. All observed features 

of the membrane pore structure should yield high water fluxes. The inset in Figure 

2D highlights the structure obtained in close proximity to the bottom of the 

membrane, e.g. on an edge originating from the cross section preparation. 

Wormlike, interconnecting objects could be seen. Apparently, the time delay for 

demixing between top and bottom surface of the casted film lead to a more 

controlled phase separation and resulted in structural features which are different 

from those for precipitated standard membrane polymers. This will be discussed in 

more detail in the following sections.  

Influence of the solvent composition 

The choice of the polymer solvent is a crucial parameter for the NIPS process. 

Here, mixtures of THF and DMF were used, and the compositions varied from 25% / 

75% to 75% / 25% for both S81D19
75 and S68D32

100. The two compartments, PS and 

PDMAEMA, are inherently different in their chemical nature. While PDMAEMA is 

soluble in water, PS is completely insoluble. Further, THF is supposed to be the 

better solvent for PS, and DMF for PDMAEMA. As THF is more volatile than DMF, 

during the “open-time” mostly THF evaporates in the top-layer of the “proto-

membrane”. This, in combination with the hydrophobicity of the PS block, ensured 

immediate precipitation upon contact of the film with the coagulation bath. To 

investigate the effect of the solvent composition on the final membrane 

morphology and performance, both S81D19
75 and S68D32

100 membranes were cast from 

solutions of 75% THF / 25% DMF, 60% THF / 40% DMF, 50% THF / 50% DMF, 40% THF 

/ 60% DMF, and 25% THF / 75% DMF. In all cases, the “open-time” was 60 seconds, 

and the casted film thickness was 200 µm. SEM micrographs for all prepared 

samples are shown in Figure 3. The insets in the SEM micrographs show 

enlargements of the cross section (upper inset) and the membrane morphology on 

the bottom of the membrane (lower inset), if found different from that of the top 

section. The grey bars on the right hand side of Figure 3 display the solvent 

composition used for the fabrication of the respective two membranes: dark grey 

corresponds to the THF, lighter grey to the DMF content. 
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Figure 3: SEM micrographs for S81D19
75 and S68D32

100 membranes cast from different solvent 
mixtures: the left column shows S81D19

75, the right column S68D32
100, the grey bars to the right 

correspond to the solvent composition (dark grey – THF, lighter grey – DMF); the solvent 
composition was 25% THF / 75% DMF (A, B), 40% THF / 60% DMF (C, D), 50% THF / 50% DMF (E, 
F), 60% THF / 40% DMF (G, H), and 75% THF / 25% DMF (I, J); the insets show enlargements of 
the respective cross section (upper inset) and the membrane morphology at the bottom of the 
structure (lower inset), if found to be different from the top layer. 

First, the influence of the solvent composition will be described for each polymer 

separately. Afterwards, both polymers will be compared. The left column shows 

the obtained structures for S81D19
75 (Figure 3A, C, E, G, I). At first glance, all the 

membranes exhibited similar morphologies. A thin, compact separation layer was 

formed on top of a macroporous support with “finger-like” macrovoids oriented 

perpendicular to the glass substrate. The membrane thickness also was comparable 

in all cases and in the range of 80-90 µm, as determined via cross sectional SEM. 

The upper inset in each micrograph presents an enlargement of the separation 

layer. Typically, this part had a thickness of around 1 µm, except for a casting 

solution of 40% THF / 60% DMF (Figure 3C). Here the top layer was around 15-20 µm 

thick. Apart from that, both structure and porosity of the skin layer seemed to be 

independent from the solvent mixture used for film casting. Contrary, as shown in 

the lower inset in Figure 3C, at the bottom surface of the membrane wormlike 

structures were formed with a thickness of 60-70 nm and a length of up to several 

µm. In some cases, even interconnecting networks of such worms could be found. 

Obviously, the mechanism for the structure formation here strongly differs from 

that of the top layer. This may result from a different solvent composition present 

at the bottom of the polymer film following the immersion into the water bath. 

Surprisingly, such wormlike objects were not found for lower or for slightly higher 

THF contents of the casting solution (note that the membrane from 40% THF / 60% 

DMF had also a different “skin” layer thickness). However, upon increasing the 

amount of THF to 75%, similar observations could be made (Figure 3I, lower inset). 

Here, the cylindrical aggregates seemed to be far more developed, visible through 

the even appearance of the surface. They are better defined concerning the 

average diameter. Moreover, less junctions are formed, the cylinders merely 

entangle. 

The situation was different if the same experiments were carried out for the 

polymer with the higher content of hydrophilic material, S68D32
100 (Figure 3B, D, F, 

H, J). For the lowest content of THF (25%), the whole membrane cross section 
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exhibited a sponge-like morphology, as seen before for the separation layer on top 

exclusively (Figure 3B). With raising THF content, the structure became less 

compact (Figure 3D, upper inset, 40% THF) and, like seen for S81D19
75, wormlike 

structures were again developed at the bottom surface (Figure 3D, lower inset). 

This got even more pronounced for a THF content of 50% (Figure 3F, lower inset). 

Also here, the cylindrical structures appeared further developed, with less 

branches and a higher aspect ratio. Along with the apparent higher porosity, the 

overall film thickness increased as well. For 25% and 40% THF, films with around 

40-45 µm were obtained whereas for >50% THF a thickness of 65 µm could be 

determined via SEM. If 60% THF were used in the casting solution, a transition in 

the membrane structure could be seen. Figure 3H displays an asymmetric structure 

again, as found for S81D19
75 before (Figure 2). Clearly, a compact barrier layer was 

formed on top of the membrane (Figure 3H, upper inset) with a thickness of 5-10 

µm. The macrovoids here were not “finger-like”, instead they were “pear-shaped”. 

This could also be attributed to the increased PDMAEMA content and the better 

compatibility between polymer and non-solvent, altering the kinetics of the phase 

separation.20 The bottom view (Figure 3H, lower inset) presents a rather packed 

network of branched cylindrical structures. After casting with the highest THF 

content, 75%, the overall membrane morphology was comparable (Figure 3J). Here, 

the “pear-shaped” appearance of the macrovoids was even more pronounced. Also, 

different layers of macrovoids were present, scarcely one example penetrating 

from separation layer to the bottom was found. The structure within the top layer 

did not show any difference (Figure 3J, upper inset), whereas the branching 

tendency within the bottom surface increased (Figure 3J, lower inset). 

Irrespective of the polymer, the variation of the solvent mixture composition has 

two consequences: with increasing THF content, the compatibility between solvent 

and non-solvent slightly decreases whereas the viscosity decreases considerably; 

both, thermodynamic and kinetic, effects should lead to faster overall phase 

separation. However, if compared, the solvent composition of the casting solution 

did not have a drastic effect on the obtained membrane structures for S81D19
75. 

Depending on the THF content, slight variations in the thickness of the separation 

layer on top of the membranes were observed. Furthermore, at certain 

compositions a more controlled phase separation of the block copolymer was 
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promoted in close proximity to the glass substrate, resulting in cylindrical 

structures. This could be explained by the composition gradient throughout the 

polymer film which develops following immersion of the “proto membrane” into 

the water bath leading to a delayed precipitation so that defined block copolymer 

aggregation could take place before. In contrast, for S68D32
100, the solvent 

composition played an important role. Up to 50% THF in the initial casting solution, 

membranes with an isotropic cross section were obtained. First, this could be 

explained through the higher compatibility of the used block copolymer with the 

coagulation bath caused by the higher content in hydrophilic material, PDMAEMA. 

Second, during the “open-time”, mostly THF evaporates and the DMF content 

increased in the as-cast polymer film. As DMF is supposed to be the better solvent 

for PDMAEMA this further enhances the described effect. In combination, both 

shifted the system away from rapid demixing and resulted in a more compact 

membrane structure. If a sufficiently high THF content was used for film casting, 

the same “open-time” caused enough solvent depletion so that, upon immersion in 

the water bath, rapid demixing also occurred for this polymer. In this case, 60% 

THF have proven to be enough, as shown in Figure 3H. To our opinion, the 

structures obtained at the bottom surface fortify the drawn conclusions. The higher 

compatibility of S68D32
100 with water resulted in a slower precipitation and, for all 

solvent compositions except 25% THF, in well-defined cylindrical aggregates. At the 

same time, the increasing overall content of the good solvent for PS (THF) also 

favored the delayed precipitation as precondition for the formation of defined 

aggregates of the block copolymer. Up to now, no absolutely conclusive 

explanation could be given for the amount of branching observed for these 

structures. The tendency for S68D32
100, however, seemed to increase with the THF 

content, as shown in the lower insets of Figure 3D, F, H, and J. Overall, the block 

copolymer and its composition had a decisive influence on the porous membrane 

morphology resulting from the NIPS process, and for S68D32
100 the selective solvent 

properties for the two blocks could be used to change the pore structure (while 

viscosity is of less importance). The morphological features obtained at the bottom 

of the membranes, unfortunately, could scarcely be compared with solution-based 

aggregation experiments (cf. above) as the actual solvent composition at the point 

of immersion was hard to determine. 
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Influence of the “open time” 

As described earlier, asymmetric cross-section structures were desired for high-flux 

membranes. Hence, the solvent compositions taken for the investigation of the 

“open-time” were 50% THF / 50% DMF in the case of S81D19
75 and 60% THF / 40% 

DMF for S68D32
100. The casted film thickness was 200 µm in all cases. For both 

polymers, experiments were carried out with “open-times” between 0 seconds and 

10 minutes. To avoid any misinterpretation, we clearly state that 0 seconds 

corresponded to an immediate immersion of the as-cast film into the water bath. 

Nevertheless, a delay of a few seconds due to the removal of the doctor blade and, 

of course, the casting process itself, could not be avoided. First, results for both 

polymers are described separately and are afterwards compared. 

S81D19
75 

Membranes were cast from solutions of S81D19
75 with “open-times” of 0, 30, 60, 90 

seconds, 2, and 3 minutes. For times exceeding 90 seconds, no further difference 

in the membrane structure could be found. SEM micrographs of membrane cross 

sections obtained for different “open-times” are shown in Figure 4. The upper 

insets show an enlargement of the structure at the separation layer on top of the 

membranes. In one case, an on-top view onto the membrane surface in contact 

with air is shown in the lower inset. Figure 4A shows a cross section obtained after 

0 seconds. Clearly, the asymmetric nature of the membrane could be seen. The top 

layer (Figure 4A, inset), however, appears far more dense and does not show any 

pores. Obviously, the very short “open-time” prevented the system from the 

formation of a porous top layer. Indeed, the membrane did not exhibit any 

measurable water flux (cf. below), hinting to a non-porous top layer. However, this 

will be discussed in more detail later. Beneath, “finger-like” macrovoids were 

obtained, attributed again to the rapid demixing process. 
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Figure 4: SEM micrographs for membranes from S81D19
75 cast from a mixture of THF (50%) and 

DMF (50%) after different “open-times”: 0 seconds (A), 30 seconds (B), 60 seconds (C), and 90 
seconds (D); the upper insets show the membrane top surface (A), or an enlargement of the 
respective separation layer (B, C), the lower inset displays an on-top view onto the top layer. 

After 30 seconds “open-time”, the formation of a porous top layer was already 

evident, as shown in Figure 4B. This separation layer exhibited a thickness of 

around 1 µm. After 60 seconds, almost no difference in the membrane structure 

was obtained (Figure 4C). The top layer increased slightly in thickness. This 

situation changed if the “open-time” was increased to 90 seconds. Here, the 

membrane no longer showed an asymmetric cross section (Figure 4D). Instead, a 

sponge-like morphology was obtained throughout the whole film. Obviously, 

through the solvent evaporation during these 90 seconds a too high polymer 

concentration was reached and phase separation occurred even before the 

immersion into the water bath. In the lower inset of Figure 4D an on-top view onto 

the membrane top layer is shown. Comparable to the cross section, spherical holes 

in the range of 2-5 µm could be seen. Similar observations were made if the “open-

time” was increased beyond 90 seconds, but the macropore dimensions did not 

further increase with time. 
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S68D32
100 

Membranes were cast from solutions of S68D32
100 with “open-times” of 0, 30, 60, 90 

seconds, 2, 3, and 10 minutes. SEM micrographs of the membranes cross sections 

obtained for different “open-times” are shown in Figure 5. 

 

Figure 5: SEM micrographs for membranes from S68D32
100 cast from a mixture of THF (60%) and 

DMF (40%) after different “open-times”: 0 seconds (A), 60 seconds (B), 2 minutes (C), and 10 
minutes (D); the upper insets show an enlargement of the respective separation layer, the 
lower insets display the morphology obtained at the bottom of the membrane. 

If the as-cast film was immersed into the coagulation bath immediately, both 

separation layer and the volume structure were less developed (Figure 5A). The top 

layer, like observed for S81D19
75, exhibited a thickness below 500 nm and showed no 

pores (Figure 5A, upper inset). Also here, no water flux could be obtained (cf. 

below). The macrovoids beneath were rather broad and ill-defined. At the bottom 

surface, interconnecting wormlike objects were observed (Figure 5A, lower inset). 

After 60 seconds, the membrane structure was as already described in the previous 

chapter. A compact separation layer with a thickness of around 10 µm is formed, 

supported from underneath by “pear-shaped” macrovoids. If longer “open-times” 

were used, the membrane morphology changed. After 2 minutes, an isotropic cross 

section was obtained (Figure 5C), comparable to the structures obtained for 60 

seconds and a lower THF content in the casting solution (cf. Figure 3B, D, F). A 
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possible explanation is that the long “open-time” resulted again in a depletion of 

the polymer film from THF, leading to phase separation occurring before the 

immersion step. Contrary to S81D19
75, where a sponge-like structure with features in 

the region of 2-5 µm was formed, for S68D32
100 a densely packed sponge-like 

structure could be seen. Again, the altered block copolymer composition played an 

important role. As DMF is the better solvent for PDMAEMA, its higher content 

improved the solubility of the block copolymer even at higher concentrations in the 

remaining solvent mixture, now mainly consisting of DMF. As a direct result, more 

defined structures could be obtained for S68D32
100 even for long “open-times”. This 

could also be seen in the lower inset of Figure 5C, where wormlike structures are 

shown at the bottom surface of the membrane. To further elucidate this 

statement, an as-cast polymer film was left for 10 minutes prior to immersion. In 

this particular case, all THF should have been evaporated and the “proto-

membrane” should only consist of polymer and DMF. Clearly, the obtained 

membrane (Figure 5D) exhibits a similar structure as the one formed after 2 

minutes. If combined with the results discussed for different solvent compositions, 

the tendency for the formation of branches for the cylindrical structures at the 

bottom surface of the membranes seems to increase with the “open-time”. For 10 

minutes, scarcely single, unconnected cylinders can be seen (Figure 5D, lower 

inset). 

Comparison of both block copolymers 

An increase in “open-time” over a certain critical value resulted in macrophase 

separation taking place prior to the immersion into the coagulation bath for both 

block copolymers investigated. This critical value was determined through both the 

content in hydrophilic material, PDMAEMA, and THF. Due to the high volatility of 

THF, the amount of THF in the casting solution determined the actual polymer 

concentration at comparable “open-times”. For the polymer with the lower 

content of DMAEMA, S81D19
75, the critical value was reached after 90 seconds. Here, 

the polymer already precipitated in the as-cast film, as could be observed by 

transition to a turbid film. After immersion in the coagulation bath, an isotropic 

cross section with a comb-like morphology had formed. The longer PDMAEMA block 

of S68D32
100 yielded a higher compatibility with the water bath and also kept the 

block copolymer soluble at higher concentrations. Thus, even for an “open-time” 
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of 10 minutes, more developed microphase separated porous features could be 

obtained as displayed in Figure 5D. 

Influence of casted film thickness 

After the discussion on the role of the solvent composition of the casting solution 

and the “open-time”, the next important parameter was the step height used for 

film casting. A thicker film contains more solvent and, due to mass transfer over 

the same area, should slower deplete with respect to the THF content. The 

influence of the casted film thickness was investigated for S81D19
75. Films with 50, 

100, 150, and 200 µm thickness were cast like described before. The solvent 

composition was 50% THF and 50% DMF. The “open-time” was kept at 60 seconds. 

The resulting SEM micrographs are shown in Figure 6. Note that only cross sections 

for 50, 100, and 150 µm initial film thicknesses are shown here, for 200 µm the 

reader is referred to Figure 3C or Figure 4C. 

 

Figure 6: SEM micrographs for membranes from S81D19
75 cast from a mixture of THF (50%) and 

DMF (50%) with 60 seconds “open-time” for different film thicknesses: 50 µm (A), 100 µm (B), 
and 150 µm (C). 
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For a film thickness of 50 µm a sponge-like membrane structure was obtained 

(Figure 6A), very similar to the one from a 200 µm film after an “open-time” of 90 

seconds (Figure 4D). Both in the volume and on the surfaces structural features in 

the range of 2-5 µm and with a spherical shape were visible. We suppose that this 

could be explained in a similar manner like for the “open-time”. For a thinner as-

cast film the critical polymer concentration was reached after a shorter time 

period, 60 seconds in this case. This is again due to the evaporation of the THF, the 

better solvent for the majority block, PS. For 100 µm step height, a comparable 

membrane structure could be observed (Figure 6B). However, throughout the cross 

section also some locations were found where the cell-structure seems to be 

disturbed. This could already be an indication for the beginning of the macrovoid 

formation. Apart from that, shape and size of the obtained structures matched. 

The transition towards an asymmetric membrane morphology was reached if films 

with an initial thickness of 150 µm were cast (Figure 6C). “Finger-like” macrovoids 

were obtained beneath a dense skin layer with a thickness of around 5 µm. 

However, the structure was still not as defined as for films with 200 µm casting 

thickness, the macrovoids did not penetrate the whole supporting volume, and 

another compact layer was formed on the bottom of the membrane. 

Overall, the results of variation of casted film thickness and varied “open time” 

could consistently be discussed based on evaporation of THF from the solvent 

mixture, controlled by the mass transfer to the film surface, with the same 

influences on the transition from anisotropic to isotropic porous cross-section 

morphologies. And it should also be possible to favor the formation of controlled 

microphase separated morphologies via casted film thickness (or its combination 

with “open time”) if the respective copolymer / solvent system will allow this (cf. 

above). 

Tunable water flux 

After varying the preparation parameters, the water flux through the obtained 

membranes was determined. First, the influence of the casting solvent mixture 

composition and “open-time” will be discussed. Afterwards, the double stimuli-

responsive character of those structures will be highlighted using two 

representative examples: membranes from both S81D19
75 and S68D32

100 cast from a 
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mixture of 60% THF and 40% DMF with 200 µm film thickness and 60 seconds “open-

time”. Water flux values obtained with de-ionized water (pH 6) at 25 °C for both 

polymers and different preparation conditions are summarized in Table 1. 

Table 1A: water flux for different solvent compositions 

Solvent composition   

[% THF / % DMF] 
25 / 75 40 / 60 50 / 50 60 / 40 75 / 25 

Water flux for 

S81D19
75 [L/m2·h·bar] 

200 4400 2500 4100 1400 

Water flux for 

S68D32
100 [L/m2·h·bar] 

100 70 100 2100 150 

 

Table 1B: water flux for different “open-times” 

“Open-time” 0 30 sec 60 sec 90 sec 2 min 10 min 

Water flux for S81D19
75 

[L/m2·h·bar] 
0 4800 4100 0 -a -a 

Water flux for S68D32
100 

[L/m2·h·bar] 
0 -b 2100 -b 100 100 

a: not determined, no structural change observed for “open-times” exceeding 90 seconds 

b: not determined, membrane was not prepared under these conditions 

 

Table 1A shows the water flux values for different compositions of the solvent 

mixture for film casting. In the case of S81D19
75, high flux values were obtained 

except for the lowest THF content, 25%. Although this was not visible in the SEM 

micrographs, the skin layer for this membrane seemed to be less porous. For higher 

THF contents larger flux values were measured. As observed in Figure 3 concerning 

the morphological features, also the water flux showed no distinct tendency for 

THF contents ranging from 40% to 75%. The membranes cast from solutions 

containing 40% and 60% THF exhibited the highest flux values with around 4000. For 

50% and 75% THF, permeabilities of 2500 and 1400, respectively, were determined. 

For the diblock copolymer with the longer PDMAEMA block, S68D32
100, low flux values 

were measured for THF contents in the solvent mixture of 25%, 40%, and 50%. This 

could be explained by the compact, isotropic cross section of these membranes (cf. 

Figure 3B, D, and F). The membrane cast from 60% THF and 40% DMF, exhibiting 
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the desired asymmetric structure, showed a drastically increased flux with a value 

of 2100. If the THF content was increased further to 75%, the flux decreased again 

although the membrane cross section still was anisotropic in nature. A possible 

explanation is the earlier discussed transition from “finger-like” towards “pear-

shaped” macrovoids. Furthermore, these structural features did not penetrate the 

whole membrane any more, resulting in a reduced permeability. 

Table 1B summarizes the results for different “open-times”. For S81D19
75, no flux 

could be measured if this period is either too short or too long. For 0 seconds the 

skin layer did not exhibit any porosity (Figure 4A), for 90 seconds phase separation 

already started before the immersion into the water bath, leading to a sponge-like 

cross section. As mentioned earlier, longer “open-times” than 90 seconds did not 

lead to any significant change in the membrane morphology. Surprisingly, for 30 

seconds “open-time” the highest water flux was measured.  

Also for S68D32
100 no water flux was observed for 0 seconds “open-time”. Obviously, 

also here a certain evaporation of THF was necessary for the formation of pores in 

the top skin layer. For times exceeding 60 seconds, spongelike isotropic membrane 

cross sections were obtained again, like discussed in Figure 5. Comparable to the 

structures obtained for solvent mixtures with 50% THF or less, these exhibited a 

rather low water flux around 100, attributed to the densely packed membrane 

structure. This has been verified for “open-times” up to even 10 minutes. 

Next, the surrounding conditions were varied to trigger both stimuli of the “smart” 

PDMAEMA, pH and temperature. To reach a new equilibrium state under flow-

through conditions, each change in pH was performed over a time span of 2 hours. 

The waiting time in between two temperatures was 1 hour. Measurements were 

performed for two representative membranes, prepared from solutions of 60% THF 

and 40% DMF for both polymers. The results are shown in Figure 7. 
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Figure 7: pH- and temperature dependent water flux (multiplied with viscocity for the 
respective temperatures) for S81D19

75 (A) and S68D32
100 (B), prepared from solutions of 60% THF 

and 40% DMF; open squares indicate measurements performed at pH 2 (-□-), open spheres pH 
6 (-○-), and open triangles pH 10 (-∆-). 

 

Figure 7A displays the water flux values obtained for S81D19
75 at different pH- and 

temperature conditions. At pH 2, almost no flux was measured due to the full 

protonation and, hence, swollen state of the PDMAEMA chains. Upon heating above 

the previously determined cloud point of around 65 °C for membranes prepared 

from this polymer,24 no increase in flux could be seen. At pH 6, the PDMAEMA 

chains were less protonated (pKa ≈ 7.78 15) and less extended, a considerably 

higher water flux was obtained. Raising the temperature to 70 °C further increased 

the water flow. Here, the LCST is applicable and at the cloud point the polymer 

chains collapse. Through a change to pH 10 yet another gain in flux could be 

achieved. Under these conditions, the PDMAEMA chains were completely 

uncharged. Surprisingly, upon heating no flux increase could be seen, indicating a 

complete collapse of the polymer chains even at room temperature. 

Figure 7B summarizes the results obtained for a membrane of S68D32
100, prepared 

using the same conditions. Here, the overall flux values were lower, confirming the 

results presented in Table 1A. This was attributed to a more densely packed skin 

layer obtained for membranes of this polymer, as already discussed according to 

Figure 3. At pH 2, again, the hydrophilic membrane material was completely 

swollen, almost no flux was measured and also no gain in flux could be seen upon 

heating. An immense increase in terms of water flux was obtained at pH 6, almost 

by a factor of 20. Subsequent heating to 70 °C, like for S81D19
75, caused a collapse 
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of the temperature-sensitive PDMAEMA chains, which were less protonated under 

these conditions. At pH 10 the largest values could be measured, again, heating to 

70 °C resulted in no further increase. 

If both polymers were compared, the content of “smart” material indeed seemed 

to have an influence. In the case of S81D19
75, a change in pH from 2 to 6 induced a 

10fold water flux increase whereas for S68D32
100 a factor of 20 could be seen. 

Further pH increase to a value of 10 resulted in a comparable change, a factor of 2 

for S81D19
75 and a factor of 1.5 for S68D32

100. Same accounted for the situation upon 

triggering the LCST at pH 6. Here, the flux rises by a factor of 1.5 (S81D19
75) and 1.3 

(S68D32
100). Obviously, the higher content of PDMAEMA lead to a higher degree of 

swelling of the whole membrane at low pH or, more precise, it facilitated a more 

pronounced de-swelling upon a change to pH 6. It remains a rather puzzling 

question why no flux increase could be detected for both membranes upon heating 

at pH 10. Membranes with comparable structure, casting conditions, and flux 

values were shown earlier to exhibit a certain LCST behavior even under these 

conditions.24 

Conclusions 

We successfully prepared asymmetric membranes via the NIPS process from 

solutions of two amphiphilic block copolymers, S81D19
75 and S68D32

100 in mixtures of 

DMF and THF. Through a systematic variation of the casting conditions for both 

polymers, e.g. the used solvent mixture, the “open-time”, or the casted film 

thickness we were able to point out crucial parameters which determine the 

obtained membrane morphologies. These results have to be interpreted with a 

certain caution, as the investigated systems are rather complex and combine the 

aspects of at least two different ternary phase diagrams, one for each block 

copolymer compartment and based on the assumption that THF and DMF mix 

ideally. Nevertheless, this work alludes to general tendencies and principles for 

morphological transitions in amphiphilic membrane systems. Moreover, the effect 

of a higher content in hydrophilic material for S68D32
100 was demonstrated, leading 

to an improved compatibility with the non-solvent bath and, hence, slower 

precipitation and further developed structural features. Thus, conditions could be 

identified where ordered micro phase separated porous morphologies were 
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observed in parts of the membrane cross-section. Both polymers were shown to 

form self-supporting membrane systems which are able to react onto two different 

external stimuli in terms of water flux, pH and temperature. 
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ABSTRACT: 

The formation of multicompartment micelles featuring a “spheres on sphere” core 

morphology in acetone as a selective solvent is presented. The polymers investi-

gated are ABC triblock terpolymers polybutadiene-b-poly(2-vinylpyridine)-b-

poly(tert-butyl methacrylate) (BVT), which were synthesized via living sequential 

anionic polymerization in THF. Two polymers with different block lengths of the 

methacrylate moiety were studied with respect to the formation of multicompart-

mental aggregates. The micelles were analyzed by static and dynamic light scatter-

ing as well as by transmission electron microscopy. Crosslinking of the polybuta-

diene compartment could be accomplished via two different methods, ‘cold vulca-

nization’ and with photopolymerization after the addition of a multifunctional 

acrylate. In both cases, the multicompartmental character of the micellar core is 

fully preserved and the micelles could be transformed into core-stabilized nanopar-

ticles. The successful crosslinking of the polybutadiene core is indicated by 1H-NMR 

and the by transfer of the aggregates into non-selective solvents like THF or dio-

xane. 
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Introduction 

Multicompartment micelles can combine several properties or functionalities in 

close proximity and are therefore promising candidates for a new class of nanoma-

terials. Different research groups have worked to develop diverse strategies for the 

preparation of such micelles in aqueous media. The term “multicompartment mi-

celles”, or more precisely, “multicompartment core micelles”, stands for self-

assembled aggregates of block copolymers with cores that are further subdivided. 

The principal concept was introduced by Ringsdorf[1] around 10 years ago and a re-

cent review reports on the progress within this field of research.[2] Those structures 

are of great interest when it comes to the simulation or understanding of biological 

systems, where different functionalities in close proximity are necessary to per-

form distinct biological functions.[3] Multicompartment micelles are very promising 

candidates for drug-delivery applications, especially for entrapment and / or re-

lease of hydrophobic species in different media. Different groups investigated the 

selective solubilization in multicompartmental micellar cores.[4-7] Hillmyer et. al. 

demonstrated the possibility of storing two different dyes in two segregated com-

partments of such a multicompartmental structure in various aqueous micellar so-

lutions.[8] 

Complex structures have been prepared from ABC triblock terpolymers in solu-

tion.[9-11] In contrast to the large number of reports on micellar aggregates from 

diblock copolymers or the structures of ABC triblock terpolymers in the bulk, the 

number of contributions on triblock terpolymer micelles in selective solvents is still 

limited.[12-16] In particular, the formation and the control of the stability of such 

systems are yet not very well studied and understood. Most of the current ap-

proaches towards multicompartmental architectures are based on the mutual in-

compatibility of fluorocarbon and hydrocarbon segments of self-assembled systems 

in aqueous media.[3, 8, 17, 18] One very recent example employs an ABCBA pentablock 

terpolymer of poly(ethylene oxide) (PEO), poly(γ-benzyl-L-glutamate) (PBLG) and 

poly(perfluoroether) (PFPE) in aqueous solution.[19] Besides, complex polymer ar-

chitectures may also lead to the formation of multicompartmental structures. 

Lodge et al. reported on ABC miktoarm star terpolymers, poly(ethylethylene)-b-

poly(ethylene oxide)-b-poly(perfluoropropylene oxide).[20, 21] The star architecture 

can suppress the formation of concentric microphase domains. This has also been 
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demonstrated by Hillmyer et al. for polyester-containing ABC miktoarm star poly-

mers with arms of PEO, poly(ethylethylene), and poly(γ-methyl-ε-caprolactone).[22] 

Additionally, charged polymer segments may induce a further compartmentaliza-

tion of either core or corona as well, as shown by Yan et al.[23] Theoretical aspects 

of the micelle formation from ABC terpolymers as model systems depending on 

block sequence, architecture and molecular weight have been addressed[24-27] and 

broadened the scope and interest of multicompartment architectures. 

 

In this contribution we present the formation of multicompartment core micelles in 

acetone solution from polybutadiene-b-poly(2-vinylpyridine)-b-poly(tert-butyl me-

thacrylate) (BVT) triblock terpolymers and their stabilization by crosslinking. The 

polymers were synthesized via sequential anionic polymerization and exhibit a very 

narrow molecular weight distribution (PDI < 1.04). The formed aggregates have 

been investigated by transmission electron microscopy (TEM), cryogenic transmis-

sion electron microscopy (cryo-TEM) and light scattering methods. The micelles are 

stable with respect to the crosslinking of the double bonds of the polybutadiene 

compartment. Crosslinking was carried out via either “cold vulcanization” with 

S2Cl2 or through UV-photopolymerization in presence of a tetrafunctional acrylate. 

The effect of the amount of crosslinking agent and/or the reaction time on the size 

and the shape of the generated nanostructures were also studied. After performing 

the crosslinking reactions in solution, the micelles were again subjected to electron 

microscopy and light scattering analysis. The success of the crosslinking was proven 

by the transfer of the micellar aggregates into THF, a non-selective solvent for all 

the three blocks. In contrast to other works within this field, the employed building 

blocks here are rather simple and consist of standard, easy-to-handle monomers. It 

is noteworthy that in all cases only one single population of aggregates was found 

and the micellar solutions are stable over several months, both before and after 

the crosslinking steps. 
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Experimental part 

Materials 

Sec-butyllithium, S2Cl2 and pentaerythroltetraacrylate (Aldrich) were used without 

further purification. Butadiene (Messer-Griesheim) was passed through columns 

filled with molecular sieves (4Å) and basic aluminum oxide. Afterwards it was con-

densed into a glass reactor and stored over dibutylmagnesium. 2-Vinylpyridine (Flu-

ka) was degassed and stirred with CaH2 over night. The monomer was condensed on 

a high vacuum line into a round bottom flask containing 2 ml of triethylaluminum 

(solution in hexane, Aldrich) per 10 ml 2-vinylpyridine. The resulting yellow solu-

tion was stirred for 2 hours. Subsequently, the calculated amount of monomer was 

condensed into a previously weighed glass ampoule and stored in liquid nitrogen 

until use. Tert-butyl methacrylate (BASF) was first degassed by 3 freeze-thaw 

cycles on a high vacuum line. Then trioctylaluminum (solution in hexane, Aldrich) 

was added until a slight yellow color of the resulting mixture persisted. The solu-

tion was stirred for 1 hour and the calculated amount of monomer was condensed 

into a previously weighed glass ampoule and stored in liquid nitrogen until use. THF 

(Fluka) was distilled from CaH2 and Na/K alloy. 1,1-diphenylethylene was distilled 

from sec-butyl lithium under reduced pressure. The solvents for the preparation of 

the micellar solutions were purchased in p.a. grade and used as delivered. 

Synthesis 

Sequential living anionic polymerization in THF 

The linear BVT triblock terpolymers were synthesized via sequential living anionic 

polymerization in THF at low temperatures using sec-butyl lithium as initiator. Un-

der these conditions, mainly 1,2-polybutadiene (86%, confirmed by 1H-NMR mea-

surements) is generated. After the polymerization of the P2VP block, 1,1-

diphenylethylene was added to end-cap the living ends of the anions. In this way 

crossover steps and transfer reactions due to too high nucleophilicity upon addition 

of the third monomer could be suppressed.[28, 29] During the polymerization of the 

PtBMA block, samples were taken from the reactor after different polymerization 

times and were precipitated into degassed methanol. The number-averaged mole-

cular weight of the polybutadiene precursor and the molecular weight distributions 
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of the triblock terpolymers were determined by gel permeation chromatography. In 

the case of the polybutadiene precursor, MALDI-ToF mass spectrometry was em-

ployed to receive the absolute molecular weight. All the polymers exhibit narrow 

molecular weight distributions characterized by a polydispersity index between 

1.02 and 1.03. Additionally, 1H NMR spectra were recorded and the molecular 

weights of the P2VP and PtBMA blocks were calculated using the triblock terpoly-

mer composition determined by NMR and GPC. The GPC curves for B800V190T380, 

B800V190T550 and the corresponding precursors are shown in Figure 1 and the mole-

cular characteristics are shown in Table 1. Both polymers mentioned showed a la-

mellar (ll) morphology in the bulk state with characteristic long periods of 78 

(B800V190T380) and 85 nm (B800V190T550). 

 

Table 1: Molecular characteristics of the BVT block terpolymers employed:  

Compositiona Compositionb 10-3 Mw
c Polydispersityd 

B37V17T46
117 B800V190T380 117 1.03 

B30V14T56
141 B800V190T550 141 1.02 

a subscripts are weight fractions, the superscript is the overall molecular weight in kg/mol); b sub-
scripts are degrees of polymerization; c determined by combination of MALDI-TOF MS and 1H NMR;;d 
determined via THF-SEC calibrated with 1,4-polybutadiene standards; 

Crosslinking via cold vulcanization with S2Cl2 

To a micellar solution of 1 mg/mL B30V14T56
141 in acetone were added 1, 2 or 5 

equivalents (functional groups of crosslinking agent with respect to the amount of 

remaining double bonds from the first block of the terpolymer) of S2Cl2. Afterwards 

the dispersion was stirred for around two hours. The unreacted S2Cl2 was removed 

through dialysis against acetone (dialysis tube, MWCO = 10000 g/mol). 

Crosslinking with pentaerythrol tetraacrylate 

To a micellar solution of 1 mg/mL B30V14T56
141 in acetone were added 0.5, 1 or 2 

equivalents (functional groups of crosslinking agent with respect to the amount of 

remaining double bonds from the first block of the terpolymer) of multifunctional 

acrylate. Afterwards the dispersion was stirred for around two hours to equilibrate. 



                                                   Multicompartment Core Micelles in Organic Media 

XIII-7 
 

Crosslinking was performed through irradiation of the dispersion with an UV-lamp 

(Hoenle VG-UVAHAND 250 GS equipped with a glass filter, cut-off at 300 nm wave-

length to not depolymerize the methacrylic compartment). The unreacted cros-

slinking agent was removed through dialysis against acetone (dialysis tube, MWCO = 

10000 g/mol). 

Characterization 

Gel permeation chromatography measurements were performed on a set of 30 cm 

SDV-gel columns of 5 mm particle size having a pore size of 105, 104, 103 and 102 Å 

with refractive index and UV (λ=254 nm) detection. GPC was measured at an elu-

tion rate of 1 ml/min with THF as eluent. 

1H NMR spectra were recorded on a Bruker 250 AC spectrometer using either CDCl3 

or THF as solvent and tetramethylsilane (TMS) as internal standard. 

Dynamic light scattering (DLS) 

DLS measurements were performed in sealed cylindrical scattering cells (d = 10 

mm) at five scattering angles 30, 60, 90, 120 and 150° on an ALV DLS/SLS-SP 5022F 

equipment consisting of an ALV-SP 125 laser goniometer with an ALV 5000/E corre-

lator and a He-Ne laser with the wavelength λ = 632.8 nm. The CONTIN algorithm 

was applied to analyze the obtained correlation functions. Apparent hydrodynamic 

radii were calculated according to the Stokes-Einstein equation. Prior to the light 

scattering measurements the sample dispersions were filtered using Millipore PTFE 

filters with a pore size of 1 μm. The polydispersities were determined from un-

imodal peaks via the cumulant analysis. 

Static light scattering 

Micellar solutions of the polymers were prepared in the concentration range be-

tween 0.1 and 1 g/L. Static light scattering measurements were carried out on a 

Sofica goniometer with He-Ne laser (λ = 632.8 nm) at RT. Prior the measurements, 

sample dispersions were filtered through Millipore PTFE filters of pore size 1 μm. A 

Zimm plot was used to evaluate the data. A diffraction refractometer 

DnDC2010/620 (PSS) was used to measure refractive index increment, dn/dc (0.166 
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L/mol for B800V190T380 and 0.148 for B800V190T550), of the polymer micellar solution at 

λ = 620 nm. 

Transmission electron microscopy 

TEM images were taken with a Zeiss CEM902 EFTEM electron microscope operated 

at 80 kV or a Zeiss EM922 OMEGA EFTEM electron microscope operated at 200 kV. 

Both machines are equipped with an in-column energy filter. Samples were pre-

pared through deposition of a drop of micellar solution (concentration always 0,1 

g/L) onto the TEM grid (Gold, 400 mesh). Afterwards the remaining solvent was 

removed with a filter paper. 

Cryogenic Transmission Electron Microscopy (Cryo-TEM) 

A drop of the sample solution (c ~0.5 wt-%, solvent being either THF or dioxane) 

was placed on a lacey carbon-coated copper TEM grid (200 mesh, Science Services, 

München, Germany), where most of the liquid was removed with blotting paper, 

leaving a thin film stretched over the grid holes. The specimens were shock vitri-

fied by rapid immersion into liquid nitrogen in a temperature controlled freezing 

unit (Zeiss Cryobox, Zeiss NTS GmbH, Oberkochen, Germany) and cooled to approx-

imately 90 K. The temperature was monitored and kept constant in the chamber 

during all the preparation steps. After freezing the specimens, they were inserted 

into a cryo-transfer holder (CT3500, Gatan, München, Germany) and transferred to 

a Zeiss EM922 OMEGA EFTEM instrument. Examinations were carried out at temper-

atures around 90 K. The transmission electron microscope was operated at an acce-

leration voltage of 200 kV. Zero-loss filtered images (Δ E = 0 eV) were taken under 

reduced dose conditions (100 – 1000 e/nm2). All images were registered digitally by 

a bottom mounted CCD camera system (Ultrascan 1000, Gatan), combined and 

processed with a digital imaging processing system (Gatan Digital Micrograph 3.9 

for GMS 1.4). 

Matrix assisted Laser Desorption Ionization – Time of Flight Mass Spectrometry 

MALDI-ToF MS analysis was performed on a Bruker Reflex III equipped with a 337 

nm N2 laser in the linear mode and 20 kV acceleration voltage. Sodium trifluoroace-

tate (NaTFA, Fluka, 99,5 %) was used as salt to induce ion formation. Samples were 

prepared from THF solution by mixing matrix (20 g/L) and the sample (1 mg) in a 
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ratio of 10:1. The number-average molecular weight, Mn, of the sample was deter-

mined in the linear mode. 

 

Results and Discussion 

Synthesis of BVT block terpolymers 

The two polymers shown in Table 1, B800V190T380 and B800V190T550, were used for the 

investigations in this work. The indices denote the degree of polymerization of the 

corresponding block. These are just two out of a series of several polymers with 

constant length ratio of first to second block and increasing poly(tert-butyl metha-

crylate) (PtBMA) content. They both display a very low polydispersity. The overall 

molecular weight was determined by a combination of MALDI-ToF mass spectra of 

the polybutadiene (PB) precursor and 1H-NMR spectra of the block copolymer. First, 

the molecular weight of the polybutadiene precursor was determined via MALDI-

ToF mass spectrometry and then the integrals of characteristic signals in NMR spec-

tra of the two other blocks were used for the calculation of the corresponding 

block lengths. The mass spectrum of the polybutadiene precursor is shown in the 

supporting information. The SEC elution traces in THF for the PB precursor, the PB-

b-P2VP precursor and the two BVT triblock terpolymers are shown in Figure 1. 

23,0 23,5 24,0 24,5 25,0 25,5 26,0 26,5 27,0 27,5 28,0

Elution volume [mL]

 

Figure 1: SEC elution traces of B800 (-□-), B800V190 (-ο-) and the two triblock terpolymers 
B800V190T380 (-Δ-) and B800V190T550 (solid black line). 
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To induce micelle formation, the polymers need to be dissolved in a selective sol-

vent. Acetone is known to be a non-solvent for polybutadiene[30]. The micelle for-

mation was investigated in a concentration regime from 0.1 to 3 g/L. When dis-

persed in acetone at room temperature, the BVT triblock terpolymers immediately 

form aggregates, indicated by a turbid dispersion. This process is quite fast, the 

polymers are completely dissolved after 5 minutes. The so-formed micelles were 

expected to consist of a B core and a corona consisting of V and T. 

Dynamic light scattering 

DLS was used to assess the average hydrodynamic sizes of the formed aggregates. 

The CONTIN plots for B800V190T380 and B800V190T550 in acetone at 1 g/L and Θ = 90° 

are shown in Figure 2A and plots of decay rate, Γ, vs. the square of the scattering 

vector, q2, are shown in Figure 2B 

 

Figure 2: A: CONTIN plots (intensity weighted) for B800V190T380 (grey line, <Rh>z = 43 nm) and 
B800V190T550 (black line, <Rh>z = 44 nm) at � = 90° in acetone (c = 1 g/L); B: Γ vs. q2 for 
B800V190T550. 

 

The micelles are very uniform, as seen by the unimodal CONTIN plots in Figure 2A. 

These aggregates can be considered as almost monodisperse (PDI ~ 0.02). The hy-

drodynamic radii, Rh, of both polymers (from the diffusion coefficients, slope of 

Fig. 2B) and the corresponding polydispersities calculated via cumulant analysis at 

90° measurement angle are shown in Table 2. Note that no significant change in 

the Rh was obtained for concentrations from 0.05 up to 5 g/L. The linearity of the 

decay rate plots, Γ vs. q2 and the lack of an intercept in Figure 2B indicates pure 

translational diffusion, typical for spherical particles. 
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Static light scattering 

SLS experiments were performed in acetone (0.1 g/L ≤ c ≤ 1 g/L) and analyzed us-

ing a Zimm plot.[31] The results are shown in Table 2. A representative Zimm plot is 

shown in Figure 3 for B800V190T380 at four different concentrations. 
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Figure 3: Zimm plot of B800V190T380 in acetone. 

The molecular weights of both micellar aggregates are comparable (Mw
 = 2.38 x 107 

g/mol for B800V190T380 and Mw
 = 1.17 x 107 g/mol for B800V190T550), resulting in a high-

er aggregation number of the BVT terpolymer with lower PtBMA molecular weight. 

This corresponds to theoretical expectations and results of diblock copolymer mi-

celles, where it was derived that Nagg ~ NA
2NB

-0.8, where NA and NB correspond to 

the degrees of polymerization of the core- and corona-forming block of strongly 

segregating systems, respectively.[32] The degrees of aggregation, Nagg, were calcu-

lated using the known molecular weights of the precursors and are given in Table 

2. A further elucidation of the structure can be achieved by evaluating the charac-

teristic ratio, Rg/Rh. This ratio provides an indication about the shape of the scat-

tering particle.[33] For hard spheres the ratio is expected to be 0.775, whereas a 

ratio of 1.1 is expected for polymeric stars with a high arm number. In this particu-

lar case, the value for B800V190T380 fits the hard spheres model whereas the slightly 
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higher value for the polymer with the longer methacrylate block might indicate a 

tendency towards a more star-like solution structure. In both cases, low negative 

values for the virial coefficient A2 are obtained, indicating that acetone is not a 

good solvent for the micelle. This is a known phenomenon of micellar solutions. 

The high aggregation numbers around 200 lead to a high segment density close to 

the micellar core and, hence, few solvent molecules are present in-between the 

single corona chains.[34] 

Recapitulating, dynamic as well as static light scattering revealed that BVT terpo-

lymers form almost monodisperse spherical micelles in acetone as a non-solvent for 

polybutadiene. 

Table 2: Solution characteristics of the BVT terpolymers in acetone 

 

Rh [nm]a PDIb 
Rg 

[nm]c 
Rg/Rh Nagg

c 

106A2 
e
 

[mol 

ml/g2]c 

43 0.022 34 0,76 203 ± 3d -5.13 

44 0.016 36 0.82 174 ± 3d -4.82  

a: determined by DLS at c = 1 g/L; b: deviation determined by cumulant analysis at 90°; c: deter-
mined by SLS; d: determined via a linear fit of the extrapolated values for c  0 and Θ  0 in Fig-
ure 3; e: second virial coefficient, determined via SLS. 

 

Transmission electron microscopy 

Typically, the specimens for TEM measurements were prepared through drop-

coating from micellar solutions of approximately 0.1 g/L onto carbon-coated gold 

grids. This concentration is above the critical aggregation concentration (cac) as 

indicated by DLS measurements. If not mentioned, the samples were not stained 

and the contrast originates only from the different polymeric microcompartments. 

Although TEM is an elegant way to visualize the shape and the size of particles in 

the nanometer range, one has to be aware that the shape of particles may be af-

fected by the drying procedure on the TEM grids. To confirm the obtained results, 
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specimens were also prepared through freeze-drying and spray-coating from ace-

tone for two examples. Unfortunately, we have been unable to perform cryo-TEM 

in acetone. Therefore, freeze-drying is supposed to have the smallest influence on 

the micellar structure obtained on the TEM specimen. The obtained micelles are 

very uniform in size. No larger aggregates are present, as shown in Figure 4A and B 

for B800V190T550 employing two different preparation methods. 

 

Figure 4: TEM images of multicompartment micelles from B800V190T550, drop-coated (A) and 
freeze-dried (B) from 0.1 g/L acetone onto carbon-coated gold TEM grids. C: single micelle at 
high magnification; D: proposed solution structure of the micelles. 

Only a single micellar population is present. The image reveals uniformly dispersed 

objects with an average diameter of 40-50 nm, corresponding to the micellar core, 

which is subdivided into segregated domains. The central element (PB, grey) bears 

several black objects (P2VP, black), spherical in shape with an average diameter of 

10-15 nm. For the polymers investigated in this work, numbers of 3-6 PVP spheres 

were found. The rather strong contrast originates from the difference in electron 



                                                   Multicompartment Core Micelles in Organic Media 

XIII-14 
 

density between PB and P2VP. The multicompartmental character of the aggre-

gates is unveiled in the enlargement in Figure 4C, whereas parts D shows the pro-

posed solution structure of the micellar aggregates. This type of micellar core is 

referred to as “spheres on sphere” or “raspberry-like”.[18] The PtBMA corona is not 

visible due to its immediate degradation upon irradiation with the electron beam.  

It remains puzzling that P2VP seems to be insoluble in acetone for our system. Ac-

cording to literature and our own experiments, P2VP homopolymer is soluble in 

acetone.[35] If homopolymers of comparable molecular weight are dissolved in ace-

tone at a comparable concentration, no aggregation is observed. For the BVT poly-

mers, however, the formation of spherical, collapsed domains situated on the soft 

PB core seems to be more favorable. One tentative explanation may be the strong 

incompatibility between the first and the second block (χBV = 0.325).[36] The strong 

driving force for minimization of the interface between PB and P2VP could hamper 

the formation of a continuous shell around the micellar core and therefore result in 

a further compartmentalization of theP2VP phase. A similar morphology was first 

described by Stadler et al. for the bulk morphology of polystyrene-b-polybutadiene-

b-poly(methyl methacrylate) (SBM) triblock terpolymers with a certain composi-

tion.[37] Later, nanostructured aggregates like this one of SBM terpolymers were 

dispersed in a polymerizable matrix and were stabilized in that way for further ex-

amination.[38, 39] Comparable micellar morphologies have been observed for mix-

tures of PS-b-P2VP-b-PEO block terpolymers with PAA in DMF.[40] Recently, La-

schewsky et al. also reported on a linear poly(4-methyl-4-(4-vinylbenzyl)morpholin-

4-ium chloride)-b-polystyrene-b-poly(pentafluorophenyl 4-vinylbenzyl ether) 

(PVBM-b-PS-b-PVBFP) triblock terpolymer which self-assembled into micelles with a 

similarily compartmentalized core in aqueous solution[18]. In their case the two hy-

drophobic and insoluble blocks, one of them fluorinated, built the two different 

core domains. 

In conclusion, TEM measurements show the formation of micelles with a very low 

polydispersity. Furthermore, first hints towards a multicompartmental character of 

the micellar core are observed. 
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Crosslinking 

There is a significant interest in the stabilization of polymer micelles. In that way, 

their dynamic structure can be altered to facilitate the transfer of such aggregates 

into non-selective solvents or to stabilize them even below the critical micellar 

concentration.[41] Crosslinking of the core of the presented multicompartment mi-

celles in acetone was performed via two different ways; “cold vulcanization” with 

S2Cl2, generating sulphur-sulphur bonds between neighboring double bonds of the 

polybutadiene compartment or by applying a multifunctional acrylate (pentaeryt-

hrol tetraacrylate) (PETA) as crosslinking agent and subsequent UV irradiation. The 

advantage of the latter is that the so-formed junctions between different polymer 

chains are almost irreversible and not, as for the cold vulcanization, prone towards 

hydrolysis in acidic media. Both methods preferentially crosslink the 1,2-part of the 

polybutadiene segment. The content of 1,2-microstructure was measured via 1H-

NMR to be around 86 % for the BVT terpolymers, thus facilitating the crosslink-

ing.[42] The pathway for the crosslinking procedure is depicted in Scheme 1. 

Scheme 1: Crosslinking procedure for the PB core of the multicompartment micelles via two 
different methods; cold vulcanization with S2Cl2 and a pentaerythrol tetraacrylate. 
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Crosslinking with S2Cl2 

In the case of B800V190T550, crosslinking was carried out with one equivalent of S2Cl2 

relative to the number of double bonds. The hydrodynamic radii of the initial mi-

celles in acetone (c = 1 g/L), the crosslinked micelles in acetone and finally after 

exchange of the solvent to THF are shown in Figure 5A. 

 

 

Figure 5: DLS CONTIN plots (� = 90°; c = 1 g/L, intensity-weighted) of micellar solutions:  
A: B800V190T550 in acetone (-□-, <Rh>z = 44 nm), after crosslinking of the polybutadiene core with 
1 equivalent S2Cl2 (-�-,<Rh>z = 49 nm) and after transfer of the crosslinked micellar aggregates 
into THF through dialysis (-∆-,<Rh>z = 64 nm);  B: B800V190T380 in acetone after crosslinking with 
1eq (-□-,<Rh>z = 48 nm) and 5eq (-�-,<Rh>z = 53 nm) S2Cl2 for 2h and 1eq (-∆-,<Rh>z = 64 nm) for 
96h. 

 

After crosslinking, the hydrodynamic radii in acetone increase from 44 nm to about 

49 nm. The CONTIN analysis still reveals only one size of micellar aggregates. Fur-

thermore, crosslinking seemed to take place only within the micelles and no inter-

micellar crosslinking occurs. Cumulant analysis at Θ = 90° results in a PDI = 0.031. 

It remains unclear why a significantly higher PDI is obtained after the crosslinking 

procedure. The increase of the hydrodynamic radius after crosslinking in acetone is 

due to the incorporation of the voluminous crosslinking agent, S2Cl2, into the micel-

lar core. After transfer of the micellar solution into THF by dialysis the size of the 

aggregates further increases to values of about 64 nm (PDI = 0.038). This indicates 

that the polybutadiene part of the core is still able to swell in THF, which is a non-

selective solvent for all the three blocks. However, the presence of only one popu-
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lation of aggregates even in THF solution is a clear proof of the successfully per-

formed crosslinking. The block terpolymer itself is molecularly soluble in THF. 

To probe the effect of the amount of crosslinking agent and the reaction time on 

the size of the aggregates, B800V190T380 was crosslinked with 1 and 5 equivalents of 

S2Cl2 for 2 h and with 1 equivalent for 96 h. The results are shown in Figure 5B. The 

hydrodynamic radius before crosslinking is around 43 nm. For 1 equivalent of cros-

slinking agent the size of the micellar aggregates increases slightly to about 48 nm 

(PDI = 0.053). For 5 equivalents of S2Cl2, the value for Rh increases to 53 nm (PDI = 

0.064). With increasing concentration of S2Cl2, more incorporation takes place 

within the same reaction time. This indicates that the crosslinking is not completed 

after 2 h. If the reaction time is increased to 96 h, the micelles show Rh = 64 nm 

afterwards (PDI = 0.065). The crosslinking reaction proceeds very controlled as only 

one micellar population was obtained and no larger aggregates could be detected 

via the CONTIN analysis. Also here, the PDI increases after the treatment with 

S2Cl2.To determine the actual amount of crosslinking, the solvent was removed and 

the residue was dissolved in deuterated THF to perform 1H-NMR measurements. 

The ratio of the integral of the protons of the tert-butyl group (δ = 1.4 ppm) was 

compared to the diminished 1,2-polybutadiene signals (δ = 4.8 ppm) to determine 

the extent of crosslinking. The obtained results were cross-checked through sox-

hlett-extraction with THF for 48 h and are summarized in Table 3. 

Table 3: Crosslinking efficiency of S2Cl2 for B800V190T380 in acetone 

Equivalents S2Cl2 
a 

Reaction time [h] Insoluble material [%]b 

1 2 9 

2 2 42 

5 2 65 

1 96 46 

a: relative to the amount of double bonds in PB; b: determined by 1H-NMR in THF-d6. 
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With increasing amount of crosslinking agent also the extent of crosslinking in-

creases. For 5 equivalents of S2Cl2, the crosslinked polymer could not be dissolved 

in THF after evaporation of the acetone. Therefore, the acetone dispersion was 

mixed with deuterated N-methyl pyrrolidone (NMP) and acetone was evaporated. 

Table 3 also demonstrates that for a lower amount of S2Cl2 a longer reaction time is 

required to reach the same crosslinking efficiency. 

Crosslinking with pentaerythrol tetraacrylate (PETA) 

Poly(tert-butyl methacrylate) can be easily transformed into poly(methacrylic acid) 

by acidic treatment. With regard to the micellar aggregates presented here this 

will generate an amphiphilic structure. In order to facilitate stable micellar solu-

tions in aqueous media at different pH-values, another method for the crosslinking 

of the core had to be found to avoid the hydrolysis of the sulphur-sulphur bonds in 

acidic media. Contrary to the above discussed cold vulcanization technique, this 

multifunctional acrylate provides an efficient and convenient way of pH-robust 

crosslinking junctions. Acetone micellar solutions of B800V190T550 (c = 1 g/L) were 

mixed with defined solutions of PETA. The actual amount of crosslinking agent is 

given in equivalents of functional groups crosslinking agent with respect to the 

amount of reactive double bonds on the polymer chains in solution. After equilibra-

tion (24 hours), the dispersions were exposed to UV light (300-400 nm) for 60 mi-

nutes. Subsequently, unreacted crosslinking agent was removed through dialysis. 

The hydrodynamic radii Rh of B800V190T550 crosslinked with 1 eq PETA and after sub-

sequent transfer to dioxane are shown in Figure 6. 
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Figure 6: Rh of B800V190T550 after crosslinking with 1 (-□-,<Rh>z = 46 nm) equivalent PETA in ace-
tone and after transfer to dioxane (-∆-,<Rh>z = 67 nm) (c = 1 g/L). 

 

Initial Rh values for B800V190T550 in acetone were 43 nm. After crosslinking with 1eq 

PETA basically the same values were obtained with 46 nm (PDI = 0.024). Surprising-

ly, in this case the micellar core does not seem to increase significantly upon cros-

slinking. The amount of insoluble material was determined as described for the 

cold vulcanization technique and was 63% for 0.5 and 67% for 1 equivalent of cros-

slinking agent. Transfer to dioxane resulted again in larger aggregates with <Rh>z = 

67 nm (PDI = 0.025), proving the successful crosslinking. According to the litera-

ture, PETA forms an interpenetrating network upon photopolymerization.[43, 44] We 

suppose that this network forms junctions with the PB core (cf. Scheme 1). Without 

added PETA, UV irradiation of BVT block terpolymer micelles in acetone did not 

lead to crosslinked aggregates. 

Summarized, the presented multicompartment micelles exhibited single micellar 

populations in all cases demonstrated here. In order to assess structure and shape 

of the micelles after the various treatments the micellar solutions were drop-

coated onto carbon-coated TEM grids. TEM images of different dispersions are 

shown in Figure 7. 
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Figure 7: TEM images of micelles drop-coated from 0.1 g/L micellar solution in acetone (A, B) 
and THF (C, D). A: B800V190T550 after crosslinking with S2Cl2; B: B800V190T550 after crosslinking with 
PETA; C: B800V190T550 dispersion of part C after dialysis to THF; D: B800V190T550 dispersion of part 
A after staining with iodine. 

Figure 7A shows B800V190T550 multicompartment micelles after crosslinking with one 

equivalent of S2Cl2 from acetone. The compartmentalization of the core is still 

present, just the contrast decreased slightly. This could be explained by the incor-

poration of sulphur and chlorine into the polybutadiene compartment and there-

fore the convergence of the electron density for the two core-forming compart-

ments. As already indicated by the DLS measurements in Figure 5A the size of the 

aggregates increases slightly. In part B of Figure 7 micelles from B800V190T550 after 

crosslinking of the core with 1 eq PETA are presented. Again size and shape seem 

to be conserved. Figure 6C represents micelles from B800V190T550 after crosslinking 

with 1 eq S2Cl2 and subsequent transfer of the aggregates into THF as a non-
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selective solvent, which then is able to swell the partially crosslinked core, as al-

ready shown by means of DLS in Figure5A. Part D of Figure 7 exhibits B800V190T550 

multicompartment micelles after crosslinking with S2Cl2 and subsequent staining 

with iodine. I2 preferentially enhances electron density in the poly(2-vinyl pyridine) 

compartment. This treatment makes the two compartments of the micellar core 

even more distinguishable from each other. A sharp borderline can be clearly seen 

between the grey polybutadiene and the black poly(2 vinylpyridine). Staining with 

OsO4, which reacts with the 1,4-polybutadiene units,[45] has also been carried out. 

Unfortunately, this treatment did not give any further insight. 

To conclude, the multicompartmental character of the micellar aggregates is fully 

preserved after crosslinking with either S2Cl2 or PETA. The crosslinking success is 

proven through the successful transfer of the micelles into THF or dioxane. Iodine 

staining was successfully employed to enhance the phase contrast between the two 

core-forming departments in TEM measurements. 

Cryogenic transmission electron microscopy (cryo-TEM) 

Cryo-TEM can be employed to explore the micellar structure in-situ without any 

drying effects.[46] Most of the work on cryo-TEM reported in the literature has been 

performed in water. In this work, either THF or dioxane was taken as solvent. We 

have recently shown that cryo-TEM in THF can successfully be used to explore 

complex aggregation patterns.[47] The concentration of the samples investigated 

varied from 0.1 g/L to 0.7 g/L. A general effect across all the samples investigated 

is that instead of single micelles continuous structures could be observed. This is 

shown in Figure 8 for S2Cl2 core-crosslinked micelles of B800V190T550. 
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In conclusion, the cryo-TEM investigations show that the multicompartment mi-

celles exist as single aggregates in dioxane and that the solvent is able to swell the 

partially crosslinked core. 

Conclusions 

This work shows for the first time that multicompartment micelles from ABC trib-

lock terpolymers, B800V190T380 and B800V190T550, can be easily prepared when dissolv-

ing them in acetone. In contrast to other works within this field, neither a complex 

polymer architecture nor extraordinary monomers had to be employed for the for-

mation of a further compartmentalized micellar core, all the three monomers are 

common, cheap and available in large amounts. The convenient synthesis pathway 

allows the preparation of the triblock terpolymers on a large scale. The structure 

of the aggregates could be assessed via TEM and cryo-TEM measurements. The un-

iformity of the formed aggregates was proven with several dynamic and static light 

scattering experiments. The crosslinking of the polybutadiene compartment with 

two inherently different methods was shown not to alter the structure of the mi-

celles. In the case of the cold vulcanization pathway, the effect of the amount of 

crosslinking agent and reaction time has been investigated. For the crosslinking 

with a multifunctional acrylates, two main differences could be observed: first the 

micellar core does not seem to increase through the incorporation of the pentae-

rythrol tetraacrylate, which definitely happened for S2Cl2, and second the newly 

formed junctions between polymer chains are supposed to be stable with respect 

to the hydrolysis of the ester moiety of the poly(tert-butyl methacrylate) com-

partment and the transfer of the micelles into aqueous media at different pH val-

ues. The latter will be the subject of further research. Crosslinking was proven to 

be successful through the transfer of the aggregates into non-selective solvents, 

THF and dioxane. 
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ABSTRACT: 

We investigate micellar aggregates of amphiphilic block terpolymers, polybuta-

diene-block-poly(2-vinyl pyridine)-block-poly(methacrylic acid) 

(PB800P2VP190PMAA550) and their quaternized analogues polybutadiene-block-poly(N-

methyl-2-vinylpyridinium)-block-poly(methacrylic acid) (PB800P2VPq190PMAA550) in 

aqueous solution using light scattering (DLS, SLS) and cryogenic transmission elec-

tron microscopy (cryo-TEM). At high pH, PB800P2VP190PMAA550 forms core-shell-

corona micelles with a hydrodynamic radius Rh ~ 100 nm and a continuous shell of 

P2VP. However, at pH 4 partial intramicellar interpolyelectrolyte complex (im-

IPEC) formation between P2VP and PMAA results in a patchy, collapsed shell. This is 

far more pronounced for the quaternized analog, PB800P2VPq190PMAA550, which 

forms aggregates of similar size, also exhibiting a non-continuous, patchy shell. 

Here, these im-IPECs of the positively charged poly(N-methyl-2-vinylpyridinium) 

and the partially negatively charged poly(methacrylic acid) are present over the 

whole investigated pH-range (4-10). We further demonstrate that size and charge 

of the corona can be tuned through the block terpolymer composition, in particular 

the ratio between P2VPq and PMAA. These micelles are dynamic and able to react 

to changes in pH or salinity in terms of corona diameter and aggregation number. 
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Introduction 

Block terpolymers form a great variety of complex and interesting nanostructures 

and their self-assembly has been studied intensively in solution,1-4 thin films,5-7 and 

the bulk.8-14 However, so far bulk structures have been studied to the greatest ex-

tent. Such ternary systems, if compared to ordinary AB diblock and ABA triblock 

copolymers, can lead to a greatly diversified area of self-assembled morphologies, 

depending on the actual composition. As increasing complexity of such polymer 

topologies enables the preparation of highly developed functional systems, many 

efforts have been made in the last few years to obtain well-defined micellar aggre-

gates and, alongside, polymeric nanoparticles from block terpolymer systems.15, 16 

Typical morphologies for micelles from block terpolymers in solution are cy-

linders,17 spheres,18 and vesicles,19, 20 but also more complex structures like multi-

compartment micelles21-23 have been reported. Complex compartmentalized nano-

structures are promising candidates for the generation of inorganic-organic hybrid 

structures24 or controlled release applications, e.g. entrapment of hydrophobic 

species in different media. Lodge et al. showed recently that two different dye 

molecules can be stored in two variable compartments of such micelles.25 In gener-

al, there are different approaches for the preparation of multicompartment mi-

celles in solution. The most common way is to use a selective solvent, forcing a 

block terpolymer to self-assemble. If the polymer is not directly soluble in the spe-

cific solvent, it is first dissolved in a non-selective solvent and then afterwards this 

is exchanged against the desired one by dialysis.26 Another facile and straightfor-

ward way to obtain compartmentalized colloids from block terpolymers in solution 

is based on crosslinking of well-defined bulk structures. Here, bulk films of the ma-

terial are prepared. Very complex compartmentalized colloids with a precisely de-

fined cross-section and tunable dimensions can be obtained in this way. This pro-

cedure has been successfully applied to produce spherical,27 cylindrical,28 and disc-

shaped29 Janus particles. 

The complexation between two oppositely charged polyelectrolyte blocks is 

another method to prepare micelles. The resulting structures are often referred to 

as interpolyelectrolyte complexes (IPECs) or block ionomer complexes (BICs).30 This 

method has been used to prepare micellar aggregates with complex coacervate 
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cores from two oppositely charged AB and CD diblock copolymers.31 Comparable 

procedures have been employed to form the shell of core-shell-corona micelles.32 

Typically, first micelles with a charged shell are prepared from amphiphilic AB dib-

lock copolymers and afterwards an oppositely charged water-soluble polyion is 

added. Depending on pH, temperature, charge equilibrium and concentration, this 

results in the formation of core-shell-corona micelles where the shell is made out 

of an IPEC between the two oppositely charged blocks. One interesting feature of 

such block ionomer complexes is their ability to participate in cooperative polyion 

exchange reactions with other polyelectrolytes present in solution.33, 34 

Here we present an approach to direct the self-assembly of amphiphilic 

block terpolymers in aqueous solution. Polybutadiene-block-poly(2-vinyl pyridine)-

block-poly(tert-butyl methacrylate) PB-P2VP-PtBMA block terpolymers are modified 

in order to render them amphiphilic and to generate micelles in aqueous systems. 

This is performed by hydrolysis of the ester moiety of PtBMA in dioxane to PMAA, a 

weak polyelectrolyte.35 In that way, PB-P2VP-PMAA core-shell-corona micelles with 

a polybutadiene core, a poly(2-vinyl pyridine) shell and a poly(methacrylic acid) 

corona are formed. Different micellar aggregates are obtained if the middle block, 

P2VP, is previously quaternized and turned into the strong polyelectrolyte poly(N-

methyl-2-vinyl pyridinium) P2VPq, providing an ampholytic ABC system. Here, mi-

celles exhibiting a non-continuous shell are found, due to im-IPEC formation be-

tween negatively charged PMAA and positively charged P2VPq. To the best of our 

knowledge, this is the first example where interpolyelectrolyte formation can be 

shown to take place in such a manner. Moreover, the multicompartmental PB-

P2VPq-PMAA micelles are able to react in a dynamic fashion to changes in salinity. 

Both PB-P2VP-PMAA and PB-P2VPq-PMAA block terpolymers also exhibit pH-

responsive properties due to the pH-dependent solubility of PMAA and the non-

quaternized P2VP. We further investigated the effect of the block length ratio be-

tween both blocks participating in the formation of these im-IPECS, P2VPq and 

PMAA. The micelles were characterized by means of dynamic and static light scat-

tering and cryogenic transmission electron microcopy. 
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Experimental part 

Synthesis 

Materials 

The solvents for the preparation of the micellar solutions were purchased in p.a. 

grade and used as delivered. Methyl iodide (MeI) and hydrochloric acid (32%) were 

used as delivered. Buffer solutions with pH 10 (H3BO3/KCl/NaOH) were purchased 

from Fluka. All other buffer solutions mentioned were prepared from citric acid 

(0.15 mol/L) and K2HPO4 (0.15 mol/L) in different ratios. 

Synthesis of the PB-P2VP-PtBMA triblock terpolymers 

The linear block terpolymers were synthesized via sequential living anionic polyme-

rization in THF at low temperatures using sec-butyl lithium as initiator. A more de-

tailed description of the synthetic procedure has been reported elsewhere.36 Ex-

emplarily THF-SEC traces for PB800, PB800P2VP190, and PB800P2VP190PtBMA550 are pro-

vided in the supporting information (Figure S1, Supporting information). 

Quaternization of the poly(2-vinyl pyridine) block 

PB-P2VP-PtBMA block terpolymers were dissolved in dioxane at a concentration of 1 

g/L. Afterwards, MeI (10 eq corresponding to the 2-vinyl pyridine groups) was add-

ed and the solution was stirred for at least 72 hours at room temperature. During 

the reaction, the solution became slightly yellowish. The excess of quaternization 

agent was removed by dialysis against dioxane. The resulting solution of polybuta-

diene-block-poly(N-methyl-2-vinyl pyridinium)-block-poly(tert-butyl methacrylate) 

PB-P2VPq-PtBMA was directly used for the subsequent hydrolysis of the ester moie-

ty of the methacrylate block. DLS CONTIN plots for PB800-P2VPq190-PtBMA550 and 

PB800-P2VPq190-PMAA550 (Figure S2, Supporting information) and IR spectra of PB800-

P2VP190-PtBMA550 and PB800-P2VPq190-PMAA550 (Figure S3, Supporting information) 

are included in the supporting information. From the IR measurements and iodome-

tric titrations with diluted AgNO3 solutions we determined a degree of quaterniza-

tion of 70-90 %. 
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Dialysis 

Dialysis membrane tubes (MWCO 3.500 g/mol, Regenerated Celluloseester) were 

purchased from Spectra/Por. Prior to use, the tubes were immersed into de-ionized 

water for 1h to open the pores. 

Hydrolysis of the poly(tert-butyl methacrylate) block 

Depending on the situation, either a solution of PB-P2VP-PtBMA or PB-P2VPq-PtBMA 

in dioxane (c = 1 g/L) was treated with a 5-fold excess of hydrochloric acid relative 

to the ester moieties. Afterwards, the reaction mixture was refluxed at 120 °C for 

24 hours.  

Preparation of the micellar solutions 

Directly after hydrolysis of the PtBMA block, micellar stock solutions (c = 1 g/L) 

were prepared via dialysis against pH 10 buffer solution. From these stock solu-

tions, changes in pH or salinity were performed by dialysis against the correspond-

ing solutions. “Staining” of the PMAA corona with CsCl (0.05 M) was performed in 

an analogous way. 

Characterization 

Dynamic light scattering 

All experiments were performed using the same concentrations (c = 1 g/L). DLS 

measurements were performed in sealed cylindrical scattering cells (d = 10 mm) at 

an angle of 90° on an ALV DLS/SLS-SP 5022F equipment consisting of an ALV-SP 125 

laser goniometer with an ALV 5000/E correlator and a He-Ne laser with the wave-

length λ = 632.8 nm. The CONTIN algorithm was applied to analyze the obtained 

correlation functions. Apparent hydrodynamic radii were calculated according to 

the Stokes-Einstein equation. Prior to the light scattering measurements the sam-

ple solutions were filtered using Millipore PTFE filters with a pore size of 1 μm for 

organic solvents like dioxane or Millipore nylon filters with a pore size of 1.2 or 5 

µm in the case of aqueous solutions. The polydispersities were determined from 

unimodal peaks via the cumulant analysis. 
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Static light scattering 

 For SLS, solutions of the polymers were prepared in the concentration range be-

tween 0.1 and 1 g/L. Measurements were carried out on a Sofica goniometer with a 

He-Ne laser (λ = 632.8 nm) at 25 °C. Prior to the measurements, sample solutions 

were filtered through Millipore nylon filters with the pore size 1.2 or 5 μm. A Zimm 

plot was used to evaluate the data. A differential refractometer DnDC2010/620 

(PSS) was used to measure the refractive index increment, dn/dc 

(PB800P2VPq190PMAA550; 0.278 ± 0.007 at pH 10 and 0.103 ± 0.007 at pH 10 and 1.0 M 

added NaCl), of the polymer solutions at λ = 620 nm. Note that the dn/dc decreas-

es drastically with the addition of 1.0 M NaCl. This can be explained through the 

deregulation of the Manning condensation occurring. Counterions are now every-

where in the solution and, hence, the counterion contribution to the measured 

dn/dc is significantly smaller. 

Cryogenic Transmission Electron Microscopy (cryo-TEM) 

For cryo-TEM studies, a drop of the sample solution (c ≈ 0.1 wt-%) was placed on a 

lacey carbon-coated copper TEM grid (200 mesh, Science Services, München, Ger-

many), where most of the liquid was removed with blotting paper, leaving a thin 

film stretched over the grid holes. The specimens were shock vitrified by rapid im-

mersion into ethane in a temperature-controlled freezing unit (Zeiss Cryobox, Zeiss 

NTS GmbH, Oberkochen, Germany) and cooled to approximately 90 K. The temper-

ature was monitored and kept constant in the chamber during all the preparation 

steps. After freezing the specimens, they were inserted into a cryo-transfer holder 

(CT3500, Gatan, München, Germany) and transferred to a Zeiss EM922 Omega 

EFTEM instrument. Examinations were carried out at temperatures around 90 K. 

The microscope was operated at an acceleration voltage of 200 kV. Zero-loss fil-

tered images (Δ E = 0 eV) were taken under reduced dose conditions. All images 

were registered digitally by a bottom mounted CCD camera system (Ultrascan 1000, 

Gatan), combined and processed with a digital imaging processing system (Gatan 

Digital Micrograph 3.9 for GMS 1.4). 

Zeta-potential 

The zeta-potential was determined on a Malvern Zetasizer Nano ZS in conjunction 

with an MPT2 autotitrator (Malvern). The electrophoretic mobilities (u) were con-
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verted into ζ potentials via the Smoluchowski equation ζ = uη/ε0ε, where η denotes 

the viscosity and ε0ε the permittivity of the solution. 

 

Results and Discussion 

Synthesis of block terpolymers 

The synthesis and the characterization of the polymeric precursors, (e.g. 

PB800P2VP190PtBMA550, Mn = 141·103 g/mol, PDI = 1.02; subscripts denoting the de-

gree of polymerization of the corresponding block) as well as their micellization in 

acetone has been published earlier.23 The two different pathways for the prepara-

tion of micellar aggregates in aqueous systems are shown in Figure 1. In the one-

step procedure (left part), only the PtBMA block is modified. The middle block, 

P2VP, remains unaltered and therefore only hydrophilic at acidic conditions (pKa ~ 

4).37 The two-step procedure, however, first leads to a quaternized and perma-

nently hydrophilic middle block, P2VPq. Afterwards, the PtBMA is hydrolyzed, ren-

dering ampholytic PB-P2VPq-PMAA block terpolymers. 

 

Figure 1: Schematic depiction of the two different pathways for the preparation of micelles 
from PB-P2VP-PMAA or PB-P2VPq-PMAA in water. 
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After quaternization, the PB-P2VPq-PtBMA terpolymers already start to ag-

gregate in dioxane. The DLS CONTIN plot exhibits a maximum at a hydrodynamic 

radius of 27 nm (Figure S2, Supporting information). This is far above the observed 

size of a single polymer chain in a non-selective solvent. Also, FTIR spectroscopy 

clearly indicates a successful quaternization (Figure S3, Supporting information). In 

the following, first the micellization of PB800P2VP190PMAA550 and 

PB800P2VPq190PMAA550, depending on the preparation conditions, are shown and dis-

cussed in detail. Afterwards, the effects of the block length ratio between P2VPq 

and PMAA on the micellar corona formed are discussed for three different PB-

P2VPq-PMAA block terpolymer systems. 

Core-shell-corona micelles of PB800P2VP190PMAA550 

After hydrolysis of the poly(tert-butyl methacrylate) block, amphiphilic block ter-

polymers with two pH-responsive hydrophilic compartments, poly(2-vinylpyridine) 

as middle (DP = 190) and poly(methacrylic acid) as end block (DP = 550) are ob-

tained. Starting from the stock solution at pH 10, these can be transferred into 

aqueous solutions at different pH-values, rendering micelles with a soft polybuta-

diene core, a glassy poly(2-vinyl pyridine) shell with a certain degree of swelling 

depending on the pH and a poly(methacrylic acid) corona. 

Poly(methacrylic acid) is a weak polyelectrolyte and its solubility in aqueous 

systems is strongly depending on the pH and the polymer topology.38 At pH > 5.5, 

part of the PMAA units are deprotonated and negatively charged, whereas below 

this value the solubility in water decreases. For the middle block, P2VP, the situa-

tion is entirely different.39, 40 Only under acidic conditions (pH ≤ 4), the nitrogen 

moiety of the 2-vinyl pyridine is protonated and it becomes water-soluble.39 Solu-

tions of pH 4, 6 and 10 were chosen to demonstrate the pH-responsive behavior of 

this system. The corresponding hydrodynamic radius distributions are shown in Fig-

ure 2. 
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Figure 2: DLS CONTIN plots for PB800P2VP190PMAA550 in aqueous buffers at different pH-values; 
pH 10 (<Rh>z  = 105 nm, -□-, PDI = 0.06), pH 6 (<Rh>z  = 94 nm, -�-, PDI = 0.12) and pH 4 (<Rh>z  
= 71 nm, -Δ-, PDI = 0.16). 

At pH 10 the micellar aggregates are distinctly larger than at lower pH val-

ues (<Rh>z = 105 nm). This is explained by the well-known pH-responsive behavior 

of the poly(methacrylic acid). At high pH the complete ionization of the polyelec-

trolyte chains leads to a more stretched conformation in solution. With decreasing 

pH, the number of negative charges per polymer chain decreases and therewith the 

corona of the micellar aggregates shrinks. The hydrodynamic radius obtained at pH 

6 is significantly smaller (<Rh>z = 94 nm). Upon further acidification, the aggregates 

continue diminishing in size (<Rh>z = 71 nm at pH 4). For all samples, a spherical 

shape is indicated by DLS measurements through an extrapolation of the decay 

rate, Γ(q=0) = 0. Alongside with the contraction of the PMAA, the polydispersity of 

the micelles observed via DLS increases (PDI = 0.06 (pH 10), 0.12 (pH 6), 0.16 (pH 

4)). A rather broad distribution function was obtained at pH 4. Furthermore, in 

contrast to other pH-values, the micelles were not stable at pH 4 for a long time. 

After several days precipitation could be observed, indicating that the increasing 

hydrophilicity of the poly(2-vinyl pyridine) block is not able to compensate the in-

creasing hydrophobicity of the corona, PMAA. 

To obtain further insight into the micellar structure, we performed cryogen-

ic transmission electron microscopy (cryo-TEM) in water. Cryo-TEM is an outstand-
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ing method for in-situ imaging of complex structures in solution without having to 

consider drying artifacts or interactions with the substrate.41 To increase contrast 

for the micellar corona, the micellar solution was dialyzed against a buffer contain-

ing 0.05M CsCl to exchange the counter ions for the carboxylate group of the 

poly(methacrylic acid). Without Cs+ counter ions, the corona could not be visua-

lized in cryo-TEM. However, this is the only example where we added CsCl to the 

micellar solutions. The result can be seen in Figure 3A and B. 

 

 

Figure 3: Cryo-TEM micrographs of PB800P2VP190PMAA550 in aqueous solution at pH 10 (0.05M 
CsCl, c = 1 g/L), Overview (A) and single core-shell-corona micelle (B); at pH 4 (c = 1 g/L) (C), 
the inset shows an enlargement; schematic depiction of the proposed solution structure of 
PB800P2VP190PMAA550 depending on the pH; core-shell-corona structure with an expanded PMAA 
corona at pH 10 (E) and micelles with a collapsed PMAA corona at pH 4 (D). 
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Micrograph A provides an overview over a larger section of the vitrified mi-

cellar solution while B depicts a single core-shell-corona micelle. The latter clearly 

shows the predicted structure of the triblock terpolymer micelles in solution. They 

exhibit a grey core with an approximate radius of 20-25 nm in this case. A thin dark 

shell of P2VP is observed surrounding the PB core. The P2VP is hydrophobic at high 

pH but still immiscible with polybutadiene, providing a rather hard shell around the 

soft PB core. Emerging from the P2VP shell, the ionized PMAA arms can be seen, 

stained by the addition of heavy Cs+ counter ions. Note that the micelles are always 

separated from each other by the efficient repellence of the corona chains and 

that no clustering could be found. The good contrast between the PB core and 

P2VP shell without additional staining can be explained by the relatively high dif-

ference in mass density between the two blocks. The overall number-average ra-

dius of the core-shell-corona micelle in Figure 3B is around 75 nm. Considering that 

with increasing distance from the micellar core the PMAA arms spread more and 

more and therefore may not be distinguishable in the cryo-TEM micrograph any 

more, the average core to core distance in Figure 3A was measured and found to be 

150 nm (= 2·75 nm) as well. This is somewhat smaller than the expected radius 

from DLS measurements, which was found to be <Rh>z = 105 nm. However, this be-

havior can be understood in terms of that a number-average (TEM) is compared to 

a z-average (DLS) for a moderately polydisperse sample. The number-average hy-

drodynamic radius, as calculated from a number-weighted CONTIN plot is <Rh>n = 

63 nm. 

To compare the micelles at lower pH, we also conducted cryo-TEM in water 

at pH 4 and a representative micrograph is shown in Figure 3C. The appearance of 

the micellar aggregates has changed. Instead of the very well-defined core-shell-

corona structure present at higher pH, now rough, slightly ill-defined yet round-

shaped objects are observed. The size of the polybutadiene core is comparable to 

that at high pH values. Additionally, clustering of the micelles is taking place, ori-

ginating from the lower charge density in the corona and therefore less electrostat-

ic repulsion between them. The PMAA corona is not visible anymore because the 

PMAA chains start to collapse upon acidification. This can also explain the uneven 

appearance of the aggregates. The inset in Figure 3C shows an enlargement. Here, 

dark spots are observed on the PB core. This could be due to proton transfer from 
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the carboxylic groups of the PMAA chains onto the nitrogen atoms of the P2VP at 

this pH, resulting in partial im-IPEC formation. Figure 3D shows the micelles with a 

collapsed PMAA corona at pH 4 while Figure 3E depicts the charged and, thus, ex-

panded core-shell-corona micelle at pH 10 with Cs+ as coronal counterions. 

Multicompartment-Core Micelles of PB800P2VPq190PMAA550 

After quaternization of the nitrogen moiety of the poly(2-vinyl pyridine) with me-

thyl iodide followed by hydrolysis of the poly(tert-butyl methacrylate) block, am-

pholytic block terpolymers with one permanently hydrophilic block are obtained. 

The middle block, after modification now poly(N-methyl-2-vinylpyridinium iodide) 

behaves as a strong polyelectrolyte. The corresponding micelles should again exhi-

bit a polybutadiene core, but the situation in the micellar shell or corona has 

changed as compared to the previous section. Depending on the pH, im-IPECs may 

be formed between the positively charged poly(N-methyl-2-vinylpyridinium) and 

the (at high pH) negatively charged PMAA chains. However, since the positively 

charged block is much shorter than the negatively charged one, the aggregates in 

solution will still exhibit an excess negative charge at high pH. In case of im-IPEC 

formation occurring, a salt-responsive behavior can be expected as high concentra-

tions of salt can suppress the formation of IPECs. DLS CONTIN plots are shown for 

pH 4, pH 10 in the absence of added salt, and pH 10 in the presence of 1.0 M NaCl 

in Figure 4. 

50 100 150 200 250300
Rh [nm]
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Figure 4: DLS CONTIN plots for PB800P2VPq190PMAA550 in aqueous buffers at different pH-values; 
pH 10 (<Rh>z  = 102 nm, -□-, PDI = 0.15), pH 4 (<Rh>z  = 52 nm, -ο-, PDI = 0.08) and pH 10 with 
1.0 M NaCl (<Rh>z  = 60 nm, -Δ-, PDI = 0.09). 

 

At pH 10, a rather broad micellar distribution can be seen (-□-). The size (<Rh>z = 

102 nm, PDI = 0.15) is also in the same range like for the micelles with a non-

quaternized middle block (<Rh>z = 105 nm). Upon decreasing the pH to 4, the ag-

gregates again contract (-�-), the resulting size (<Rh>z = 52 nm, PDI = 0.08) being 

almost half, and the distribution of the micelles becomes narrower. Again, a spher-

ical shape is indicated by the DLS measurements for all samples through the extra-

polation of the decay rate, Γ(q=0) = 0. Contrary to the PB800P2VP190PMAA550 core-

shell-corona micelles discussed in the previous section, the apparent polydispersity 

of the aggregates in the CONTIN plot does not increase upon acidification, indicat-

ing a sufficient stability of the polymeric particles even at low pH. This suggests 

the formation of an inherently different micellar system due to the change in solu-

bility from P2VP to P2VPq. The corresponding cryo-TEM micrographs are shown in 

Figure 5A, B, and E. 
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Figure 5: Cryo-TEM micrographs of PB800P2VPq190PMAA550 in aqueous solution; (A+B) pH 10, (c = 
1 g/L); (C) grey-scale analysis of a micellar cross-section; (D) proposed solution structure at pH 
10, expanded PMAA corona; (E) cryo-TEM micrograph at pH 4, (c = 1 g/L), the inset shows an 
enlargement of a single micelle; (F) schematic depiction of the block terpolymer composition 
and proposed solution structure at low pH, collapsed PMAA corona. 

 

Figure 5A presents several micelles, again featuring a constant core to core 

distance, due to the charged corona of the system. This distance here has an aver-

age of around 200 nm, fitting with the values obtained for the hydrodynamic radius 

of the micelles from dynamic light scattering experiments. The micelles presented 

are spherical in shape and exhibit a multicompartmental core, observable through 

several dark spots on the grey polybutadiene part. This is even more pronounced in 
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Figure 5B, displaying an enlargement of 5A. The micellar cores exhibit a pattern of 

black, round-shaped objects with the size of around 10 nm and a constant distance 

of around 15 nm. These patches on the polybutadiene core are the result of im-

IPEC formation between poly(N-methyl-2-vinylpyridinium) polycations and polyme-

thacrylate anions. This also explains the rather high contrast in cryo-TEM, com-

pared to the micellar core. Considering the degrees of polymerization of PMAA and 

P2VP, the degree of quaternization and the IPEC formation, ~400 units of PMAA per 

polymer chain form the corona of the micelles. Strikingly, the im-IPEC formation, 

triggered by the quaternization of the P2VP, induces significant changes to the 

multicompartmental character. Further insight is provided through the grey-scale 

analysis of one micellar aggregate in Figure 5C. Here, the corona and the core are 

nicely visible. Within the cross-section of the core, several discontinuities are 

present, referring again to the patchy im-IPECs present on the soft polybutadiene 

core. Figure 5D shows a schematic depiction of the multicompartment micelle at 

pH 10. To the best of our knowledge, this is the first example of such complex mi-

cellar aggregates with a non-continuous shell formed by im-IPECs. 

A change to pH 4 results in the collapse of the PMAA corona and a considera-

ble contraction of the aggregates. Figure 5E shows a cryo-TEM micrograph of this 

sample. The distinct change in micellar size can again be explained by two reasons: 

the collapse of the corona and / or a certain dynamic character of the aggregates. 

While DLS gave just an apparent hydrodynamic size, cryo-TEM clearly shows that 

indeed not only the corona, but also the micellar core shrinks, indicating a change 

in the aggregation number, Nagg. While at pH = 10 the core has a radius of about 30-

35 nm (Figure 5A and B), at pH 4 the radius is around 20-25 nm (Figure 5E). Never-

theless, the dark spots representing the IPECs are still present, although somewhat 

hidden among the collapsed corona chains. This is shown in the inset in Figure 5E, 

depicting a single micelle. Figure 5F displays a drawing of the proposed micellar 

structure at low pH values. To further elucidate the ability of these multicompart-

ment micelles to react in a dynamic manner towards environmental stimuli, the 

micellar solution was dialyzed against 1.0 M NaCl at pH 10. High salinity should lead 

to a screening of charges,42 causing both a breakup of the IPECs and, alongside, a 

change in the hydrophilic-to-hydrophobic balance of the whole system. Indeed, the 

DLS CONTIN plot in Figure 4 (<Rh>z = 60 nm, -∆-, PDI = 1.09) shows that the micelles 
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shrink considerably upon salt addition. Nevertheless, both middle and end block 

should stay water-soluble. Cryo-TEM of the PB800P2VPq190PMAA550 micelles at pH 10 

with 1.0 M NaCl was performed and is shown in Figure 6.  

 

 

Figure 6: Cryo-TEM micrograph of PB800P2VPq190PMAA550 micelles at pH 10 and 1.0 M NaCl. 

The appearance of the aggregates distinctly changed: instead of dark spots 

on the grey polybutadiene core a thin dark shell around it can be observed. This is 

an indication for the breakup of the im-IPECs, rendering a poly(N-methyl-2-

vinylpyridinium) shell comparable to the one observed for the core-shell-corona 

particles described earlier in this article. Moreover, the screening of the charges 

leads to a certain clustering of the micelles, shown in Figure 6. The PMAA corona is 

not visible in Figure 6 but the polybutadiene core is with Rcore = 20 nm significantly 

smaller, if compared to the micelles in absence of salt (Rcore = 30-35 nm). Again, 

two factors can explain the contraction of the aggregates. First, the screening of 

the charges leads to a lowered repulsion of the corona chains and thus to a lowered 

extension of them. Secondly, the soft polybutadiene core is far above its glass tran-

100 nm100 nm
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sition temperature (Tg = -15°C for ~85% 1.2-polybutadiene), rendering a dynamic 

micellar system, capable of undergoing changes in its aggregation number and core 

size. This is even more pronounced as the quaternized P2VPq is completely water-

soluble and, therefore, also able to participate in unimer or polyion exchange reac-

tions. To investigate a possible dynamic behavior reflected in a change in the ag-

gregation number, static light scattering experiments for both systems at pH = 10 

have been performed. The molar mass for PB800P2VPq190PMAA550 was calculated ac-

cording to the DP of the corresponding blocks and was 112.800 g/mol. The results 

are shown in Table 1. As an alternative to the ZIMM method, Nagg was also deter-

mined from the micellar core size of the cryo-TEM experiments according to Equa-

tion 1. 

34/ / ( / )
3agg core PB PB PB AN m m R M Nπ ρ= =                                       (1) 

 

Table 1: Solution characteristics of the double-hydrophilic PB800P2VPq190PMAA550 block terpoly-
mers; 

Sample Rh[nm]a Rg[nm]b Rg/Rh
 10-6 · Mw 

[g/mol]b Nagg
b Nagg

c 106·A2 

[mol·mL/g2]b 

pH 10 102 86 0.84 26.7±0.8 237±7 194±15 -3.43 

pH 10, 

1.0M NaCl 
60 50 0.83 13.6±0.7 121±6 92±11 -4.14 

a: determined by dynamic light scattering at 90° angle; b: determined by static light scattering; c: 
determined by equation (1). 

 

Indeed, upon addition of 1.0 M NaCl the molecular weight and the corres-

ponding aggregation number of the micelles significantly decrease to half of their 

original values. There are two effects associated with a change in the aggregation 

number for such systems: the screening of the charges by the addition of high 

amounts of salt should lead to a less stretched conformation of the corona chains, 

PMAA, and a decrease in Rh, accompanied by an increase in Nagg. On the other 

hand, the addition of salt disintegrates the IPECs. The quaternized and, hence, wa-
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ter-soluble P2VPq chains now are swollen and occupy more space. This in combina-

tion with the uncomplexed PMAA chains renders the whole system more hydrophilic 

and results in a decreased aggregation number Nagg. Based on the experimental re-

sults presented here, the latter effect seems to be dominating.  

The ratio Rg/Rh, which is indicative for the micellar shape, is 0.84 in the ab-

sence of added salt and 0.83 for 1.0 M NaCl. Hard spheres are supposed to give a 

value of 0.775,43 the micelles investigated here exhibit a tendency towards a more 

star-like structure. This fits with the theory of stretched polyelectrolyte chains as a 

micellar corona. The theoretical value obtained from Rg/Rh for star-like micelles is 

1.1.  

Effect of the polymer composition 

The ratio of the two im-IPEC forming blocks, P2VPq and PMAA, should directly af-

fect the size of the micellar corona. If the PMAA block exhibits a higher degree of 

polymerization than the P2VPq block, uncomplexed, negatively charged PMAA re-

mains after IPEC formation, serves as the corona, and further stabilizes the block 

terpolymer micelles. Here, we compare three different systems at pH 10: 

PB800P2VPq190PMAA550, PB800P2VPq190PMAA345, and PB800P2VPq190PMAA140. We assume 

that the degree of quaternization of the P2VP block is the same for all the poly-

mers. For PB800P2VPq190PMAA550, the PMAA block has a threefold DP if compared to 

P2VPq. Thus, micelles with a rather thick corona are expected and were shown in 

Figure 5A and B. For PB800P2VPq190PMAA345, the DP of PMAA is approximately twice 

the DP of P2VPq and the resulting corona should be considerably smaller. Finally, 

for PB800P2VPq190PMAA140, the DP of P2VPq is higher than that for PMAA. Here, 

complete complexation of PMAA is expected, leading to block terpolymer micelles 

with very short corona chains made out of P2VPq. However, the remaining positive 

charge of P2VPq is supposed to render these aggregates still water-soluble. Figure 

7 shows cryo-TEM micrographs, DLS CONTIN plots, and the proposed micellar struc-

ture for PB800P2VPq190PMAA345 and PB800P2VPq190PMAA140. 
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Figure 7: Cryo-TEM micrographs of PB800P2VPq190PMAA345 (A) and PB800P2VPq190PMAA140 (C); 
schematic block length depiction, proposed solution structure, and DLS CONTIN plot at pH 10 
for PB800P2VPq190PMAA345 (B, <Rh>z = 118 nm, PDI = 1.18) and PB800P2VPq190PMAA140 (D, <Rh>z = 
72 nm, PDI = 1.08). 

The colored bars in Figure 7B and D represent the corresponding block 

lengths for the PB-P2VPq-PMAA block terpolymers. The cryo-TEM micrograph for 

PB800P2VPq190PMAA550 has already been shown in Figure 5A. Here, the micellar co-

rona exhibited a thickness of approx. 50-60 nm. The micelles formed from 

PB800P2VPq190PMAA345, displayed in Figure 7A, feature a significantly thinner corona 

of about 30 nm whereas for PB800P2VP190PMAA140 very short and straightened corona 

chains are observed. This could be parts uncomplexed P2VPq chains. Moreover, 

here the im-IPECs present on the core surface are most pronounced. To further 

elucidate these findings, the zeta-potential of all three micellar solutions at pH 10 

and a comparable concentration was measured. For PB800P2VPq190PMAA550, a value 

of -35.8 mV was determined; PB800P2VPq190PMAA345 gave -20.5 mV and for 

PB800P2VPq190PMAA140 +1.5 mV were obtained. This in combination with the pre-

sented cryo-TEM micrographs confirms that indeed size and charge of the micellar 

corona can be controlled via the block lengths of both blocks participating in im-



                                    Dynamic Multicompartment Core Micelles in Aqueous Media 

IX-21 
 

IPEC formation, P2VPq and PMAA. The results of this part are summarized in Table 

2. 

Table 2: Solution characteristics of the different block terpolymer systems. 

Block Terpolymer 
Ratio 

P2VPq/PMAAa 
<Rh>z [nm]b PDIc 

Zeta-

potentiald 

[mV] 

PB800P2VPq190PMAA550 0.35 102 1.15 -35.8 

PB800P2VPq190PMAA345 0.55 118 1.18 -20.5 

PB800P2VPq190PMAA140 1.35 72 1.08 +1.5 

a: determined according to the block lengths of P2VPq and PMAA; b: determined via the CONTIN 
algorithm from DLS measurements; c: determined via cumulant analysis of DLS measurements; 
d: converted from electrophoretic mobilities via the Smoluchowski equation. 

 

Conclusions 

Different block terpolymer micelles starting from PB-P2VP-PtBMA precursors were 

prepared: Hydrolysis of the PtBMA block leads to PB-P2VP-PMAA, which in aqueous 

solution forms core-shell-corona micelles with a PB core surrounded by a glassy 

P2VP shell and a (depending on the pH) negatively charged PMAA corona. The mi-

celles react to changes in pH, due to the pH-responsive nature of PMAA. At pH 4, 

partial im-IPEC formation was observed as a result of proton-transfer from PMAA to 

P2VP. Quaternization of the P2VP middle block followed by hydrolysis of the ester 

moiety leads to PB-P2VPq-PMAA, forming multicompartment micelles. The combi-

nation of a weak and a strong polyelectrolyte within the same polymer chain re-

sulted in im-IPEC formation over the whole addressed pH-range. These IPECs form a 

patchy, non-continuous shell around the soft PB core. We demonstrate that the 

block ionomer complexes respond in an elegant way to the addition of salt, render-

ing smart, dynamic colloids whose shape and / or dimension can be triggered by pH 

and salinity. We further show that the size and charge of the corona of these mi-

celles can be controlled through the composition of the block terpolymers, in par-

ticular the block length ratio in between P2VP and PMAA. Such aggregates with im-

IPECs could serve as model systems for the control of charge and shape in polymer-
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ic micelles. The further complexation of the charged micellar aggregates with, for 

example, functional particles and block copolymers will be the subject of further 

studies. 
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Experimental 

Gel permeation chromatography. GPC measurements were performed on a set of 

30 cm SDV-gel columns of 5 mm particle size having a pore size of 105, 104, 103 and 

102 Å with refractive index and UV (λ=254 nm) detection. GPC was measured at an 

elution rate of 1 ml/min with THF as solvent. 

Fourier-transform infrared spectroscopy. FTIR measurements were performed us-

ing a Perkin Elmer Spectrum One FTIR spectrometer. The samples were introduced 

as freeze-dried powders. 

 

 

 

 

 

 

 

 

Figure S1: THF-SEC elution traces of the B800 precursor (solid black line, PDI = 1.04), 
the B800V190 diblock copolymer (dashed black line, PDI = 1.04), and the B800V190T550 
block terpolymer (solid grey line, PDI = 1.02). 
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Figure S2: DLS CONTIN plots for B800Vq190T550 in dioxane after quaternization (<Rh>z  = 
27 nm, solid black line, PDI = 0.06) and B800Vq190MAA550 in dioxane after quaternization 
and subsequent hydrolysis (<Rh>z = 53 nm, dashed black line. PDI = 0.11). 

 

 

 

 

 

 

 

 

 

Figure S3: FTIR spectra for B800V190T550 (red line) and B800Vq190MAA550 (blue line). 

 

For the B800V190T550 block terpolymer, an IR band at 1625 cm-1 is observed. After 

quaternization, this band shifted to 1641 cm-1, indicating a successful modification 

1 10 100 1000

Rh [nm]
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of the P2VP block. This is in rather good agreement with the results of Biesalski et 

al., who reported on the quaternization of P4VP.1 The hydrolysis of the ester moie-

ty can nicely be seen as the IR band for the carboxylic group, 1722 cm-1, vanishes 

and a broad band for the carboxylate is obtained at 1549 cm-1.Unfortunately, the 

baseline of the IR measurements was not completely flat, preventing a quantitative 

evaluation of the data. 

 

1. Biesalski, M.; Rühe, J. Langmuir 2000, 16. 1943-1950 
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Abstract 

Dynamic core-shell-shell-corona micelles are formed between two oppositely 

charged block copolymer systems. Preformed polybutadiene-block-poly(N-methyl-

2-vinylpyridinium)-block-poly(methacrylic acid) (PB-P2VPq-PMAA) block terpolymer 

micelles with a soft polybutadiene core, an interpolyelectrolyte complex (IPEC) 

shell made out of poly(N-methyl-2-vinylpyridinium) and poly(methacrylic acid), and 

a negatively charged PMAA corona were mixed in different ratios at high pH with 

positively charged poly(N-methyl-2-vinylpyridinium)-block-poly(ethylene oxide) 

(P2VPq-PEO) diblock copolymers. Under these conditions, mixing results in the 

formation of a second IPEC shell onto the PB-P2VPq-PMAA precursor micelles, sur-

rounded by a PEO corona. The resulting multicompartmented IPECs exhibit dynamic 

behavior, highlighted by a structural relaxation within a period of 10 days, investi-

gated by dynamic light scattering (DLS), cryogenic transmission electron microsco-

py (cryo-TEM), and scanning force microscopy (SFM). After a short mixing time of 

1h, the IPECs exhibit a star-shaped structure whereas after 10 days spherical core-

shell-shell-corona objects could be observed. To further increase complexity and 

versatility of the presented systems, the in-situ formation of gold nanoparticles 

(Au-NPs) in both the precursor micelles and the equilibrated IPEC was tested. For 

the PB-P2VPq-PMAA micelles, NP formation resulted in narrowly distributed Au-NP 

located within the PMAA shell whereas for the core-shell-shell-corona IPEC the Au-

NPs were confined within the IPEC shell and shielded from the outside through the 

PEO corona. 
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Introduction 

Bottom-up processes are one of the key strategies for the preparation of materials 

matching the demands of today’s and future nanotechnology.[1, 2] Such require-

ments are, for example, defect-free spatial ordering over several microns, control 

over interfacial energies, or the positioning of different functional groups within 

close proximity. During the last decades, co- or self-assembly processes have prov-

en to be the method of choice, providing tailored materials through the careful 

adjustment of supramolecular and interfacial forces and interactions. Often, block 

copolymers with suitable functional moieties in different compartments are taken 

as unimolecular building blocks for the formation of compartmentalized structures 

in the bulk,[3-5] in thin-films,[6, 7] or in solution.[8-10] In all these cases, the driving 

force for structural evolution originates from the mutual incompatibility of the un-

like segments. Another facile and straightforward method to induce co-assembly of 

block copolymers is the formation of interpolyelectrolyte complexes (IPECs) 

through electrostatic interactions between two oppositely charged segments,[11] 

either inter-[12] or intramolecular.[13] Furthermore, these interpolyelectrolyte com-

plexes are capable of undergoing dynamic polyion exchange reactions, rendering 

smart colloidal objects responsive to changes in pH or salinity.[14-18]  

The formation of so-called hybrid or composite materials is another way to 

generate structures with manifold functionalities. The most common examples are 

organic-inorganic hybrid materials where metal or semiconductor nanoparticles are 

incorporated into a polymeric matrix material.[19-22] The idea behind is the combi-

nation of both the unique properties of metal nanoparticles regarding catalysis,[23] 

chemical sensing,[24] or data storage together with the cohesion, the processability, 

and the flexibility of polymer chains. Moreover, if carried out in solution, nanopar-

ticles generated in this way are significantly stabilized through the coordination to 

the polymer chains, preventing further aggregation taking place and facilitating a 

narrow particle size distribution,[25] which is directly related to the materials prop-

erties.[26, 27] A prominent example are hybrid materials of block copolymers and 

gold nanoparticles, both in the bulk[28] and in solution.[29] Gold nanoparticles are of 

particular interest due to their electronic and optic properties but also due to their 

biocompatibility.[25] 

Within this work we present a combination of all three previously mentioned 

approaches for the generation of novel complex materials: first, the self-assembly 
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of an amphiphilic ABC block terpolymer in a selective solvent and the generation of 

dynamic complex multicompartment micelles. Second, the electrostatically driven 

co-assembly at pH 10 between negatively charged polybutadiene-block-poly(N-

methyl-2-vinylpyridinium)-block-poly(methacrylic acid) (PB-P2VPq-PMAA, the de-

gree of polymerization for PMAA has to be significantly higher than that for P2VPq) 

block terpolymer micelles and positively charged poly(N-methyl-2-vinylpyridinium)-

block-poly(ethylene oxide) (P2VPq-PEO) diblock copolymers is investigated. Finally, 

the synthesis and encapsulation of narrowly dispersed gold nanoparticles within the 

intermediate shell of these IPECs is presented. 

Both polymers were synthesized via living sequential anionic polymerization. 

Upon mixing at certain Z-ratios (Z (+/-) being the overall ratio of positive to nega-

tive charges) core-shell-shell-corona IPECs are formed with a soft PB core, 2 adja-

cent IPEC shells consisting of PMAA and P2VPq, and a PEO corona. We show that 

these complexes first exhibit a star-like appearance which changes to a spherical 

shape during 10 days due to the dynamic nature of such IPECs. For Z(+/-) < 1 un-

complexed PMAA is still present in the intermediate shell formed by both PMAA and 

P2VPq, providing a suitable environment for the in-situ formation of gold nanopar-

ticles. After preparation, these nanoparticles are protected by the outer PEO shell. 

The aggregates were analyzed with light scattering, scanning force (SFM), and 

transmission electron microscopy (TEM, cryo-TEM). 

 

Experimental Part 

Synthesis 

The synthesis and characterization of poly(2-vinyl pyridine)-block-poly(ethylene 

oxide)[18] and polybutadiene-block-poly(2-vinyl pyridine)-block-poly(tert-

butylmethacrylate)[30] as well as its modification into polybutadiene-block-poly(1-

methyl-2-vinylpyridinium)-b-poly(methacrylic acid)[13] have been described else-

where. 

Quaternization 

Poly(2-vinyl pyridine)-b-poly(ethylene oxide) V94EO1245 (1g, 0.015 mmol) was dis-

solved in dioxane (50 ml). A 20-fold excess of dimethyl sulfate (3.56 g, 28 mmol, 

calculated with a degree of polymerization of 94 for the P2VP) was added via sy-

ringe. After stirring at 40 °C for 5 days, the excess of dimethyl sulfate was removed 

by dialysis (regenerated cellulose membranes, MWCO 3.500 g/mol, spectra/por) 
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against deionized water. Poly(N-methyl-2-vinylpyridinium)-b-poly(ethylene oxide) 

was obtained via freeze drying. The degree of quaternization was estimated via 

FTIR measurements and iodometric titrations and was around 80%.[13] 

Preparation of the interpolyelectrolyte complexes 

Both Vq94EO1245 (5 g/L) and B800Vq190MAA550
 (1 g/L) were dissolved in a pH 10 buffer 

solution (VWR®, AVS Titrinorm). Afterwards, the corresponding volumes to reach a 

certain Z-value (overall-ratio of positive to negative charges) were mixed in small 

glass vials and stirred at RT. 

Preparation of the Au-nanoparticles 

HAuCl4 was dissolved in deionized water (1 g/L) and kept in the dark. The Au load 

was calculated according to the number of uncomplexed PMAA units present in so-

lution (depending on the Z-value in case of the IPECs). Typically, the Au load was 

10% or, 0.1 equivalent compared to the number of PMAA units. The necessary 

amount of HAuCl4 in solution was added to the micellar solution at pH 10, stirred 

for 24 h at RT and kept dark. Excess of HAuCl4 was removed afterwards via dialysis 

against pH 10 buffer solution (RC membranes, MWCO 3.500 g/mol, spectra/por). 

Already after this step, the solutions appeared slightly purple, indicating the for-

mation of Au nanoparticles. For the final nanoparticle formation the solution was 

exposed to UV-irradiation (Hoenle VG UVAHAND 250 GS) for 30 minutes. 

Dynamic light scattering 

DLS measurements were performed in sealed cylindrical scattering cells (d = 10 

mm) at an angle of 90° on an ALV DLS/SLS-SP 5022F equipment consisting of an 

ALV-SP 125 laser goniometer with an ALV 5000/E correlator and a He-Ne laser with 

the wavelength λ = 632.8 nm. The CONTIN algorithm was applied to analyze the 

obtained correlation functions. Apparent hydrodynamic radii were calculated ac-

cording to the Stokes-Einstein equation. Prior to the light scattering measurements 

the sample solutions were filtered using Millipore Nylon filters with a pore size of 

1.2 or 5 µm. Apparent polydispersities for the aggregates in solutions were calcu-

lated using the cumulant analysis. 

Transmission electron microscopy 

TEM images were taken with a Zeiss CEM902 EFTEM electron microscope operated 

at 80 kV or a Zeiss EM922 OMEGA EFTEM electron microscope operated at 200 kV. 

Both machines are equipped with an in-column energy filter. Samples were pre-
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pared through deposition of a drop of micellar solution (concentration always 0.1 

g/L) onto the TEM grid (Gold, 400 mesh). Afterwards the remaining solvent was 

removed with a blotting paper. 

Cryogenic transmission electron microscopy 

For Cryo-TEM studies, a drop (≈ 2 µL) of the sample solution (c ≈ 0.1 wt-%) was 

placed on a lacey carbon-coated copper TEM grid (200 mesh, Science Services, 

München, Germany), where most of the liquid was removed with blotting paper, 

leaving a thin film stretched over the grid holes. The specimens were shock vitri-

fied by rapid immersion into liquid ethane in a temperature controlled freezing 

unit (Zeiss Cryobox, Zeiss NTS GmbH, Oberkochen, Germany) and cooled to approx-

imately 90 K. The temperature was monitored and kept constant in the chamber 

during all the preparation steps. After freezing the specimens, they were inserted 

into a cryo-transfer holder (CT3500, Gatan, München, Germany) and transferred to 

a Zeiss EM922 OMEGA EFTEM instrument. Examinations were carried out at temper-

atures around 90 K. The transmission electron microscope was operated at an acce-

leration voltage of 200 kV. Zero-loss filtered images (Δ E = 0 eV) were taken under 

reduced dose conditions. All images were registered digitally by a bottom mounted 

CCD camera system (Ultrascan 1000, Gatan), combined and processed with a digital 

imaging processing system (Gatan Digital Micrograph 3.9 for GMS 1.4). 

Scanning force microscopy 

 SFM images were recorded on a Digital Instruments Dimension 3100 microscope 

operating in Tapping ModeTM. Samples were prepared on polished silicon wafers 

through dip-coating. The wafer were previously cleaned in toluene, dried on a 

heating plate and finally treated with a snow jetTM. Afterwards, the pre-cleaned 

silicon wafers were dipped into the sample solution for 20 seconds and the excess 

of solution was afterwards removed with a dust-free blotting paper. All images 

were treated with the Nanoscope 7.20 software. 

Zeta-potential 

The zeta-potential was determined on a Malvern Zetasizer Nano ZS in conjunction 

with an MPT2 autotitrator (Malvern). The electrophoretic mobilities (u) were con-

verted into ζ potentials via the Smoluchowski equation ζ = uη/ε0ε, where η denotes 

the viscosity and ε0ε the permittivity of the solution. 
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UV-VIS spectroscopy. The UV spectra of the gold nanoparticle solution were record-

ed on a Hitachi U-3000 spectrophotometer with a scanning speed of 300 nm / min 

and a sampling interval of 0.50 nm. 

 

Results and Discussion 

Dynamic Multicompartment Micelles from B800Vq190MAA550 

Recently we reported on the unique micellization behavior of polybutadiene-block-

poly(N-methyl-2-vinylpyridinium)-block-poly(methacrylic acid) B800Vq190MAA550 (Mn = 

110 kg/mol, PDI = 1.02) block terpolymers in aqueous systems. The subscripts de-

note the number-average degrees of polymerization of the corresponding block. 

Dynamic multicompartment micelles which showed response to changes in salinity 

or pH were formed and exhaustively characterized.[13] A cryo-TEM micrograph of 

such micelles at pH 10 and the proposed solution structure are shown in Figure 1. 

The micelles consist of a soft polybutadiene core, a patchy intra-micellar interpo-

lyelectrolyte complex shell formed by P2VPq and parts of the PMAA, and a nega-

tively charged and, thus, stretched corona of excess PMAA (DP (PMAA) > DP 

(P2VPq)). 

 

 
Figure 1: Cryo-TEM of B800Vq190MAA550 micelles at pH 10 (A); proposed multicompartment archi-
tecture of the micelles (B). 
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Interpolyelectrolyte Complex Formation between B800Vq190MAA550 and 

Vq94EO1245 

For the IPEC formation these aggregates were mixed with quaternized poly(1-

methyl-2-vinylpyridinium)-block-poly(ethylene oxide) Vq94EO1245
 diblock copolymers 

in a ratio so that the overall ratio of positive to negative charges Z = 1 (taking into 

account the estimated quaternization efficiency of 80% for the P2VPq block). The 

degrees of polymerization are 94 (Vq) and 1250 (EO). Note that the Z-ratio is the 

overall ratio of positive to negative charges. The mixing process as well as the pro-

posed structure of the resulting IPECs is shown in Figure 2. As described earlier,[13] 

we assume a remaining DP of 360 of the negatively charged PMAA for the multi-

compartment micellar precursor after the intra-micellar IPEC formation. More pre-

cisely, for one molecule B800Vq190MAA550 approximately 3.8 molecules Vq94EO1245 are 

added. 

 

 
Figure 2: scheme for the formation of IPECs between negatively charged B800MV190MAA550 block 
terpolymer micelles and positively charged Vq94EO1250 diblock copolymers at Z (+/-) = 1; please 
note that the precursor micelles on the left are shown according to an “on-top” view whereas 
the IPEC on the right is shown as a cross section. 
 

By mixing with positively charged Vq94EO1245 diblock copolymers in solution 

at pH 10 further IPEC formation takes place, providing a new shell around the PB 

core as depicted in the right part of Figure 2. Although, for clarity reasons, the 

right part in Figure 2 displays two different IPEC shells (the red one being the for-

mer patchy shell of the precursor particles and the orange shell the newly formed 

IPEC) surrounding the PB core it is rather unlikely that both can be distinguished, as 
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they consist of the same two charged polymer segments. After IPEC formation, the 

whole core-shell-shell micelle is further surrounded by a PEO corona, depicted in 

green in Figure 2. Dynamic light scattering (DLS) was performed to compare both 

solutions (Figure 3). The “precursor” micelles have a hydrodynamic radius <Rh>z = 

99 nm (PDI = 1.18). After 1h of mixing at Z = 1, the size of the aggregates increased 

significantly, resulting in <Rh>z = 155 nm (PDI = 1.19). Moreover, if the same expe-

riment is performed again after 10 days, the radius decreased to 133 nm (PDI = 

1.08). No significant decrease in size was observed after these 10 days. Further-

more, the distribution of the hydrodynamic radii significantly narrows after 10 

days, indicating a certain equilibration of the system. 

 
Figure 3: DLS CONTIN plots for the B800Vq190MAA550 block terpolymer precursor micelles (<Rh>z = 
99 nm, PDI = 1.18, -□-), the IPECs at Z (+/-) = 1 after 1h (<Rh>z = 155 nm, PDI = 1.19, -ο-) and 10 
days mixing time (<Rh>z = 133 nm, PDI = 1.08, -Δ-). 
 

One possible explanation is that the formed IPECs are capable of undergoing 

polyion exchange reactions in aqueous solution and that this is the effect of some 

structural rearrangement of the formed polymeric micelles.[11, 17] To evaluate this, 

cryo-TEM of a sample was performed 1h after mixing (Figure 4A and 4B). 
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Figure 4: A, B: cryo-TEM micrograph of IPECs at Z (+/-) = 1 and pH 10 after 1h mixing time at 
different locations of the same sample; C, D: SFM height images of an IPEC solution at Z (+/-) = 1 
and pH 10 after deposition on a carbon coated TEM grid (image size is 2x2 µm (C) and 1x0.5 µ 
(D), z-scale in both cases is 6 nm), D displaying an enlargement of C. 
 

Figure 4A displays star-like micellar aggregates with a radius of around 125 

nm. The PB core has a radius of 30-35 nm and is surrounded first by a very thin 

dark ring (d ~ 10 nm), and then by a 10-20 nm thick lighter grey shell ending up in 

several (typically 12-16) stretched arms. In Figure 4B, at a first glance the struc-

ture appears similar, but the thin dark ring around the PB core has almost vanished 

and the surrounding grey shell is thicker and more continuous. Also the arms ap-

pear shorter, if compared to Figure 4A. In our opinion, Figures 4A and 4B represent 
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different states of a dynamic system on its way to equilibrium. A possible illustra-

tion for the formation of this intermediate structure is shown in Figure 5. Such 

structural rearrangements after the initial formation of an IPEC have been reported 

for the IPEC formation between polyisobutylene-block-poly(methacrylic acid) mi-

celles with positively charged poly(N-ethyl-4-vinylpyridinium).[15] 

 
Figure 5: Schematic depiction of the formation of the star-like intermediate structures of the 
IPECs between B800Vq190MAA550 and Vq94EO1245; please note that the precursor micelles on the 
left are shown according to an “on-top” view whereas the IPEC on the right is shown as a cross 
section. 
 

In the beginning, the corona chains of B800Vq190MAA550 micelles at pH 10 are 

charged and, hence, stretched. The same accounts for the positively charged part 

of Vq94EO1245. Upon mixing, first IPEC formation takes place between two 

stretched, oppositely charged polymer chains. Afterwards, upon charge neutraliza-

tion and, thus, less repulsion in-between the chain segments, the formed IPECs 

start to fuse, form a continuous shell around the PB core and overlap with the al-

ready existing “patchy” shell of the precursor micelles. The star-like appearance of 

the aggregates in Figure 4A and 4B could be explained in this way. If the aggrega-

tion number determined for the precursor micelles (243)13 is taken into account, 

each of these “ray-like” protrusions should consist of 15-20 PMAA chains and the 

respective 3.8-fold number of oppositely charged P2VPq chains. Furthermore, the 

thin dark ring around the PB core in Figure 4A seems to represent the former, non-

continuous shell of the B800Vq190MAA550 multicompartment micelles. Figure 4B de-

picts a system already somewhat closer to equilibrium, visible by the thicker and 

more developed IPEC shell around the PB core and the shorter arms. In addition, 

the dark ring has almost vanished, indicating the formation of a continuous inter-
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face between the “old” and the newly formed IPECs. The presence of aggregates at 

different stages of the equilibration process after a short mixing time could also 

explain the decreasing polydispersity of the IPECs during the 10 days of mixing. 

The same aggregates at Z = 1 after 1h mixing time were also analyzed by 

scanning force microscopy (SFM) on polished silicon wafers. Figure 4C provides an 

overview (2.0 x 2.0 µm, height image, z-scale = 7 nm) with several IPECs of similar 

size and shape and Figure 3D shows the height image of two single IPECs. The single 

IPECs in Figure 4D have an overall radius of around 150 nm with a core of 75 nm 

and 9 bumps of 10-15 nm surrounding both. The increase in size is caused by the 

flattening of the aggregates on the silicon substrate. Also the arms seem to be less 

stretched than in the corresponding cryo-TEM micrographs (Figure 4A and 4B). 

The (according to DLS) equilibrated IPECs at Z (+/-) = 1 after 10 days mixing were 

also analyzed by cryo-TEM. The resulting cryo-TEM micrographs are shown in Figure 

6. 

 

 
Figure 6: Cryo-TEM micrograph of the IPEC formed between B800Vq190MAA550 and Vq94EO1245 at Z 
(+/-) = 1 after 10 days mixing time (A); enlargement of a single IPEC (B); proposed structure of 
the assembly (C). 
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Indeed, the appearance of the structures has significantly changed. Instead 

of the former core-patchy shell-corona micelles, now a thick, fuzzy, continuous 

shell can be observed. The core size has remained constant; in both cases a radius 

of 30-35 nm was measured. The shell thickness is around 20-30 nm. We propose 

that this continuous shell is made of both the former, intra-micellar IPEC and the 

newly formed one between excess PMAA and Vq94EO1245. As expected, the two dif-

ferent parts of the IPEC shell are not distinguishable. The rather fuzzy appearance 

of the micellar shell could be due to an incomplete mixing of the two IPEC shells. 

According to the volume of the newly formed IPEC shell compared to the volume of 

the two polyelectrolyte chains participating (243 PMAA chains13 with a DP of 360 

and ~900 P2VPq chains with a DP of 94), it is quite likely that also PEO chains are 

incorporated or buried into this shell. This would also lead to a certain swelling of 

this shell through the solvent, water. A PEO corona, surrounding the shell, is ex-

pected, though not visible in cryo-TEM. However, charge neutrality of the outmost 

part of the micellar aggregates can be assumed as the micelles do not show repul-

sion apparent through a strongly deviating core-to-core distance. To confirm this, 

the zeta-potential of these solutions was determined, revealing -35.8 mV 

(B800Vq190MAA550 precursor micelles), + 14.7 mV (Vq94EO1250 diblock copolymer in 

aqueous solution) and + 0.2 mV (resulting IPEC at Z = 1) at comparable concentra-

tions (c ≈ 1 g/L). Although one has to be careful about a quantitative evaluation of 

these measurements, the general message is quite clear. At Z = 1 almost uncharged 

particles are obtained. 

 

Effect of the overall Z (+/-) ratio 

All data presented so far has been obtained for Z (+/-) = 1. To elucidate the effect 

of this ratio on particle size, micelle polydispersity, or the remaining particle 

charge we prepared IPECs at different Z-values 0.1, 0.2, 0.5, and 0.75. DLS CONTIN 

plots and zeta-potential measurements for these solutions after 10 days mixing are 

shown in Figure 7. 
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Figure 7: DLS CONTIN plots for IPECs of B800Vq190MAA550 and Vq94EO1245 after 10 days mixing at 
different Z (+/-) = 0.1 (<Rh>z = 98 nm, PDI = 1.17, -□-), 0.2 (<Rh>z = 102 nm, PDI = 1.16, -Δ-), 
0.5 (<Rh>z = 117 nm, PDI = 1.11, -ο-), and 0.75 (<Rh>z = 123 nm, PDI = 1.12, -▼-) (A); hydrody-
namic radii (-□-) and zeta-potential (-ο-) depending on the prepared Z (+/-) – ratio (B). 
 

 With increasing Z, the radius of the IPECs measured by DLS increases steadi-

ly. In the beginning, for Z = 0.1 and <Rh>z = 98 nm (PDI = 1.17), almost no change 

can be seen as compared to the block terpolymer precursor micelles (<Rh>z = 99 

nm, PDI = 1.18). At Z = 0.2, the radius increases slightly to 102 and the distribution 

narrows (PDI = 1.16). This effect becomes more pronounced at higher Z-values (Z = 

0.5: <Rh>z = 117 nm, PDI = 1.11; Z = 0.75: <Rh>z = 123 nm, PDI = 1.12; Z = 1.0: <Rh>z 

= 133 nm, PDI = 1.08). The measured zeta-potential for these solutions follows the 

same trend: -8 mV (Z = 0.1), -6 mV (Z = 0.2), -2.5 mV (Z = 0.5), -0.2 mV (Z = 0.75), 

and +0.2 mV (Z = 1.0) were obtained. The zeta-potential at Z = 0.75 does not seem 

to be different from that for Z = 1. We assume that in this case the shell of the 

B800Vq190MAA550 precursor micelles is already completely covered with Vq94EO1245 

molecules, burying any remaining uncomplexed PMAA within the IPEC shell. 

To further increase the complexity of these dynamic multicompartmental 

systems, the preparation of gold nanoparticles inside the IPECs was tested. We 

therefore prepared IPEC solutions at Z(+/-) = 0.2. 

 

Nanoparticle Generation inside the IPECs: 

There is a general and growing interest in the generation of gold nanoparticles 

within or on polymeric scaffolds[20, 31], either for applications in electronic or cata-

lytic devices. There are several examples about the ability of PAA, PMAA, or com-

parable weak polyelectrolytes as carriers for noble metal nanoparticles in the lite-

rature. For example, Bi et al. generated Ag nanoparticles inside the PAA core of PS-
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b-PAA diblock copolymer micelles in toluene.[32] Caruso et al. reported the loading 

of PbS and Au nanoparticles on polymer spheres coated with PAA / poly(allylamine 

hydrochloride) (PAH) multilayers.[33] To elucidate the use of the presented IPECs as 

carriers for gold nanoparticles, they were mixed with HAuCl4 in solution. The pre-

cursor micelles with a PMAA corona serve as a reference system. For the system 

presented here, both PMAA and P2VPq could serve as stabilizers for Au NPs. How-

ever, we assume that the P2VPq compartments are almost completely located 

within the collapsed IPEC domains and, hence, by far less accessible for the AuCl4- 

ions. Even so, it cannot be completely neglected that some metal particles are lo-

cated at either the P2VPq or the IPEC. Typically, the PMAA chains of both the ref-

erence system and the IPEC at Z = 0.2 were loaded with 10% HAuCl4, calculated on 

the proposed remaining DP for PMAA of 360[13] in combination with the charge ra-

tio. After 24 h in the dark and subsequent dialysis for another 24 h to remove non-

coordinated HAuCl4, the solutions were exposed to UV-irradiation for 30 minutes. 

Afterwards, pink solutions were obtained. The reaction scheme is shown in Figure 

8. 
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Figure 8: Schematic depiction of the formation of Au nanoparticles on negatively charged 
B800Vq190MAA550 terpolymer micelles (upper scheme) and IPECs from B800Vq190MAA550 and 
Vq94EO1245 at Z (+/-) = 0.2 after mixing for 10 days (lower row); 
 

For the IPECs prepared at Z = 0.2, the newly formed shell still exhibits a 

negative charge and, hence, uncomplexed PMAA units; thus enabling the formation 

of gold nanoparticles within the IPEC. This is confirmed by zeta-potential mea-

surements (cf. Figure 7B). According to the proposed solution structure of the IPECs 

the Au NPs should be formed within the shell shielded from the outside by the PEO 

corona. Here we assume that for this charge ratio the equilibrium structure is com-

parable but with uncomplexed PMAA present. After loading with the Au NPs, the 

B800V190MAA550 terpolymer micelles were analyzed by TEM. The nanoparticle loading 

of the IPECs was investigated by cryo-TEM. The results are shown in Figure 9. 
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Figure 9: TEM micrograph of B800Vq190MAA550 terpolymer micelles loaded with Au-NPs on a car-
bon-coated copper grid (A), the inset displays an enlargement; cryo-TEM micrograph of the IPEC 
at Z = 0.2 loaded with Au-NPs (B), the inset shows an enlargement; UV-VIS spectra of both the 
B800Vq190MAA550 micelles (solid black line) and the IPEC (solid grey line) loaded with Au-NPs (C), 
the insets are photographs taken of the IPEC solutions before (left) and after (right) nanopar-
ticle formation; grey-scale analysis of two adjacent IPECs in (B, marked via the black rectangle), 
highlighting the location of the nanoparticles inside the structure (D). 
 

As depicted in Figure 9A, the Au nanoparticles formed within the PMAA shell 

of the B800Vq190MAA550 micelles are narrowly distributed and around 3-4 nm in di-

ameter as shown in the enlargement in Figure 9A. They are densely located directly 

within the IPEC shell around the soft PB core and less packed with growing dis-

tance. The patchy shell of these micelles is not visible here as the contrast of the 

metal particles simply is too high compared to the different block polymer com-

partments. Strikingly, only very few free Au-NP can be seen, indicating a strong 

tendency of the HAuCl4-precursor to coordinate within the IPEC shell or the PMAA 

corona. Figure 5B shows a cryo-TEM of the IPEC solution at Z = 0.2 after being 

loaded with Au NPs in a similar manner. Round-shaped objects with a radius of 60-
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75 nm can be seen, each exhibiting a thin dark ring inside the grey shell. These 

must be the Au NPs, located within the IPEC shell and still surrounded by the PEO 

corona. This is highlighted more clearly in the inset in Figure 8B showing an en-

largement of one single IPEC. A thin, continuous dark ring with a thickness of 

around 5 nm is embedded within the grey IPEC micelle. Furthermore, almost no 

free nanoparticles can be observed in the cryo-TEM in Figure 9B. 

Besides electron microscopy, UV-VIS spectroscopy is one of the standard me-

thods to determine the aggregation state of noble metal colloids in solution.[34] UV-

VIS spectra of the B800Vq190MAA550 micelles (solid black line) and the IPECs loaded 

with Au-NPs (solid grey line) are shown in Figure 9C. In both cases, an absorption 

maximum at around 520 nm was obtained, also indicating the formation of rather 

small gold particles without further aggregation occurring. The inset are two pho-

tographs taken from the IPEC solution before (left) and after (right) Au NP forma-

tion. The pink color in the right image supports the drawn conclusions. In addition, 

grey-scale analysis on two adjacent IPECs was performed and is depicted in Figure 

9D. The sharp insections (arrows) on both sides of the cores present the thin dark 

ring and thus, the nanoparticles. Both electron microscopic and spectroscopic 

techniques convincingly show that the formation of Au-NP selectively within the 

IPEC shell of complex particles in solution was successfully performed. 

 

Conclusion 

We have successfully prepared dynamic and multicompartmental colloidal objects 

with a radius of around 100-150 nm through the combination of 3 inherently differ-

ent approaches: non-solvent induced self-assembly, ionic complexation, and coor-

dination chemistry. IPEC formation between negatively charged core-patchy shell-

corona micelles from B800Vq190MAA550 terpolymers and positively charged Vq94EO1250 

diblock copolymers rendered core-shell-shell-corona objects, which showed a dy-

namic relaxation behavior within 10 days, changing from a star-like to a spherical 

shape. The remaining charge of these colloids could be adjusted via the mixing ra-

tio of both polymers. The IPECs could be even further modified through the in-situ 

reduction of HAuCl4 through UV-irradiation within the IPEC shell, resulting in nar-

rowly distributed Au-NPs with a diameter of 3-4 nm. These systems could be inter-

esting candidates for catalytic application or act as carriers for sensitive substances 

through the protective PEO corona. 
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